首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytochelatin (PC) is a naturally occurring peptide with high affinity towards arsenic (As). In this article, we demonstrated the systematic engineering of PC‐producing E. coli for As accumulation by addressing different bottlenecks in PC synthesis as well as As transport. Phytochelatin synthase from Schizosaccharomyces pombe (SpPCS) was expressed in E. coli resulting in 18 times higher As accumulation. PC production was further increased by co‐expressing a feedback desensitized γ‐glutamylcysteine synthetase (GshI*), resulting in 30‐fold higher PC levels and additional 2‐fold higher As accumulation. The significantly increased PC levels were exploited further by co‐expressing an arsenic transporter GlpF, leading to an additional 1.5‐fold higher As accumulation. These engineering steps were finally combined in an arsenic efflux deletion E. coli strain to achieve an arsenic accumulation level of 16.8 µmol/g DCW, a 80‐fold improvement when compared to a control strain not producing phytochelatins. Biotechnol. Bioeng. 2010. 105: 780–785. © 2009 Wiley Periodicals, Inc.  相似文献   

2.
* In this study we address the impact of changes in plant heavy metal, (i.e. zinc (Zn) and cadmium (Cd)) status on metal accumulation in the Zn/Cd hyperaccumulator, Thlaspi caerulescens. * Thlaspi caerulescens plants were grown hydroponically on both high and low Zn and Cd regimes and whole-shoot and -root metal accumulation, and root (109)Cd(2+) influx were determined. * High-Zn-grown (500 microm Zn) plants were found to be more Cd-tolerant than plants grown in standard Zn conditions (1 microm Zn). Furthermore, shoot Cd accumulation was significantly greater in the high-Zn-grown plants. A positive correlation was also found between shoot Zn accumulation and increased plant Cd status. Radiotracer (109)Cd root flux experiments demonstrated that high-Zn-grown plants maintained significantly higher root Cd(2+) influx than plants grown on 1 microm Zn. It was also found that both nickel (Ni) and copper (Cu) shoot accumulation were stimulated by high plant Zn status, while manganese (Mn) accumulation was not affected. * A speculative model is presented to explain these findings, suggesting that xylem loading may be one of the key sites responsible for the hyperaccumulation of Zn and Cd accumulation in Thlaspi caerulescens.  相似文献   

3.
4.
Plants of Indian mustard (Brassica juncea L.) were exposed to different concentrations (15, 30, 60, 120 microM) of (Cd, Cr, Cu, Pb) for 28 and 56 d for accumulation and detoxification studies. Metal accumulation in roots and shoots were analyzed and it was observed that roots accumulated a significant amount of Cd (1980 microg g(-1) dry weight), Cr (1540 microg g(-1) dry weight), Cu (1995 microg g(-1) dry weight), and Pb (2040 microg g(-1) dry weight) after 56 d of exposure, though in shoot this was 1110, 618, 795, and 409 microg g(-1) dry weight of Cd, Cr, Cu, and Pb, respectively. In order to assess detoxification mechanisms, non-protein thiols (NP-SH), glutathione (GSH) and phytochelatins (PCs) were analyzed in plants. An increase in the quantity of NP-SH (9.55), GSH (8.30), and PCs (1.25) micromol g(-1) FW were found at 15 microM of Cd, however, a gradual decline in quantity was observed from 15 microM of Cd onwards, after 56 d of exposure. For genotoxicity in plants, cytogenetic end-points such as mitotic index (MI), micronucleus formation (MN), mitotic aberrations (MA) and chromosome aberrations (CA) were examined in root meristem cells of B. juncea. Exposure of Cd revealed a significant (P < 0.05) inhibition of MI, induction of MA, CA, and MN in the root tips for 24 h. However, cells examined at 24 h post-exposure showed concentration-wise recovery in all the endpoints. The data revealed that Indian mustard could be used as a potential accumulator of Cd, Cr, Cu, and Pb due to a good tolerance mechanisms provided by combined/concerted action of NP-SH, GSH, and PCs. Also, exposure of Cd can cause genotoxic effects in B. juncea L. through chromosomal mutations, MA, and MN formation.  相似文献   

