首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A process with controlled pattern of regenerant differentiation from leaflet segments leading to production of cloned plants of a 40-year-old tree of Azadirachta indica was developed. A two-step procedure was adopted for containing intervening callusing during regenerant differentiation using modified Murashige and Skoog (MS) medium, where in the first step the explants were subjected to pulse treatments having higher concentration of 6-benzylaminopurine (BAP), while in the second step they were cultured in one-tenth of the initial concentrations of BAP. In the present case, simultaneous differentiation of two types of morphogenetic structures, that is, shoot buds and the meristematic nodules was observed. However, differentiation of higher number of desirable regenerants—the shoot buds and a few meristematic nodules, rather than vice-versa could be controlled by increasing both, the concentration of BAP in pulse treatment and the duration of pulse treatment. In the optimum treatment, where the explants were exposed to 8.88 μM BAP and 81.43 μM adenine hemisulphate for 5 days followed by their transfer to 0.88 μM BAP and 81.43 μM adenine hemisulphate, on an average, 17.4 shoot buds and only 1.6 meristematic nodules were formed from a leaflet. On subculturing, the shoot buds developed into shoots, whereas the meristematic nodules produced three kinds of organized structures that too in varied proportions. Multiplication of shoots was sustained in proliferation medium supplemented with 1.11 μM BAP, 1.43 μM indole-3-acetic acid (IAA) and 135.72 μM adenine hemisulphate. The isolated shoots were rooted and complete plantlets were transferred to potted soil with 100% survival.  相似文献   

2.
Nodular meristematic callus was induced on the basal cut surface of apical shoot explants of salvia cultured on Murashige and Skoog (MS) medium supplemented with 4.5, 13.5, or 22.5 μM thidiazuron (TDZ). Cultures were incubated in the dark for 1 wk and then transferred to light conditions for 4 wk. A higher percentage of explants developing callus was observed on medium containing either 4.5 or 13.5 μM TDZ, although explants on 4.5 μM developed larger calluses. The callus was maintained on medium containing 4.5 μM TDZ and 0.45 mM ascorbic acid. Shoot differentiation, after each of three successive maintenance passages, was induced from callus grown on medium containing either 4.4 or 8.8 μM benzyladenine (BA). A greater number of shoots were harvested from callus differentiated on BA (4.4 or 8.8 μM) medium with 0.45 mM ascorbic acid added. Shoots developed roots on MS medium supplemented with 4.9 μM of indole-3-butyric acid. The addition of ascorbic acid to the shoot differentiation medium enhanced rooting, number of roots per shoot, and survival rate. Approximately 75% in vitro plantlets were acclimatized to ex vitro conditions. Histological investigations confirmed both adventitious meristem initiation during the callus induction phase, and subsequent organogenic shoot development on the differentiation medium. The novel protocol for the meristematic callus induction and plant regeneration in this study may be useful for biotechnological applications for salvia improvement via genetic transformation or mutagenesis and in vitro propagation approaches.  相似文献   

3.
Epicotyl, petiole, and cotyledon explants derived from 14-d-old seedlings of Albizia odoratissima were cultured on Murashige and Skoog (MS) basal medium supplemented with different concentrations of either 6-benzylaminopurine (BAP) solely or in combination with 0.5 μM naphthalene-3-acetic acid (NAA). The percentage of shoot regeneration and the number of shoots regenerated varied significantly depending on the type of explants used, the concentration of plant growth regulators, and the orientation of explants on the culture medium. The best response in terms of the percentage of shoot regeneration was obtained from epicotyls cultured horizontally on MS medium supplemented with 5 μM BAP, whereas the highest number of shoots per responding explant was recorded on medium containing 2.5 μM BAP and 0.5 μM NAA. Successful rooting was achieved by placing the microshoots onto MS medium containing 25 μM indole-3-butyric acid (IBA) for 24 h first, then transferring to the same medium without IBA. Of the various substrates tested, vermiculite was the best for plant acclimatization, as 75% of the plants survived and became established.  相似文献   

