首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Haobin Chen  Max Costa 《Biometals》2009,22(1):191-196
Nickel compounds are important occupational and environmental pollutants. Chronic exposure to these pollutants has been connected with increased risks of respiratory cancers and cardiovascular diseases. However, it is still not clear what are the specific molecular targets for nickel toxicity and carcinogenicity. Here, we propose that the iron- and 2-oxoglutarate-dependent dioxygenase family enzymes are important intracellular targets that mediate the toxicity and carcinogenicity of nickel. In support of this hypothesis, our data show that three different classes of enzymes in this iron- and 2-oxoglutarate-dependent dioxygenase family, including HIF-prolyl hydroxylase PHD2, histone demethylase JHDM2A/JMJD1A, and DNA repair enzyme ABH3, are all highly sensitive to nickel inhibition. Inactivation of these enzymes accounts for a number of deleterious effects caused by nickel in cells, namely hypoxia-mimic stress and aberrant epigenetic changes. Future studies on nickel’s effects on these iron- and 2-oxoglutarate-dependent dioxygenases would deepen our understanding on nickel toxicity and carcinogenicity.  相似文献   

2.
The ability to detect early molecular responses to various chemicals is central to the understanding of biological impact of pollutants in a context of varying environmental cues. To monitor stress responses in a model plant, we used transgenic moss Physcomitrella patens expressing the beta-glucuronidase reporter (GUS) under the control of the stress-inducible promoter hsp17.3B. Following exposure to pollutants from the dye and paper industry, GUS activity was measured by monitoring a fluorescent product. Chlorophenols, heavy metals and sulphonated anthraquinones were found to specifically activate the hsp17.3B promoter (within hours) in correlation with long-term toxicity effects (within days). At mildly elevated physiological temperatures, the chemical activation of this promoter was strongly amplified, which considerably increased the sensitivity of the bioassay. Together with the activation of hsp17.3B promoter, chlorophenols induced endogenous chaperones that transiently protected a recombinant thermolabile luciferase (LUC) from severe heat denaturation. This sensitive bioassay provides an early warning molecular sensor to industrial pollutants under varying environments, in anticipation to long-term toxic effects in plants. Because of the strong cross-talk between abiotic and chemical stresses that we find, this P. patens line is more likely to serve as a direct toxicity bioassay for pollutants combined with environmental cues, than as an indicator of absolute toxicity thresholds for various pollutants. It is also a powerful tool to study the role of heat shock proteins (HSPs) in plants exposed to combined chemical and environmental stresses.  相似文献   

3.
The polychaete Capitella capitata sp.I has a high capacity to metabolize polycyclic aromatic hydrocarbons (PAHs) which are among the most hazardous environmental pollutants with significant biological effects. In the present study, two novel cytochrome P450 (CYP) genes were identified in this species. One was named CYP331A1, the first member of a new family of CYP331, and the other CYP4AT1 is the first member of a new subfamily CYP4AT. Both of these genes are constitutively expressed in the worms and detectable by RT-PCR. The expression of CYP331A1 mRNA was observed to be more sensitive to PAH exposure than CYP4AT1, which indicated that CYP331A1 should play a more important role than CYP4AT1 in PAH metabolism in this species. Considering the importance of C. capitata sp.I in taking up PAH and other organic pollutants from contaminated marine sediments with the potential for subsequent food-chain transfer, our results are important for understanding the molecular basis of biotransformation and detoxification in this invertebrate, and also have evolutionary significance for understanding the diversity and history of the CYP superfamily.  相似文献   

4.
Carbon-based materials (CBM), including activated carbon (AC), activated fibres (ACF), biochar (BC), nanotubes (CNT), carbon xenogels (CX) and graphene nanosheets (GNS), possess unique properties such as high surface area, sorption and catalytic characteristics, making them very versatile for many applications in environmental remediation. They are powerful redox mediators (RM) in anaerobic processes, accelerating the rates and extending the level of the reduction of pollutants and, consequently, affecting positively the global efficiency of their partial or total removal. The extraordinary conductive properties of CBM, and the possibility of tailoring their surface to address specific pollutants, make them promising as catalysts in the treatment of effluents containing diverse pollutants. CBM can be combined with magnetic nanoparticles (MNM) assembling catalytic and magnetic properties in a single composite (C@MNM), allowing their recovery and reuse after the treatment process. Furthermore, these composites have demonstrated extraordinary catalytic properties. Evaluation of the toxicological and environmental impact of direct and indirect exposure to nanomaterials is an important issue that must be considered when nanomaterials are applied. Though the chemical composition, size and physical characteristics may contribute to toxicological effects, the potential toxic impact of using CBM is not completely clear and is not always assessed. This review gives an overview of the current research on the application of CBM and C@MNM in bioremediation and on the possible environmental impact and toxicity.  相似文献   