5.
6.
The aim of this investigation is to study some freshwater snails as bioindicator for heavy metals Cd, Cu and Pb by determining the concentration of these metals in the field water samples and in whole snail tissues. Seven freshwater snails were used in the present study, some of which are considered medically important snails in Egypt, Biomphalaria alexandrina and Bulinus truncatus, the intermediate hosts for schistosomiasis and nontarget snails Bellamya unicolor, Cleopatra bulimoides, Helisoma duryi, Physa acuta and Theodoxus niloticus. Samples of snails were gathered from three Egyptian governorates: Damietta, Giza and Monufia.. The snails were arranged according to their accumulated concentration of the above‐mentioned microelements in descending order as follows: C. bulimoides > H. duryi > B. truncatus > B. alexandrina >P. acuta > B. unicolor > T. niloticus. It is concluded from the analysis of water and the investigated snails that these snails can accumulate Cu, Pb and Cd with high concentrations in their bodies, so they can be used as bioindicators for heavy metals.  相似文献   

7.
The global rate of heavy metal pollution is rapidly increasing in various habitats. Anopheles malaria vector species (Diptera: Culicidae) appear to tolerate many aquatic habitats with metal pollutants, despite their normal proclivity for ‘clean’ water (i.e. low levels of organic matter). Investigations were conducted to establish whether there are biological costs for tolerance to heavy metals in Anopheles gambiae Giles sensu stricto and to assess the potential impact of heavy metal pollution on mosquito ecology. Anopheles gambiae s.s. were selected for cadmium, copper or lead tolerance through chronic exposure of immature stages to solutions of the metals for three successive generations. Biological costs were assessed in the fourth generation by horizontal life table analysis. Tolerance in larvae to cadmium (as cadmium chloride, CdCl2), copper [as copper II nitrate hydrate, Cu(NO3)2 2.5 H2O] and lead [as lead II nitrate, Pb(NO3)2], monitored by changes in LC50 concentrations of the metals, changed from 6.07 µg/L, 12.42 µg/L and 493.32 µg/L to 4.45 µg/L, 25.02 µg/L and 516.69 µg/L, respectively, after three generations of exposure. The metal‐selected strains had a significantly lower magnitude of egg viability, larval and pupal survivorship, adult emergence, fecundity and net reproductive rate than the control strain. The population doubling times were significantly longer and the instantaneous birth rates lower in most metal‐selected strains relative to the control strain. Our results suggest that although An. gambiae s.s. displays the potential to develop tolerance to heavy metals, particularly copper, this may occur at a significant biological cost, which can adversely affect its ecological fitness.  相似文献   

8.
9.
Remediation of storm-water polluted with heavy metals should be possible in percolation systems, ponds, or wetlands. The aim of this work was to find plant species for such systems that are efficient in the uptake of Zn, Cu, Cd, and Pb. Plants were collected from percolation and wetland areas and analyzed for heavy metal concentrations. Results showed that submersed and free-floating plants had the capacity to take up high levels of Cu, Zn, and Pb into their shoots. With roots having a concentration factor above 1, the terrestrial plants show efficient stabilization of Cd and Zn and emergent plants show corresponding stabilisation of Zn. In addition, Potamogeton natans, Alisma plantago-aquatica, and Filipendula ulmaria were used in a controlled experiment. The shoots of P. natans and the roots of A. plantago-aquatica were found to accumulate even higher concentrations of Zn, Cu, and Pb than found in the field-harvested plants. Similar results were found for Cd in shoots and Pb in roots of F. ulmaria. Our conclusion is that submersed plant species seem to be the most efficient for removal of heavy metals from storm-water.  相似文献   