4.
An efficient protocol for Kentucky bluegrass (Poa pratensis L.) in vitro culture was established using shoot apices of seedlings as explants. The optimal procedure of this protocol for majority of the genotypes was that meristematic cell clumps and small calluses were firstly induced from the bases of explants on initial culture medium supplemented with 0.9 μM 2,4-d and 8.9 μM 6-BA for 20 d, then were separated and transferred to shoot clumps induction medium containing 8.9 μM 6-BA for the formation of multiple shoot clumps. The percentage of multiple shoot clumps and numbers of shoots per clump were deeply related with the combinations of different plant growth regulators, duration of initial culture, the intensity of illumination and genotypes. Histological observation of the induced explants revealed that the meristematic cell clumps were produced from repeated division of the cortical cells and original meristematic primodium cells of explants, and the multiple shoots were formed via organogenesis pathway in the meristematic cell regions of cultures on shoot clumps induction medium. In this study, plantlets were efficiently regenerated on large scale from seven cultivars of Kentucky bluegrass. Hence the meristematic cell clumps and small calluses in this protocol could be considered good targets for genetic transformation of Kentucky bluegrass.  相似文献   

5.
Tiny seeds from 5-month-old green capsules of a maudiae type slipper orchid, Paphiopedilum Alma Gavaert, were induced to form totipotent callus on 1/2 strength MS medium supplemented with 22.60 μM 2,4-D and 4.54 μM TDZ in darkness. The callus was proliferated more and maintained without any morphogenesis on the same medium with a 2-month interval of subculture for more than 2 years. When transferred to 1/2 MS medium supplemented with 26.85 μM NAA, an average of 4.7 protocorm-like bodies (PLBs)/shoot buds formed from each explant after 120 days of culture. After another 72 and 240 days of culture on the same medium, 25 shoot buds and eventually 75 plantlets were obtained through shoot multiplication from the original culture. Kinetin at 4.65 μM was suitable for shoot multiplication and could induce an average of 3.0 shoots from a single young shoot after 60 days of culture. The regenerated plantlets grew normally when transplanted to containers with sphagnum moss in a shaded greenhouse.  相似文献   

6.
This study describes a reliable protocol for callus induction and rapid mass propagation of the ecologically important plant, Zygophyllum xanthoxylon (Bunge) Maxim. The optimum callus induction medium was Murashige and Skoog (MS) supplemented with 4.4 μM 6-benzylaminopurine (BAP) and 2.7 μM α-naphthalene–acetic acid (NAA), on which the callus induction frequencies from different seedling explants were all 100%. However, seedling-derived callus did not form regenerated shoots. In order to achieve shoot multiplication, shoots were developed from cultured plumules, at an average of 3.1 shoots per explant, and the regenerated shoot tips were further multiplied by subculture. The best shoot multiplication from shoot tips was achieved on MS supplemented with 5.4 μM NAA and 22.2 μM BAP after 40 d of culture. Seventy-three percent of regenerated shoots formed roots when cultured on MS supplemented with 8.6 μM IAA after 4 wk of culture. The plants that acclimatized successfully in sand flourished the following year, with normal morphology and growth characteristics.  相似文献   

7.
An efficient micropropagation system via direct shoot organogenesis from hypocotyl segments of Embelia ribes Burm F. was developed. A high frequency (84%) of adventitious shoot induction was obtained on Murashige and Skoog (MS) medium supplemented with additives (283.85 μM ascorbic acid [AA], 118.96 μM citric acid [CA], 142.33 μM cysteine, and 684.22 μM glutamine) and 1.13 μM of thidiazuron (TDZ) after 4 weeks following culture. Further development of shoot primordia into well-grown shoots of 4–5 cm in length was achieved by sub-culturing explants along with shoot primordia on MS medium supplemented with 0.44 μM benzyl adenine (BA) and 0.49 μM indole butyric acid (IBA) for three sub-culture periods with an interval of 15 days between them. The highest shoot multiplication was obtained when explants were incubated on MS medium supplemented with 2.2 μM BA and 0.49 μM IBA in 4 weeks. All in vitro developed shoots, 3–4 cm in length, rooted when grown on half-strength MS basal medium along with 2.47 μM IBA within 4 weeks. Moreover, 100% of shoots developed roots when these were treated with 4.93 μM IBA for 20 min and then transferred to pots containing soilrite mix and grown in the greenhouse. In vitro and ex vitro rooted plants showed a survival of 85 and 95% respectively, during hardening in the greenhouse for a 6-week period.  相似文献   