5.
Fluoride is a common pollutant which occurs in various environmental matrices considered as one of the most phytotoxic pollutants. It is essential to the living organisms in trace quantities but at its higher concentration it becomes poisonous. Excess amount of fluoride in environment not only exerts its toxic effects on human beings and animals but also on plants. Toxicological impacts of fluoride on plants have been largely debated due to reduction of growth parameters, inhibition of metabolic activities and decreased photosynthetic activity. The signs of fluoride impacts on plants may be severe, acute or chronic and toxicity of fluoride depends on dose, frequency of exposure, duration and genotype of plant. This article overviews understanding of transport, uptake and fluoride accumulation in plants and provide insights into the fluoride-induced oxidative stress and regulatory mechanisms to cope up with it. The main objective of this article is to prospect new research avenues to unravel the mechanisms explaining fluoride toxicity in various plant species.  相似文献   

6.
The impact of new technologies on human population studies   总被引:4,自引:0,他引:4  
Human population studies involve clinical or epidemiological observations that associate environmental exposures with health endpoints and disease. Clearly, these are the most sought after data to support assessments of human health risk from environmental exposures. However, the foundations of many health risk assessments rest on experimental studies in rodents performed at high doses that elicit adverse outcomes, such as organ toxicity or tumors. Using the results of human studies and animal data, risk assessors define the levels of environmental exposures that may lead to disease in a portion of the population. These decisions on potential health risks are frequently based on the use of default assumptions that reflect limitations in our scientific knowledge. An important immediate goal of toxicogenomics, including proteomics and metabonomics, is to offer the possibility of making decisions affecting public health and public based on detailed toxicity, mechanistic, and exposure data in which many of the uncertainties have been eliminated. Ultimately, these global technologies will dramatically impact the practice of public health and risk assessment as applied to environmental health protection. The impact is already being felt in the practice of toxicology where animal experimentation using highly controlled dose-time parameters is possible. It is also being seen in human population studies where understanding human genetic variation and genomic reactions to specific environmental exposures is enhancing our ability to uncover the causes of variations in human response to environmental exposures. These new disciplines hold the promise of reducing the costs and time lines associated with animal and human studies designed to assess both the toxicity of environmental pollutants and efficacy of therapeutic drugs. However, as with any new science, experience must be gained before the promise can be fulfilled. Given the numbers and diversity of drugs, chemicals and environmental agents; the various species in which they are studied and the time and dose factors that are critical to the induction of beneficial and adverse effects, it is only through the development of a profound knowledge base that toxicology and environmental health can rapidly advance. The National Institute of Environmental Health Sciences (NIEHS), National Center for Toxicogenomics and its university-based Toxicogenomics Research Consortium (TRC), and resource contracts, are engaged in the development, application and standardization of the science upon which to the build such a knowledge base on Chemical Effects in Biological Systems (CEBS). In addition, the NIEHS Environmental Genome Project (EGP) is working to systematically identify and characterize common sequence polymorphisms in many genes with suspected roles in determining chemical sensitivity. The rationale of the EGP is that certain genes have a greater than average influence over human susceptibility to environmental agents. If we identify and characterize the polymorphism in those genes, we will increase our understanding of human disease susceptibility. This knowledge can be used to protect susceptible individuals from disease and to reduce adverse exposure and environmentally induced disease.  相似文献   

7.
DNA damage is an important mechanism of toxicity for a variety of pollutants, and therefore, is often used as an indicator of pollutant effects in ecotoxicological studies. Here, we adapted a PCR-based assay for nuclear and mitochondrial DNA damage for use in an important environmental model, the Atlantic killifish (Fundulus heteroclitus). We refer to this assay as the long amplicon quantitative PCR (LA-QPCR) assay. To validate this method in killifish, DNA damage was measured in liver, brain, and muscle of fish dosed with 10 mg/kg benzo[a]pyrene. This exposure caused 0.4-0.8 lesions/10 kb. We also measured DNA damage in liver and muscle tissues from killifish inhabiting a Superfund site, confirming the utility of this method for biomonitoring. In both cases, damage levels were comparable in nuclear DNA (nDNA) and mitochondrial DNA (mtDNA). Since extensive nDNA sequence data are not readily available for many environmentally relevant species, but mitochondrial genomes are frequently fully sequenced, this assay can be adapted to examine mtDNA damage in virtually any species with little development. Therefore, we argue that this assay will be a valuable tool in assessing DNA damage in ecotoxicological studies.  相似文献   