10.
植物螯合肽及其在抗重金属胁迫中的作用   总被引:11,自引:0,他引:11  
蔡保松  雷梅  陈同斌  张国平  陈阳 《生态学报》2003,23(10):2125-2132
植物螯合肽(PCs)广泛存在于植物体中,与植物抗重金属胁迫关系密切。植物螯合肽及其复合物是一类富含半胱氨酸的低分子量化合物。现有研究证明,PCS由谷胱甘肽(GSH)为底物的酶促反应合成,其合成受相关基因的调控,从模式植物拟南芥的突变体中已分离到与PCS合成有关的几个基因。植物螯合肽首先与重金属离子结合形成低分子量(LMW)复合物,以此形态经由细胞质进入液泡后,再与一个分子的植物螯合肽结合,形成对植物组织毒性较小的高分子量(HMW)复合物,从而达到缓解重金属对植物的危害作用。就植物螯合肽及其复合物的结构、生物合成、基因调控及重金属解毒机理等进行了综述,并对今后的研究方向提出了一些看法。  相似文献   

11.
This research aims to assess the effect of the application of biosolids compost and phytoremediation on the mobility of total and biodisponibles (DTPA) fractions of cadmium, copper, lead, and zinc from different horizons of a superficially contaminated soil. Leaching experiment in soil columns was proposed. Treatments contemplated application of compost biosolid and phytoremediation. Two destructive samplings were performed. Total and DTPA trace metals were identified in each horizon. The overall performance of the various elements in its total and DTPA forms show greater concentration in horizon A and fewer gradients between horizons Bt and BC, thus assuming that the high content of clay in horizon Bt (62.9%) limits its movement through the horizons. In the mobile nutrients, a greater mobility was evidenced in DTPA fractions if compared to Total fractions. In the horizon A, the more mobile metals, such as Zn and Cd, evidenced a greater percentage of DTPA/Total fractions in all treatments. The application of compost with or without plant diminished the mobilization of Zn, Cu, and Cd Total, thus limiting a potential leaching to inferior horizons. However, this effect was not observed in the DTPA fraction.  相似文献   

12.
黔西北铅锌矿区植物群落分布及其对重金属的迁移特征   总被引:9,自引:0,他引:9  
重金属耐性植物和超富集植物的筛选、鉴定和驯化是植物修复技术研究与发展的关键。以黔西北4个不同恢复年限的铅锌矿为研究对象,通过群落生态调查利用聚类分析方法筛选出研究区域中重金属耐性植物优势种,并分析其对重金属Pb、Zn、Cu、Cd的迁移富集能力。结果表明:4个矿区共发现高等植物22种,分属13科21属,筛选出9种重金属耐性植物优势种,其中转运系数大于1的植物有:黄花蒿(Cu)、珠光香青(Zn)、大叶醉鱼草(Zn/Pb/Cd)、野艾蒿(Cu/Zn/Pb/Cd);没有富集系数大于1的植物。其中大叶醉鱼草具有耐贫瘠、耐旱、生物量大等优势,可将其作为典型的重金属耐性先锋植物,用于矿区废弃地的植物修复。  相似文献   

13.
The purpose of this study was to investigate the concentrations of toxic metals in the edible portion of fish tissue obtained from the Raritan River in New Brunswick, New Jersey (NJ) between April and May of 2014. Species collected for this study included commonly caught fish such as bluegill, small and large mouth bass, brown and rainbow trout, bullhead catfish, and white perch. Samples were filleted and the muscle tissue subsequently dehydrated and then chemically digested. Samples were analyzed using Gas chromatography mass spectrometry (GC–MS). Levels of 28 different metals were quantified for each specimen. In general, metal contamination in fish tissues was below the recommended limits. However, lead was found in one sample at a tissue concentration of 88 µg per 225 g fillet, which is above the recommended daily consumption limit as set by the Food and Safety Authority of Ireland. The maximum level found for arsenic was 23 µg per 225 g fillet. The fish samples taken from the Raritan River in New Brunswick, NJ for this study did not contain dangerous levels of most of the metals tested.  相似文献   