8.
Padar (Stereospermum personatum, family Bignoniaceae) is a well-known medicinal tree. Its complete regeneration occurred through shoot bud culture in vitro. The seeds germinated sequentially on plastic trays and polyethylene bags for 21 days served as explants source. Nodal segments from the seedlings were established on MS medium supplemented with 4.44 μM BA, in which 86.6% nodes showed shoot bud elongation. Then, nodal segments from the developed shoots were cultured on MS medium with several BA concentrations; best shoot multiplication was obtained with 0.44 μM BA. In a second experiment where PVP was added to proliferation medium, nodal segments from developed shoots produced maximum 2.78 shoots per node. The nodal segments showed shoot multiplication up to seventh subculture on. Finally, shoots were rooted on MS medium with 2.46 μM IBA. The plants transferred to net pots containing coco-peat were acclimatized in green house, where more than 80% plants survived and grew normally.  相似文献   

9.
An efficient shoot organogenesis system has been developed from mature plants of selected elite clones of Eucalyptus tereticornis Sm. Cultures were established using nodal explants taken from freshly coppice shoots cultured on Murashige and Skoog medium containing 58 mM sucrose, 0.7% (w/v) agar (MS medium) and supplemented with 2.5 μM benzyladenine (BA) and 0.5 μM α-naphthaleneacetic acid (NAA). Shoot organogenesis was achieved from leaf segments taken from elongated microshoots on MS medium supplemented with 5.0 μM BA and 1.0 μM 2,4-dichlorophenoxyacetic acid (2,4-D). The addition of cefotaxime to the medium promoted shoot differentiation, whereas carbenicillin and cephalexin inhibited shoot differentiation. Maximum shoot bud organogenesis (44.6%) occurred in explants cultured on MS medium supplemented with 5.0 μM BA, 1.0 μM 2,4-D and 500 mg/l cefotaxime. Leaf maturity influenced shoot regeneration, with maximum shoot organogeneisis (40.5%) occurring when the source of explants was the fifth leaf (14–16 days old) from the top of microshoot. Shoot organogenic potential also varied amongst the different clones of E. tereticornis. Random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) analyses indicated clonal uniformity of the newly formed shoots/plants, and these were also found to be true-to-type.  相似文献   

10.
Seabuckthorn (Hippophae rhamnoides) is a multipurpose small tree with unique berries of high nutritional and pharmaceutical values. A clonally propagated plant originating from a 20-year-old tree of H. r. rhamnoides × mongolica hybrid cultivar Julia and seedling offspring of this cultivar were investigated regarding induction of shoot organogenesis in leaf explants and in roots of intact seedlings, and induction of direct somatic embryogenesis in explants from shoot tissue. The highest percentage of leaf explants showing shoot organogenesis was achieved (juvenile explants, 65%; adult explants, 75%) when incubated in Murashige and Skoog (MS) medium supplemented with either 4.5 μM of the phenylurea cytokinin thidiazuron (TDZ) or 2.25 μM TDZ plus 2.2 μM 6-benzyladenine (BA), for juvenile and adult explants, respectively, both supplemented with 0.53 μM α-naphthaleneacetic acid (NAA). Juvenile explants developed on average 18 shoots per explant in the MS medium supplemented with 4.5 μM TDZ, a four fold increase over those incubated on the medium supplemented with 2.25 μM TDZ and 2.2 μM BA. Adult leaf explants grown on medium containing 2.25 μM TDZ and 2.2 μM BA medium produced 12 shoots per explant, while those grown on medium containing 4.5 μM TDZ produced 5 shoots per explant. Shoot organogenesis was observed in roots of intact seedlings pre-cultured on plain medium lacking nutrients (PM) or woody plant medium (WPM) salts and then grown on WPM salts supplemented with 4.4 μM BA, 0.29 μM gibberrelic acid (GA3), and 57.0 μM indoleacetic acid (IAA). The number of shoots formed on each seedling root system was ten fold higher when the pre-culture was in WPM medium indicating a promoting effect of mineral nutrients in the pre-culture medium. Somatic embryogenesis was induced in both juvenile and adult leaf explants in 65 and 78% of the explants, respectively, in MS-based medium supplemented with 2.0 μM N-(2-Chloro-4-pyridyl)-N 1-phenylurea (CPPU), 0.53 μM NAA and varying concentrations of BA. There was an interaction effect between MS salt strength and BA concentration. The most effective medium for inducing somatic embryogenesis in juvenile explants contained half strength MS salts and 2.2 μM BA and full strength MS salts and 13.2 μM BA for adult explants.  相似文献   