8.
Here we explain the omics approach of metabolomics and how it can be applied to study a physiological response to toxic metal exposure. This review aims to educate the metallomics field to the tool of metabolomics. Metabolomics is becoming an increasingly used tool to compare natural and challenged states of various organisms, from disease states in humans to toxin exposure to environmental systems. This approach is key to understanding and identifying the cellular or biochemical targets of metals and the underlying physiological response. Metabolomics steps are described and overviews of its application to metal toxicity to organisms are given. As this approach is very new there are yet only a small number of total studies and therefore only a brief overview of some metal metabolomics studies is described. A frank critical evaluation of the approach is given to provide newcomers to the method a clear idea of the challenges and the rewards of applying metabolomics to their research.  相似文献   

9.
多溴二苯醚的环境暴露与生态毒理研究进展   总被引:22,自引:0,他引:22  
多溴二苯醚(PBDEs)是一类具有生态风险的新型环境有机污染物.作为阻燃剂,PBDEs已经被愈来愈广泛地添加到工业产品中,并因此对大气、水体、沉积物和土壤等环境介质及相关生态系统产生日益广泛的污染.鉴于这一环境新问题的产生,本文基于有限的资料,初步探讨了PBDEs的人为来源和环境暴露途径,大致给出了PBDEs在不同生物和人体不同组织器官中可能的存在及含量水平;在扼要介绍其基本性质的基础上,从甲状腺、神经系统和生殖发育毒性等三个方面分析了PBDEs对动物和人体可能产生的毒性效应与生态影响,以及PBDEs在生态系统中可能具有的生物积累和生物放大风险;并对今后研究PBDEs的环境暴露与生态效应以及人体健康影响等方面的工作重点进行了展望.  相似文献   

10.
环境污染物对水生生物产生氧化压力的分子生物标志物   总被引:12,自引:0,他引:12  
王丽平  郑丙辉  孟伟 《生态学报》2007,27(1):380-388
为了能够建立一种简单、快速、准确的环境污染监测预警体系,人们进行了广泛的研究,其中有关环境污染物对分子生物标志物的影响已成为研究热点。生物体内的氧自由基和其它活性氧分子(ROS)对组织和细胞成分造成的伤害,称之为氧化压力,环境中的有毒物质能够对生物体产生不同程度的氧化压力。生物体内的强氧化剂或体外因素(如环境污染物)引起的强氧化物与抗氧化防御系统之间的平衡能够用于评估环境压力对生物体产生影响的程度,尤其适合于评估不同种化学物质引起氧化损伤的程度。这些抗氧化防御系统及其对氧化压力的敏感性在环境毒物学研究中占有非常重要的地位,大量研究结果表明:过渡金属、多环芳烃、有机氯和有机磷农药、多氯联苯、二氧芑和其它异型物质都能够对生物体产生氧化压力。这些有毒物质能够引起各种有害影响,如对膜脂、DNA和蛋白产生损伤;改变抗氧化酶的活性等。总结了这种氧化压力的研究进展情况,并讨论了这些分子生物标志物在水生生物中的应用。  相似文献   

11.
There is a lack of scientific literature regarding the bioaccumulation, dietary, and toxicity exposure of emerging persistent organic pollutants through food crops. The current mini-review presents the dietary intake, spatial distribution pattern, and screening-levels risk assessment of persistent organic pollutants (POPs) in the cereal crops and environmental compartments from Punjab Province, Pakistan. Results of congener specific analysis were in accordance to the previously reported pattern of detected POPs across the globe. Spatial distribution was influenced by the industrial and urban fraction and trend of spatial distribution pattern was observed as follows: industrial/urban areas > industrial/peri-urban areas > agricultural/rural areas. Dietary intake of Organochlorine pesticides (OCPs) via consumption of cereal crops was observed higher and was in accordance to the previously reported levels while human health was at marginal risk to cancer. The results of dietary and toxicity exposure of detected POPs warrant auxiliary devotion in future, to this group of contaminants.  相似文献   

