首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies of gastropod shell growth at the level of fine growth layers are scarce, because coiling of gastropod shells hinders the observation of continuous growth series spanning across whorls. We propose here a new method to obtain continuous growth patterns of gastropod shells over whorls with Terebralia palustris (L.) as an example. Comparison of vertical and horizontal sections of the shell of this species reveals that growth patterns can be observed continuously for several whorls on the vertical section of the columella. In addition, an obvious tidal growth pattern preserved in this species enables us to trace its growth with a precision of 12.4 h and indicates that it takes about two years for a shell to grow from 3 cm to 9.5 cm in height and add 5 complete whorls.  相似文献   

2.
On the small oceanic island of Chichijima, two endemic species of land snails, Mandarina mandarina and M. chichijimana, have discrete distributions separated by a hybrid zone. This study investigates the potential of hybridization as a source of morphological novelty in these snails. Mandarina mandarina possesses a shell with a higher whorl expansion rate and a smaller protoconch than M. chichijimana, relative to shell size. The number of whorls and shell size of M. mandarina do not differ from those of M. chichijimana, because the effect of higher expansion rate on number of whorls and size of the former is compensated for by its smaller protoconch. The whorl expansion rate and protoconch diameter of the individuals from the hybrid populations are intermediate or typical of either of the two species, and their average values show clinal changes along the hybrid zone. However, the hybrid populations include exceptionally high shells with many whorls and flat shells with few whorls, which are never found in the pure populations of either species. In addition, gradual increases in variance in shell height and number of whorls were found from the edges to the center of the hybrid zone. A combination of low expansion rate (typical of M. chichijimana) and a small protoconch (typical of M. mandarina) produces a shell with an extremely large number of whorls because of the geometry of shell coiling. However, the combination of high expansion rate and a large protoconch produces a shell with an extremely small number of whorls. Because of the correlation between the number of whorls and shell height, shells with an exceptional number of whorls possess an extraordinarily high or flat spire. Hybrids can inherit a mosaic of characters that, as they play out during growth, lead to novel adult morphologies. These findings emphasize the importance of hybridization as a source of morphological variation and evolutionary novelty in land snails.  相似文献   

3.
The range of shell morphologies available to bivalves is constrained by the geometric properties of coiled shells, and by two contrasting functional necessities: positioning the umbones at a distance from each other, to allow an adequate amount of shell gape, and limiting linear growth of the axial shell margin, in order to prevent the ligament from being rapidly stretched beyond its elasticity limits. These necessities are achieved, or circumvented, in one or more of the following ways: (1) evolving a range of inequivalve adaptations, (2) allowing a large amount of interumbonal growth, while simultaneously adopting a ligament that quickly breaks and is continuously replaced during ontogeny, (3) adopting an outward curving ligament which flexes along its entire width, thus effectively placing the actual pivoting axis of the valves dorsally to the axial shell margin, (4) substituting the ligament with diductor muscles, (5) stopping growth before shell coiling reaches half whorl, (6) decreasing the whorl expansion rate throughout ontogeny, (7) orienting the coiling axes of the umbones at an angle to each other and to the hinge axis.  相似文献   