11.
Node and internode explants of Mallotus repandus were precultured on basal medium (BM: Murashige and Skoog (MS) medium with 3% sucrose and 0.55% Agargel) for 0–18 d before culture on shoot induction Medium (SIM: BM added with 4.44 μM of benzylaminopurine) for 4 wk. The cultures were subsequently transferred to BM for 4 wk for shoot elongation. Node explants precultured on BM for 14 d before incubation on SIM were at an optimum for shoot regeneration with the response rate of 95%, compared to a 21% response for the control without preculture. Internode explants precultured on BM for 16 d responded with an optimal shoot formation response rate of 69%, whereas the control response rate was 6%. The maximum shoot regeneration rates were 3.1 ± 0.3 and 2.7 ± 0.4 shoots/responding explant in node and internode explants, respectively. This study demonstrates for the first time that shoot organogenesis can be induced from internode explants of M. repandus. Furthermore, the results suggest that the explants need to acquire competence before shoot organogenesis. Rooting was obtained by incubation of regenerated shoots on half-strength MS with 10.74 μM of 1-naphthylacetic acid for a week before culture on half-strength MS for 4 wk. Regenerated plants were successfully transferred to soil.  相似文献   

12.
An efficient micropropagation protocol based on multiple shoot induction and callus regeneration has been standardized in Sarcostemma brevistigma, a rare medicinal plant. The nodal cuttings were cultured on MS medium supplemented with BA (0.5–8 μM) or Kn (0.5–8 μM) alone or in combination with NAA (0.5–1.5 μM). Maximum multiple shoot induction was observed on MS medium supplemented with 4 μM BA. On this medium, 100% cultures responded with an average number of 11.3 shoots per explant. However, the average shoot length was limited to only 0.9 cm on this medium. The addition of 1 μM NAA along with 4 μM BA gave rise to an average number of 10.9 shoots with an average shoot length of 1.8 cm. Luxuriantly growing callus was obtained on MS medium supplemented with BA (5 μM) and 2,4-D (2 μM). The callus was subcultured on MS medium supplemented with BA (2–15 μM) or Kn (2–15 μM) alone or in combination with NAA (0.5–2 μM) for shoot organogenesis. Optimum callus regeneration was obtained on MS medium supplemented with 10 μM BA and 1 μM NAA. On this medium, 100% cultures responded with an average number of 13.4 shoots per culture. The shoots obtained via multiple shoot induction and organogenesis were rooted on half-strength MS medium supplemented with NAA (1–7 μM) or IBA (1–7 μM). IBA was better than NAA in terms of both the percentage of cultures that responded and the average number of roots per explant. The rooted shoots were successfully transplanted to soil with 86% success. This standardized protocol will help to conserve this rare medicinal plant.  相似文献   