12.
环状RNA(circular RNAs,circRNAs)是一类共价闭合环状非编码RNA,具有进化上保守、结构上稳定、组织特异性表达等特点。CircRNAs可作为miRNAs海绵影响其对基因的调控,还可与RNA结合蛋白(RNA binding proteins,RBPs)相互作用,也有研究表明某些circRNAs还具有被翻译成蛋白质的潜能。CircRNAs已被证实对某些疾病具有特异性、稳定性和调节功能,如癌症、糖尿病、心血管疾病、神经退行性疾病等,其可作为潜在的诊断、预后生物标志物和治疗靶点。最近,有研究发现circRNAs参与了环境化学污染物诱导的毒性效应发生及发展的过程。目前,生态毒理学研究中评价环境化学污染物和毒效应之间关系的毒性终点通常会受遗传多态性和表观遗传学影响,考虑到经环境化学污染物暴露后生物体内circRNAs差异性表达的现象,或许在生态毒理学研究中circRNAs也有作为生物标志物的可能性。基于此,对circRNAs的生物合成与降解、生物学功能、分析方法及其目前在生态毒理学研究中的应用展开综述,并对其作为分子生物标志物在环境污染物暴露早期诊断和生态风险评价中的应用进行了展望,以期为生态毒理学研究和环境风险评价提供参考。  相似文献   

13.
Humans are often exposed to a variety of pollutants that contribute to an individual's risk for diseases including cancer. Animal, cell cultures and epidemiological lines of evidence demonstrate that exposure to various environmental pollutants including pesticides are associated with increasing frequency of cancers. Organophosphates, organochlorines, carbamates, pyrethroids, the major groups of pesticides, have been reported to be carcinogenic in various models. However, the results of these studies are still controversial, nevertheless, their mechanism of action is clear. Therefore, new strategies in toxicological research are needed for efficient screening for adverse effects of pesticides on complex living systems. Biomarkers can be employed to identify causal associations and to make better quantitative and qualitative estimates of those associations at relevant levels of exposure. This will enable us to deepen our understanding of mechanism behind their carcinogenic potential. Deciphering the associations between pesticide exposure and cancer, following toxicoproteomics application, will be useful in the development of potential predictive biomarkers of pesticide induced carcinogenicity. Therefore, the thrust of this article was to review the risk of cancer due to pesticide exposure and significant toxicoproteomic-based studies conducted so far, to identify the novel molecules as possible biomarkers for cancer following pesticide exposure.  相似文献   

14.
Pollutants, including synthetic organic materials and heavy metals, are known to adversely affect physiological systems in all animal species studied to date. While many individual chemicals can perturb normal functions, the combined actions of multiple pollutants are of particular concern because they can exert effects even when each individual chemical is present at concentrations too low to be individually effective. The biological effects of pollutants differ greatly between species reflecting differences in the pattern of exposure, routes of uptake, metabolism following uptake, rates of accumulation and sensitivity of the target organs. Thus, understanding of the effects of pollutants on wildlife and ecosystems will require detailed study of many different species, representing a wide range of taxa. However, such studies can be informed by knowledge obtained in more controlled conditions which may indicate likely mechanisms of action and suitable endpoint measurements. Responses may be exacerbated by interactions between the effects of pollutants and environmental stressors, such as under-nutrition or osmotic stresses and so changes in such variables associated with climatic changes may exacerbate physiological responses to pollutant burdens.  相似文献   

15.
Dowling VA  Sheehan D 《Proteomics》2006,6(20):5597-5604
Ecotoxicology describes a three-way relationship between ecosystems, chemical pollutants and living organisms. It is predicated on the fact that chemical pollution can exert toxic effects on organisms at the individual and population levels. These toxic effects may provide important information to supplement chemical analysis of environmental samples and aid in assessing the environmental quality of specific ecosystems. Traditionally, effects have been detected by means of biomarkers which, of necessity, were often molecules or processes known to be affected by pollutants. Proteomics provides a means of achieving high-throughput analysis of effects on protein populations and sub-populations with the potential to identify novel biomarkers. This review summarises the main approaches currently used in this area and assesses the potential of proteomics for identification of novel toxicity targets.  相似文献   