14.
Phytochelatins (PCn) are thiol-containing peptides with general structure (-Glu-Cys)n-Gly enzymatically synthesized by plants and algae in response to metal exposure. They are involved in the cellular detoxification mechanism for their capability to form stable metal-phytochelatin complexes. The speciation of Cd and Pb complexes with phytochelatins has been studied in laboratory cultures of the marine diatom Phaeodactylum tricornutum. An approach based on size-exclusion chromatography (SEC) with off-line detection of phytochelatins, by reverse-phase HPLC, and metal ion, by atomic absorption spectrometry, has been used. The formation of Cd- and Pb-PCn complexes with n-value from 3 to 6 was demonstrated. The metal-PCn complexes formed with Cd appear to be different from those formed with Pb for the number of molecules of peptide involved in the complex and for the amount of the metal ion bound. The chromatographic behaviour of metal-PCn complexes is consistent with Pb-PCn complexes in which only a molecule of peptide binds the metal ion, and with Cd-PCn complexes containing two or more molecules of peptide. The metal/peptide molar ratio in Cd-PCn complexes was higher that in Pb-PCn complexes. The formation of Cd- or Pb-PC2 complexes was not demonstrated, probably for a dissociation during the cellular extract preparation. The effectiveness of phytochelatins in the detoxification of these two metal ions in this alga is discussed.  相似文献   

15.
16.
Arabidopsis halleri is a well-known zinc (Zn) hyperaccumulator, but its status as a cadmium (Cd) hyperaccumulator is less certain. Here, we investigated whether A. halleri can hyperaccumulate Cd and whether Cd is transported via the Zn pathway. Growth and Cd and Zn uptake were determined in hydroponic experiments with different Cd and Zn concentrations. Short-term uptake and root-to-shoot transport were measured with radioactive 109Cd and 65Zn labelling. A. halleri accumulated > 1000 mg Cd kg(-1) in shoot dry weight at external Cd concentrations >or= 5 microm, but the short-term uptake rate of 109Cd was much lower than that of 65Zn. Zinc inhibited short-term 109Cd uptake kinetics and root-to-shoot translocation, as well as long-term Cd accumulation in shoots. Uptake of 109Cd and 65Zn were up-regulated, respectively, by low iron (Fe) or Zn status. A. halleri was much less tolerant to Cd than to Zn. We conclude that A. halleri is able to hyperaccumulate Cd partly, at least, through the Zn pathway, but the mechanisms responsible for cellular Zn tolerance cannot detoxify Cd effectively.  相似文献   

17.
Methods were developed for the use ofCladophora glomerata to monitor heavy metal concentrations in flowing waters. At least under conditions without marked fluctuations in ambient metal concentration, there was no detectable difference in the metal concentrations of young plants between terminal 2-cm lengths of filament and whole plants. In order to establish the relationship between metal concentration in plant and that in water, 60 algal and water samples were analyzed from sites in northern England for Fe, Cu, Zn, Cd and Pb. Other environmental variables were measured at the time in order to assess their influence on metal accumulation. There were highly significant correlations for each of the five metals between concentrations in alga and water. The regression equations relating metal in alga to metal in water permit an unknown environmental metal concentration to be estimated from the algal concentration. Multiple stepwise regression analyses were used to indicate environmental factors which may influence metal accumulation; for instance, Fe appears to have a positive influence on Cu accumulation. In generalCladophora accumulates much less metal than bryophytes, but the slope relating metal in alga to metal in water is steeper, particularly for Pb. This means thatCladophora is especially useful where there is a need for a sensitive indicator of differences between sites or sampling occasions.  相似文献   