13.
Primulina tabacum is a rare and endangered species that is endemic to China. Establishing an efficient regeneration system is necessary for its conservation and reintroduction. In this study, when leaf explants collected from plants grown in four ecotypes in China are incubated on Murashige and Skoog (MS) medium containing 5.0 μM thidiazuron (TDZ) for 30 days, then transferred to medium containing 5.0 μM 6-benzyladenine (BA), adventitious shoots are then observed. Conversely, when leaf explants are incubated on medium containing 5.0 μM BA for 30 days, then transferred to medium containing 5.0 μM TDZ, somatic embryogenesis is induced. This indicates that somatic embryogenesis and shoot organogenesis could be switched simply by changing the order of two cytokinins supplemented in the culture medium. Histological investigation has revealed that embryogenic cells are induced within 30 days following incubation of explants in medium containing TDZ. Only if embryogenic cells were induced, TDZ could enhance somatic embryogenesis and BA could stimulate shoot organogenesis. When comparing explants from different ecotypes, leaf explants from Zixiadong in Hunan Province could induce low numbers (1–2) of either somatic embryos or adventitious shoots on medium containing either 5.0 μM TDZ or 5.0 μM BA, respectively. Whereas, leaf explants from plants collected from the other three ecological habitats could induce 50–70 somatic embryos/adventitious shoots per explant. Moreover, somatic embryos could induce secondary somatic embryogenesis and adventitious shoots on different media. All regenerated shoots developed adventitious roots when these are transferred to rooting medium, and over 95% of plantlets have survived following acclimatization and transfer to a potting mixture (1:1, sand:vermiculite).  相似文献   

14.
Pityopsis ruthii is an endangered herbaceous perennial species from the United States. In vitro multiplication of this species can be valuable for germplasm conservation. Flower receptacles of P. ruthii were cultured on Murashige and Skoog medium (MS) supplemented with 11.4 μM indole-3-acetic acid (IAA) in combination with 2.2, 4.4 or 8.8 μM 6-benzyladenine (BA). Shoots were visible within 14–28 days and three plants were successfully rooted on MS medium supplemented with 5.7 μM IAA. A two tailed t-test for paired-variates revealed that shoot regeneration on MS medium amended with 11.4 μM IAA and 2.2 μM BA was significantly higher (P < 0.05) than on other treatments. Leaf explants were also cultured on MS not supplemented with growth regulators or supplemented with 11.4 μM IAA in combination with 0, 2.2, 4.4 or 8.8 μM BA. Shoots were visible within 21–35 days and one plant was successfully rooted on MS medium supplemented with 5.4 μM NAA. Shoot regeneration on MS medium augmented with 11.4 μM IAA and 2.2 μM BA was significantly higher (P < 0.05) than the other treatments according to analysis of variance (ANOVA) with a rank transformation. Hyperhydricity and rooting of shoots was problematic for explants derived from flower receptacles and leaf tissue, but viable plants were regenerated using both explants sources indicating the potential role for micropropagation in the ex situ conservation of the species.  相似文献   

15.
A rapid and efficient method for the large-scale propagation of a highly valuable medicinal plant, Andrographis paniculata Nees, through in vitro culture of nodal explants obtained from 15-d-old aseptic seedling has been developed. High frequency direct shoot proliferation was induced in nodal explants cultured on Murashige and Skoog’s medium supplemented with 6-benzylaminopurine (BAP). Amongst the various cytokinins tested (BAP, kinetin, thidiazuron and 2-isopentyl adenine), BAP proved to be the most effective. The shoot forming capacity of the nodal explants was influenced by the BAP concentration (1–12.5 μM), and the optimal response was observed at 10 μM BAP, which induced an average of 34 shoots in 94% of the cultures within 4 wk. Significant differences were recorded in terms of average number of shoots per explant (8.6–34.1) among the different concentrations of BAP investigated. Concentrations of all cytokinins tested reach a level that can be considered above the optimum level, as marked by a reduced frequency of shoot proliferation. The multiple shoots obtained on various concentrations of BAP failed to elongate even after transfer to hormone-free MS medium. Elongation of the induced shoots was achieved on MS basal medium supplemented with 1.0 μM GA3 within 2 wk. A proliferating shoot culture was established by repeatedly subculturing the original nodal explants on shoot multiplication medium after each harvest of the newly formed shoots. The explants retained their morphogenic potential even after three harvests. Therefore, in 90 d, about 60–70 shoots were obtained from a single nodal explant and the nodal explants from primary shoots further regenerated equivalent number of shoots, depicting their high frequency regeneration potential in A. paniculata. Rooting was best induced in 94% of shoots cultured on MS medium supplemented with 2.5 μM indole-3-butyric acid (IBA), within a wk. The plantlets were successfully transferred to soil after hardening with a 92% survival rate. The system is rapid: the initiation of shoot buds to the transplanting of regenerants to soil is completed in 8–9 wk.  相似文献   