4.
Abstract. Light and scanning electron microscopy were used to examine protoconch form in eight species of planktotrophic heterobranch larvae, including four nudibranch species with a coiled (type 1) protoconch, two nudibranch species with an inflated (type 2) protoconch, and two cephalaspid species with a coiled protoconch. The coiled protoconchs of the cephalaspids and nudibranchs have a similar form at hatching, and shell growth up to metamorphic competence is hyperstrophic. Shell added to coiled protoconchs during the larval stage overgrows all but the left wall of the initial protoconch that exists at hatching. The entire protoconch of cephalaspids, including overgrown areas, is retained through metamorphosis. However, during later larval development in nudibranchs with a coiled protoconch, overgrown shell is completely removed by dissolution. As a result, regardless of whether nudibranch larvae hatch with an inflated or coiled protoconch type, the protoconch is a large, hollow cup at metamorphic competence. The protoconch of nudibranchs is shed at metamorphosis and absence of a post-metamorphic shell is correlated with absence of visceral coiling in this gastropod group. Internal dissolution of the coiled protoconch in nudibranchs allows the left digestive gland to uncoil prior to metamorphic shell loss. Retention of overgrown protoconch whorls in cephalaspids allows the attachment plaque of the pedal muscle to migrate onto the parietal lip of the post-metamorphic shell. Release from this constraint in nudibranchs, in which the larval pedal muscles and the entire protoconch are lost at metamorphosis, may have permitted internal protoconch dissolution and precocious uncoiling of the visceral mass, as well as evolutionary emergence of the inflated larval shell type.  相似文献   

5.
The overwhelming predominance of dextral coiling in gastropods is an outstanding and puzzling phenomenon. A few sinistral specimens (left coiling individuals) have been found in many dextral species. Only six sinistral shells have ever been found in Cerion; we base this analysis on the five available shells. We ask whether reversed symmetry is a simple either-or switch without further consequences for shell form, or whether sinistrality engenders associated effects, making left-coiling shells unlike their dextral deme-mates in other ways. All five sinistral shells differ in features of size and coiling late in growth, leading to relatively small apertures and a slight twist in the axis of coiling. We detect and measure this effect as follows: in multivariate morphospace, sinistrals occupy peripheral positions among their dextral deme-mates; in univariate analysis, sinistrals are consistently different for a set of characters involving covariance patterns never before seen in a decade of studies on ontogenetic and age-standardized variation in dextrals; a bootstrap procedure does not recover similar patterns in randomly constituted samples of dextrals matching the true sinistral distribution; direct x-ray measures of the coiling axis detect its slight twist in sinistrals. We discuss the implications of these unsuspected associations for the issues of developmental constraint upon the evolution of morphology.  相似文献   

6.
An unusual trochiform gastropod, Semizona bella gen. et sp. nov., is described from the Boda Limestone carbonate mounds (upper Ordovician, Ashgill) of central Sweden. A second species, S. glindmeyeri (Rohr, 1996), is recognised from the Ordovician (Whiterockian) of Nevada. The shell shape and the strongly prosocline tangential aperture of Semizona suggest that balancing of the shell on the head-foot mass was accomplished by tilting of the axis of coiling of the shell to about 65 degrees with 10–30 degrees of regulatory detorsion. The rounded aperture allowed straight contraction of the retractor muscles, suggesting clamping behaviour often associated with a sedate, grazing snail. This agrees with the environmental setting, which suggests a hard substrate with rich microbial growth. Besides clamping, the subsutural nodes and thick shell were probably effective against predation; repaired injuries indicate failed predatory attacks. Semizona shows morphological similarities with some pleurotomariin vetigastropods, and with the family Pseudophoridae Miller, 1889.  相似文献   

7.
The cosmopolitan freshwater pulmonate snail Physa acuta hybridizes readily with Physa carolinae in the laboratory, although their F1 progeny are sterile. The two species differ qualitatively in shell shape, the former bearing a more globose shell and the latter more fusiform. We performed a hybridization experiment, measuring a set of 14 traditional (linear) and landmark-based shell morphological variables on even-aged parents and their offspring from both hybrids and purebred control lines. Parent-offspring regression yielded a strikingly high heritability estimate for score on the first relative warp axis, h2 = 0.819 ± 0.073, a result that would seem to confirm the value of geometric morphometrics as a tool for retrieving evolutionary relationships from gastropod shell form. Score on the second relative warp axis was also significantly heritable (h2 = 0.312 ± 0.123), although more moderate, as were scores on second principal components extracted from traditional measurements (correlation h2 = 0.308 ± 0.069, covariance h2 = 0.314 ± 0.050). Although score on the first relative warp axis was significantly correlated with centroid size (p < 0.001), scores on none of the three second axes were so correlated. This result suggests that second axis score might prove especially useful for estimating genetic divergence among mixed-age populations of gastropods sampled from the field.  相似文献   