16.
Polychlorinated biphenyls (PCBs) are persistent environmental contaminants that can induce inflammatory processes in the vascular endothelium. We hypothesize that the plasma membrane microdomains called caveolae are critical in endothelial activation and toxicity induced by PCBs. Caveolae are particularly abundant in endothelial cells and play a major role in endothelial trafficking and the regulation of signaling pathways associated with the pathology of vascular diseases. We focused on the role of caveolae and their major protein component, caveolin-1 (Cav-1), on aryl hydrocarbon receptor (AhR)-mediated induction of cytochrome P450 1A1 (CYP1A1) by coplanar PCBs. Endothelial cell exposure to PCB77 increased both caveolin-1 and CYP1A1 levels in a time-dependent manner in total cell lysates, with a maximum increase at 6h. Furthermore, PCB77 accumulated mainly in the caveolae-rich fraction, as determined by gas chromatograph-mass spectrometry. Immunoprecipitation analysis revealed that PCB77 increased AhR binding to caveolin-1. Silencing of caveolin-1 significantly attenuated PCB77-mediated induction of CYP1A1 and oxidative stress. Similar effects were observed in caveolin-1 null mice treated with PCB77. These data suggest that caveolae may play a role in regulating vascular toxicity induced by persistent environmental pollutants such as coplanar PCBs. This may have implications in understanding mechanisms of inflammatory diseases induced by environmental pollutants.  相似文献   

17.
环境问题是21世纪人类面临的最严重的挑战。随着现代工农业飞速发展,生态环境日益恶化,难降解污染物如新兴污染物逐渐显现,已成为制约社会经济可持续发展的重要因素。微生物具有强大的环境修复能力,但是其进化速度远不及新兴污染物出现的速度,亟需应用合成生物学的技术来解决这一难题。在充分认识难降解有机污染物微生物降解(途径)特性的基础上,利用我国丰富的微生物与基因资源,运用合成生物学的手段,定向设计和改造现有降解菌株,构建能够降解一种或多种污染物的工程菌株;同时针对复合型污染,如废水等,在建立典型有机污染物代谢、调控和抗逆相关基因元件的模块库基础上,引入人工菌群等策略,对生物系统进行理性设计和组装,构建典型环境污染物的高效降解菌群,可有效促进我国新兴污染物微生物分解代谢的研究,为环境修复的工程应用提供技术支持。  相似文献   

18.
Pharmaceuticals are highly bioactive compounds now known to be widespread environmental contaminants. However, research regarding exposure and possible effects in non-target higher vertebrate wildlife remains scarce. The fate and behaviour of most pharmaceuticals entering our environment via numerous pathways remain poorly characterized, and hence our conception and understanding of the risks posed to wild animals is equally constrained. The recent decimation of Asian vulture populations owing to a pharmaceutical (diclofenac) offers a notable example, because the exposure route (livestock carcasses) and the acute toxicity observed were completely unexpected. This case not only highlights the need for further research, but also the wider requirement for more considered and comprehensive ‘ecopharmacovigilance’. We discuss known and potential high risk sources and pathways in terrestrial and freshwater ecosystems where pharmaceutical exposure in higher vertebrate wildlife, principally birds and mammals, may occur. We examine whether approaches taken within existing surveillance schemes (that commonly target established classes of persistent or bioaccumulative contaminants) and the risk assessment approaches currently used for pesticides are relevant to pharmaceuticals, and we highlight where new approaches may be required to assess pharmaceutical-related risk.  相似文献   

19.
Cadmium (Cd) and zinc (Zn) are environmental pollutants affecting both soil and water. The toxicity resulting from the exposure of Xanthomonas campestris, a soil bacterium and plant pathogen, to these metals was investigated. Pretreatment of X. campestris with sub-lethal concentrations of Cd induced adaptive protection against subsequent exposure to lethal doses of Cd. Moreover, Cd-induced cells also showed cross-resistance to lethal concentrations of Zn. These induced protections required newly synthesized proteins. Unexpectedly, Zn-induced cells did not exhibit adaptive protection against lethal concentrations of Zn or Cd. These data suggested that the increased resistance to Cd and Zn killing probably involved other protective mechanisms in addition to ion efflux.  相似文献   

20.
Efficient tools for on-line and in situ monitoring of environmental pollutants are required to provide early warning systems. In addition, such tools can contribute important information on the progress of various remediation treatments. One of the recently developed monitoring technologies involves the use of whole-cell biosensors. Such biosensors could be constructed to detect general toxicity or specific toxicity caused by one or more pollutants. Currently, a large spectrum of microbial biosensors have been developed that enable the monitoring of pollutants by measuring light, fluorescence, color or electric current. Electrochemical monitoring is of special interest for in situ measurements as it can be performed using simple, compact and mobile equipment and is easily adaptable for on-line measurements. Here we survey the potential application of electrochemical biosensors in monitoring of general toxicity as well as hydrocarbons and heavy metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号