16.
A simple, high frequency, and reproducible method for plant regeneration through direct organogenesis from cotyledonary leaf explants of Jatropha curcas was developed using Murashige and Skoog (MS) medium supplemented with different concentrations of thidiazuron (TDZ) or 6-benzyl aminopurine (BAP). Medium containing TDZ has greater influence on regeneration as compared to BAP. The induced shoot buds were transferred to MS medium containing 10 μM kinetin (Kn), 4.5 μM BAP, and 5.5 μM α-naphthaleneacetic acid (NAA) for shoot proliferation. The proliferated shoots could be elongated on MS medium supplemented with different concentrations and combinations of BAP, indole-3-acetic acid (IAA), NAA, and indole-3-butyric acid (IBA). MS medium with 2.25 μM BAP and 8.5 μM IAA was found to be the best combination for shoot elongation. However, significant differences in plant regeneration and shoot elongation were observed among the genotypes studied. Rooting was achieved when the basal cut end of elongated shoots were dipped in half strength MS liquid medium containing different concentrations and combinations of IBA, IAA, and NAA for 4 days, followed by transfer to growth regulators free half strength MS medium supplemented 0.25 mg l−1 activated charcoal. Elongated shoot treated with 15 μM IBA, 5.7 μM IAA, and 11 μM NAA resulted in highest percent rooting. The rooted plants could be established in soil with more than 90% survival rate. The method developed may be useful in improvement of J. curcas through genetic modification.  相似文献   

17.
Somatic embryogenesis and subsequent plant regeneration were established from hypocotyl and internode explants collected from in vitro-grown seedlings and in vitro-proliferated shoots, respectively. Somatic embryogenesis was significantly influenced by the types of auxin and cytokinin. Friable calluses with somatic embryos developed well in Murashige and Skoog basal (MS) medium supplemented with 0.8–8.8 μM 6-benzylaminopurine (BA) and 2.0–8.0 μM 2,4-dichlorophexoxyacetic acid (2,4-D) or α-naphthaleneacetic acid (NAA). The maximal frequency of embryogenic callus and somatic embryo formation were obtained when the MS medium was amended with 8.8 μM BA and 4.0 μM 2,4-D. The best embryo germination occurred in a hormone-free 1/2-MS medium. The highest percentage of shoot proliferation was observed in embryogenic calluses in MS medium containing 2.0 μM BA and 1.0 μM NAA. In vitro-grown shoots were rooted in MS medium with 0.5–2.0 μM indole-3-butyric acid. Regenerants were transferred to vermiculite and successfully established under an ex vitro environment in garden soil.  相似文献   

18.
Direct shoot bud induction and plant regeneration was achieved in Capsicum frutescens var. KTOC. Aseptically grown seedling explants devoid of roots, apical meristem and cotyledons were inoculated in an inverted position in medium comprising of Murashige and Skoog (Physiol Plant 15:472–497, 1962) basal medium supplemented with 2-(N-morpholine) ethanesulphonic acid buffer along with 2.28 μM indole-3-acetic acid, 10 μM silver nitrate and either of 13.31–89.77 μM benzyl adenine (BA), 9.29–23.23 μM kinetin, 0.91–9.12 μM zeatin, 2.46–9.84 μM 2-isopentenyl adenine. Profuse shoot bud induction was observed only in explants grown on a media supplemented with BA (26.63 μM) as a cytokinin source and 19.4 ± 4.2 shoot buds per explant was obtained in inverted mode under continuous light. Incorporation of polyamine inhibitors in the culture medium completely inhibited shoothoot bud induction. Incorporation of exogenous polyamines improved the induction of shoot buds under 24 h photoperiod. These buds were elongated in MS medium containing 2.8 μM gibberellic acid. Transfer of these shoots to hormone-free MS medium resulted in rooting and rooted plants were transferred to fields. This protocol can be efficiently used for mass propagation and presumably also for regeneration of genetically transformed C. frutescens.  相似文献   