8.
A horizon in the late Visean Ruddle Shale from Arkansas contains the oldest well-preserved gastropod protoconchs known from the Americas. The gastropod fauna consists of a diverse larval shell assemblage and a low diversity assemblage of juvenile gastropods that probably had a benthic life habit. Gastropod larval shells are always isolated, i.e. the gastropods did not complete their life cycle (no metamorphosis) and were unable to become benthic. This was caused by unfavorable environmental conditions on the soft muddy bottom that was probably due to anaerobic to exaerobic conditions. The absence or scarcity of bioturbation caused by invertebrate detritus or sediment feeders in both shale and concretions (formed before compaction) favored preservation of the delicate larval shells. The lack or scarcity of infauna and bioturbation as well as the low diversity of the presumed benthos supports an interpretation of a quasi-anaerobic to exaerobic benthic environment. The superbly preserved larval shells demonstrate that there are more caenogastropod clades present in the late Palaeozoic than suggested previously. Some larval shell types have an openly coiled first whorl followed by a planktotrophic larval shell; openly coiled initial whorls are unknown from modern caenogastropods. The vetigastropods have a smooth protoconch of two whorls clearly demarked from the following whorls - a pattern unknown in modern vetigastropods which have a protoconch of less than one whorl and build no larval shell during their planktonic stage. This could indicate a link between Palaeozoic vetigastropods and the caenogastropods.  相似文献   

9.
Molluscan shells, including those of Gastropoda, are formed by accretionary growth at the mantle edge. The mantle is a thin membrane of skirt-like shape, which extends minutely beyond the aperture, and its edge adds a shell increment to the aperture margin so that each increment copies a configuration of the mantle edge at that time. Thus, regulation of shell morphogeny is almost equivalent to the factors which control the mantle form at the moment of shell growth. Form of the mantle skirt is considered to be kept in a state of balance between the force of its internal stress and forces acting on it such as fluid pressure or muscle contraction. The expansion behavior of the mantle skirt has been numerically analyzed by using an elastic model (DMS-tube), which represents the fundamental structure of the mantle tissue as a double membrane structure with internal springs (DMS). Four characteristic expansion patterns of the DMS-tube have been detected: (1) general outward expansion; (2) developing a ridge-like fold on an initial longitudinal protrusion of the tube edge; (3) drastic shift of the expanded state from a uniformly curved to an elliptical shape in outline, owing to the existence of a fixed boundary condition on the tube wall; and (4) constricted protrusion on the open region of the shell wall surrounding the DMS-tube. These results have the potential for answering the following questions relating to the morphogenesis of gastropod shells. How does the mantle skirt usually make contact with the inner surface of the shell wall so as to ensure continuous accretion of shell materials to the aperture margin? What is the cause of spiral ridges? Why do open coiling or minimally overlapping shells have generally circular apertures, while shells with apertures overlapped by whorls have non-uniformly curved apertural lips? What is the cause of long closed spines and why do they always appear on spiral ridges?  相似文献   