18.
Plant cell responses to heavy metals: molecular and physiological aspects   总被引:3,自引:0,他引:3  
The effect of lead, cadmium and cooper on protein pattern, free radicals and antioxidant enzymes in root of Lupinus luteus L. were investigated. Heavy metals inhibited growth of lupin roots, which was accompanied by increased synthesis and accumulation of a 16 kDa polypeptide (Przymusiński et al. 1991 Biochem. Physiol. Pflanzen., 187:51–57). This component has been earlier identified as immunologically related to Cu,Zn-superoxide dismutase (Przymusiński et al. 1995 Env.Exp.Bot., 35:485–495). However, more detailed study revealed that this stress-stimulated protein is composed of four to six polypeptides of different electrophoretic mobility. The most abundant polypeptides of the 16kDa region were found to be closely homologous to pathogen related proteins. The number and intensity of these polypeptides was highly variable in roots of individual seedlings, which suggests that they might represent separate allelic forms. Electron paramagnetic spectra revealed that at low lead concentrations the amplitude of the first derivative was similar to the control and distinctly increased at higher metal concentrations. On the other hand, at the lower lead concentrations the activity of antioxidant enzymes increased, whereas at higher metal doses the enzyme activities did not raise further (SOD) or even dropped (CAT, APOX). This implies that the responses of antioxidant system to lead is dose-dependent stimulated by low metal concentrations, whereas at the higher metal level the free radical emission is beyond the quenching capacity of antioxidant enzymes, which in turn might contribute to the reduced root growth. The effect of various heavy metals: Pb2+, Cd2+ and Cu2+ on phytochelatins and antioxidant enzymes depends on the kind of metal ion. Pb2+ and Cd2+ stimulated the PCs formation whereas Cu2+ was not effective. On the other hand, in root exposed to Cu the activity of catalase (CAT) was the highest as was the production of H2O2. The strong oxidative effect of Cu2+ ions which were not complexed by PCs suggests that these peptides might by involved in the cellular defense system by binding excessive heavy metal ions. On the basis of our results it can be concluded that in lupin roots exposed to heavy metals there is a complex defense system against metal phytotoxicity, which comprises of specific proteins, antioxidant enzymes and phytochelatins.  相似文献   

19.
Inhibition of photosynthesis by heavy metals   总被引:36,自引:0,他引:36  
Inhibition of photosynthesis by heavy metals is well documented. In this review the results are compared between in vitro experiments on isolated systems (chloroplasts, enzymes ­.), experiments on excised leaves and intact plants and algae in vivo. In vitro experiments suggest potential sites of heavy metal interaction with photosynthesis at several levels of organisation, which are not necessarily confirmed in vivo. Analytical data on subcellular heavy metal level are generally missing to discuss their mechanism of action in the intact organism. In the field factors such as soil characteristics and air pollution have to be taken into account for assessing the mechanism of action of heavy metals on photosynthesis in plants, growing in a polluted erea.paper presented at the FESPP meeting in Strasbourg (1984)  相似文献   

20.
Abstract

Impact of root Cd concentration on production of cysteine, non-protein thiols (NP-SH), glutathione (GSH), reduced glutathione (GSSG), and phytochelatins (PCs) in Eichhornia crassipes exposed to different dilutions of brass and electroplating industry effluent (25%, 50%, and 75%), and synthetic metal solutions of Cd alone (1, 2.5, and 3.5?ppm) and with Cr (1?ppm Cd + 1?ppm Cr, 2.5?ppm Cd + 3?ppm Cr, and 3.5?ppm Cd + 4?ppm Cr) was assessed in a 45?days study. Different treatments were used to understand and compare differential antioxidant defense response of plant under practical drainage (effluent) and experimental synthetic solutions. The production of NP-SH and cysteine was maximum under 2.5?ppm Cd + 3?ppm Cr treatments i.e., 1.78?µmol/g fw and 288?nmol/g fw, respectively. The content of GSH declined whereas that of GSSG increased progressively with exposure duration in all treatments. HPLC chromatograms revealed that the concentrations of PC2, PC3, and PC4 (248, 250, and 288?nmol-SH equiv.g?1 fw, respectively) were maximum under 1?ppm Cd, 1?ppm Cd + 1?ppm Cr, and 2.5?ppm Cd + 3?ppm Cr treatments, respectively. PC2, PC3, and PC4 concentrations increased with Cd accumulation in the range 812–1354?µg/g dry wt, 1354–2032?µg/g dry wt and 2032–3200?µg/g dry wt, respectively. Thus, the study establishes a direct proportionality relationship between concentration/length of phytochelatins and root Cd concentrations, upto threshold limits, in E. crassipes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号