19.
When cotyledonary explants, excised from in vitro germinated seedlings, of pomegranate (Punica granatum L.) were incubated on solid Murashige and Skoog (1962) medium supplemented with 21 μM naptheleneacetic acid (NAA) and 9 μM 6-benzyladenine (BA), 80% of explants developed callus. A high frequency of shoot organogensis was obtained when explants were incubated on MS medium supplemented with 8 μM BA, 6 μM NAA, and 6 μM giberrellic acid (GA3). However, adding 24 μM silver nitrate (AgNO3) to this medium markedly enhanced shoot regeneration frequency (63%) and mean number of shoots per explant (11.26) and length of shoots (2.22 cm). Highest frequency of in vitro rooting, mean number of roots/shoot (4.32), and mean root length (2.71 cm) were obtained when regenerated shoots were transferred to half-strength MS medium supplemented with 0.02% activated charcoal. Well-rooted plantlets were acclimatized, and then transferred to soil medium. Moreover, when zygotic embryos of P. granatum, excised from seeds collected at 16 weeks following full bloom, were incubated on MS medium containing 30 g l−1 sucrose, 15% coconut water, 21 μM NAA, and 9 μM BA, they developed the highest frequency of embryogenic callus, clumps with globular embryos, and mean number of both globular and heart-shaped embryos per callus clump. Subjecting zygotic embryo explants to six-week dark incubation period was essential for embryogenic callus induction, and these were subsequently transferred to 16 h photoperiod for further growth and development of somatic embryos. Germination of somatic embryos was observed when these were transferred to MS medium was supplemented with 60 g l−1 sucrose.  相似文献   

20.
Pueraria tuberosa, a medicinally important leguminous plant, yielding various isoflavanones including puerarin, is threatened, thus requiring conservation. In this study, fresh shoot sprouts of P. tuberosa, produced by tubers, were used as explants for in vitro micropropagation. Surface-sterilized nodal shoots were incubated on Murashige and Skoog (MS) medium supplemented with 8.88 μM benzyladenine (BA), 50 mg l−1 ascorbic acid, and 25 mg l−1 of each of citric acid and adenine sulphate. Cut ends of nodal stem segments rapidly turned brown, and cultures failed to establish. When 100 mg l−1 ascorbic acid (ABA) and 25.0 mg l−1 polyvinyl pyrrolidone (PVP) were added to the medium, explants remained healthy, and cultures were established. Bud-breaking of nodal stem explants resulted in multiple shoot formation. Shoots proliferated (35–40 shoots per culture vessel) on MS medium as described above, but supplemented with 4.44 μM BA and 0.57 μM indole acetic acid (IAA) and additives. After 4–5 passages, proliferating shoots exhibited tip-browning and decline in growth and multiplication. However, when shoots were transferred to fresh shoot proliferation medium supplemented with 2.32 μM kinetin (Kn), sustained growth and high rate of shoot proliferation (50–60 shoots per culture vessel) was observed. Shoots rooted when transferred to medium consisting of half- strength MS medium with 9.84 μM indole butyric acid (IBA) and 0.02% activated charcoal. Alternatively, individual shoots were pulsed with 984.0 μM IBA and transferred to glass bottles containing sterile and moistened soilrite. These shoots rooted ex-vitro and were acclimatized in the greenhouse. Plants were then analyzed for puerarin content using HPLC, and leaves showed maximum accumulation of purerarin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号