10.
In the study of gastropod shell morphology, determination of comparable ontogenetic stages is crucial, because all the states that various shell features go through during ontogeny are preserved on the shell. The protoconch/teleoconch transition and marks of episodic growth are among the few ways of defining discrete, comparable, growth stages. In gastropods with determinate growth the attainment of adulthood may provide additional shell markers permitting comparison among individuals and taxa. Adulthood is reflected in shell morphology in ways as diverse as shell deposition covering all the previous whorls and radically changing the shape of the shell through to slight changes in the trajectory of the suture. While the very prominent adulthood‐related changes of shell morphology have been used as systematic characters, the more moderate changes have not been studied in detail and their potential systematic value has been ignored. In this paper we give a detailed account of adult modifications of the shell appearing with cessation of growth. Our study group comprises eight closely related species of Lavigeria from Lake Tanganyika. We show that the ways adulthood is manifested are quite diverse. We describe eight characters of the aperture, the suture and the sculptural ornamentation. Character occurrence varies greatly among species. We show that characters appear in suites and that in many cases their appearance is connected to size. We use size as a proxy for adulthood and test whether character occurrence alone or its connection to size can help resolve species relationships. In both cases our characters confirm the monophyly of our ingroup and yield cladograms with various degrees of resolution of ingroup relationships. The coding method that yields the greater character congruence is the one that takes into consideration the connection between appearance of a character and size. This study demonstrates that ontogenetically correlated character transformations may nevertheless be phylogenetically independent. © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 140 , 223?240.  相似文献   

11.
The purpose of this study was to investigate shell growth performance in two thin-shelled pelagic gastropods from cold seawater habitats. The shells of Arctic Limacina helicina and Antarctic Limacina helicina antarctica forma antarctica are very thin, approximately 2–9 μm for shells of 0.5–6 mm in diameter. Many axial ribbed growth lines were observed on the surface of the shell of both Limacina species. Distinct axial ribs were observed on the outermost whorl, while weak or no rib-like structures were observed on the inner whorls in the larger shell of L. helicina antarctica forma antarctica. For L. helicina, no ribs were observed on small individuals with three whorls, while larger individuals had distinct ribs on the outer whorls. Shell microstructure was examined in both species. There is an inner crossed-lamellar and extremely thin outer prismatic layer in small individuals of both species, and a distinct thick inner prismatic layer was observed beneath the crossed-lamellar layer in large Antarctic individuals. Various orientations of the crossed-lamellar structure were observed in one individual. Shell structure appeared to be different between the Antarctic and Arctic species and among shells of different size.  相似文献   

12.
Gastropod apertures reflect expanded states of their mantle edge under variable boundary conditions. The apertures are divided into two groups: apertures without distinct overlap zones (e.g., whorl overlap) and those with overlap zones. Each group follows a unique morphological rule. Apertures without overlap zones are generally circular in outline. Apertures with overlap zones are either elongated perpendicularly to the overlap zone or inflated abapically. Moreover, the latter abapically inflated apertures are generally accompanied by a straight section anterior to the overlap zone along the columellar axis (columellar part). Numerical analysis of an elastic double membrane tube whose main frame simulates the gastropod mantle indicates that these morphological rules are the products of mantle edge expansion under the condition that the head-foot mass presses against the mantle edge in both the overlap zone and the columellar part. The mantle edge in these two zones is thus in a completely or partly fixed boundary condition at the moment of shell growth. The rest of the mantle edge is free to expand either symmetrically or asymmetrically. It is hypothesized that the head-foot mass is a driving force for regulating the pattern of shell coiling and apertural shape.  相似文献   

13.
During the Devonian Nekton Revolution, ammonoids show a progressive coiling of their shell just like many other pelagic mollusk groups. These now extinct, externally shelled cephalopods derived from bactritoid cephalopods with a straight shell in the Early Devonian. During the Devonian, evolutionary trends toward tighter coiling and a size reduction occurred in ammonoid embryonic shells. In at least three lineages, descendants with a closed umbilicus evolved convergently from forms with an opening in the first whorl (umbilical window). Other lineages having representatives with open umbilici became extinct around important Devonian events whereas only those with more tightly coiled embryonic shells survived. This change was accompanied by an evolutionary trend in shape of the initial chamber, but no clear trend in its size. The fact that several ammonoid lineages independently reduced and closed the umbilical window more or less synchronously indicates that common driving factors were involved. A trend in size decrease of the embryos as well as the concurrent increase in adult size in some lineages likely reflects a fundamental change in reproductive strategies toward a higher fecundity early in the evolutionary history of ammonoids. This might have played an important role in their subsequent success as well as in their demise.  相似文献   

14.
Since orthodox evolutionary theory is functionalist, constraints attain their most important positive meaning as channels of change imposed by historical and formal determinants, rather than by immediate natural selection. Since ontogeny is the usual locus of expression for these determinants, developmental constraint is an appropriate, general term. A particular developmental constraint in Cerion, most variable of West Indian land snails, stands out for two reasons: 1) it is simply and inexorably defined as a consequence both of formal principles (coiling of tube about axis) and of historical contingencies in Cerion's invariant allometry of growth; 2) it is pervasive in its influence, underlying major patterns of variation in every Cerion study I have ever undertaken. I refer to this pattern as the “jigsaw constraint.” When whorls are large and final size is limited, adult shells must grow fewer whorls. In Cerion, this obvious fact is promoted from trivial to important because complex allometries impose a substantial set of further consequences for form upon this basic trade-off of whorl size and whorl number. I show that this complex of consequences dominates patterns of natural variation in Cerion at all levels (among shells within samples, between samples in the geographic variation of single species, and between species in multitaxon faunas). It also sets patterns of hybridization between taxa. This paper is primarily a compendium of such examples. It is designed to illustrate the importance of this constraint by the fundamental criterion of relative frequency.  相似文献   

15.
Gastropods have lost the quintessential snail feature, the coiled shell, numerous times in evolution. In many cases these animals have developed a limpet morphology with a cap-shaped shell and a large foot. Limpets thrive in marginal habitats such as hydrothermal vents, the high-energy rocky intertidal areas and fresh water, but they are considered to be evolutionary dead-ends, unable to re-evolve a coiled shell and therefore unable to give rise to the diversity seen among coiled snails. The re-evolution of a coiled shell, or any complex character, is considered unlikely or impossible (Dollo's law) because the loss of the character is followed by the loss of the genetic architecture and developmental mechanisms that underlie that character. Here, we quantify the level of coiling in calyptraeids, a family of mostly uncoiled limpets, and show that coiled shells have re-evolved at least once within this family. These results are the first demonstration, to our knowledge, of the re-evolution of coiling in a gastropod, and show that the developmental features underlying coiling have not been lost during 20-100 Myr of uncoiled evolutionary history. This is the first example of the re-evolution of a complex character via a change in developmental timing (heterochrony) rather than a change in location of gene expression (heterotopy).  相似文献   

16.
This paper discusses and corrects ideas in Løvtrup and Løvtrup (J. Morphol. 197:53–62, '88) on how differential growth rates around the aperture cause the gastropod shell to coil at particular angles. The relationship between position relative to the shell apex and growth rate is derived. This lets us understand what information on relative growth rates around the aperture is sufficient to determine the shape of the logarithmic spiral that these growth rates generate. I argue that differential growth rates could not be physiologically controlled precisely enough to regulate apical angle; they passively follow, not actively direct, shell shape.  相似文献   

17.
Hutchinson's ('89) road-holding model states that spiral ornaments of the snail shell (keels and low-curvature areas) dictate the growth path of the subsequent whorl, which in turn gives the signal for attachment of the next whorl. Experiments were performed with two species of the terrestrial snail Sphincterochila in order to test the role of the external keel in determining the correct coiling of successive turns. Experiments substituted a ridge made of silicone for the keel. This ridge ran either (1) abapical or (2) adapical of the original keel. In mode (1), subsequent growth continued by taking the false keel as the adapical limit of the whorl. In only very few instances of mode (2) did the whorls extend incipiently slightly adapical of the path of the original keel. Our results confirm that the keel is an important reference for the coiling strategy of the snail, although the keel itself probably does not constitute the reference, but rather the two flat ramps into which the keel divides the outer lip of the aperture. J. Morphol. 235:249–257, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
Gastropod shells display striking patterns in both color and sculpture, but rather little is known about the developmental mechanisms that produce those patterns. Here, we tested a physical feedback hypothesis for how snails control spatial patterning of shell sculpture. Varices—a form of synchronized, blade‐like axial sculpture—are produced at regular intervals around the shell and often aligned closely between adjacent whorls. Older varices were believed to provide a spatial cue about where to position a new varix. To test this hypothesis, we manipulated physical cues by cutting off varices or attaching new ones to the body whorl of individuals of Ceratostoma foliatum, and then allowing snails to grow a new varix. We found that previous varices on the shell were neither necessary nor sufficient to induce a new varix at a particular location. However, the position of older varices did appear to affect the fine tuning of subsequent varix placement. The results of our experiments therefore suggest that varix synchrony arises mainly from some internal mechanism that yields a standardized amount of spiral growth per growth spurt. We also found that shell damage can induce varix production in unusual or aberrant locations during subsequent shell growth.  相似文献   

19.
The marine gastropod Littorina saxatilis has different ecotypes in shores only a few meters apart. This has both taxonomic and evolutionary implications. Here we report on an extreme type of within-shore dimorphism in shell characters. In the wave-exposed rocky shores in northwestern Spain, we found one form of L. saxatilis in the upper-level barnacle zone. It had a white, ridged shell, with black bands in the grooves. Another form confined to the lower-shore mussel belt had a smooth shell that was either white and tessellated or darkly colored. These two forms cooccured in a narrow midshore zone together with individuals that had combined characters, but were present in low frequencies (11%–29%). We used principal-component analysis of metric shell characters to study variation in shell size and shape. We found that the upper-shore form was larger than the lower-shore form. We also found small but significant differences in shell shape. Experiments in a common laboratory environment suggested the differences in shell ornamentation and color are inherited, but the individuals did not develop the morph-specific characters until a shell height of about 3 mm. The occurrence of mainly two distinct forms may suggest the presence of two species that hybridize. An analysis of five polymorphic enzyme loci in populations of snails from three geographically separated sites indicated, however, that there was no positive correlation between morphological distances and genetic distances among populations on a geographic scale (tens of kilometers). Thus, we rejected the hypothesis of two species. However, on a microgeographic scale (meters), genetic differentiation between groups with the same form was less than differentiation between forms. This indicated a partial barrier to gene flow between the two forms, and preliminary mate choice data suggested this was caused by nonrandom mating in the midshore zone of overlap.  相似文献   

20.
Abstract: Directed evolution of life through millions of years, such as increasing adult body size, is one of the most intriguing patterns displayed by fossil lineages. Processes and causes of such evolutionary trends are still poorly understood. Ammonoids (externally shelled marine cephalopods) are well known to have experienced repetitive morphological evolutionary trends of their adult size, shell geometry and ornamentation. This study analyses the evolutionary trends of the family Acrochordiceratidae Arthaber, 1911 from the Early to Middle Triassic (251–228 Ma). Exceptionally large and bed‐rock‐controlled collections of this ammonoid family were obtained from strata of Anisian age (Middle Triassic) in north‐west Nevada and north‐east British Columbia. They enable quantitative and statistical analyses of its morphological evolutionary trends. This study demonstrates that the monophyletic clade Acrochordiceratidae underwent the classical evolute to involute evolutionary trend (i.e. increasing coiling of the shell), an increase in its shell adult size (conch diameter) and an increase in the indentation of its shell suture shape. These evolutionary trends are statistically robust and seem more or less gradual. Furthermore, they are nonrandom with the sustained shift in the mean, the minimum and the maximum of studied shell characters. These results can be classically interpreted as being constrained by the persistence and common selection pressure on this mostly anagenetic lineage characterized by relatively moderate evolutionary rates. Increasing involution of ammonites is traditionally interpreted by increasing adaptation mostly in terms of improved hydrodynamics. However, this trend in ammonoid geometry can also be explained as a case of Cope’s rule (increasing adult body size) instead of functional explanation of coiling, because both shell diameter and shell involution are two possible paths for ammonoids to accommodate size increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号