首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nuclear pore complex, through the interaction of its proteins with transport receptors, controls the transport of large molecules into and out of the cell's nucleus. There is ample evidence for proteins with FG sequence repeats playing an essential role in this control. Previous studies have elucidated binding spots for FG sequence repeats on the surface of the transport receptor importin-beta by X-ray crystallography and mutational studies. Molecular dynamics simulations have been performed to characterize the interaction of FG sequence repeats with the transport receptor. Observed binding spots have been verified and novel sites discovered, suggesting that importin-beta features many more binding spots than suspected so far. The observed binding spots are in accord with several models of nucleocytoplasmic transport, and the large number of binding spots on importin-beta may be necessary for the pore complex to distinguish between importin-beta and inert proteins, and to allow for its passage through the pore.  相似文献   

2.
In the peptide SPOT array technique, an array of different peptides are synthesized on, and covalently linked to, cellulose membranes. In one usage of this technique, these peptides are screened in an overlay assay to determine which short sequence(s) contains a binding site for an interacting protein. By preparing overlapping peptides that cover the entire sequence of a protein, all of the binding domains on the protein for a second protein can be identified. We have utilized the peptide SPOT array technique to identify the short amino acid sequences within nuclear pore complex proteins (also known as nucleoporins or Nups) that bind the nuclear carrier importin-beta. Crystallization studies by others have indicated that nuclear carriers such as importin-beta bind to phenylalanine-glycine (FG) repeats present in numerous copies in the sequences of a family of nucleoporins. Consistent with this, we found that most (but not all) of the Nup binding sites for importin-beta identified by this technique contain Fx, FG, FxFG, FxFx, or GLFG sequences, although not all such sequences bound importin-beta. Peptide SPOT array substitution studies confirmed a crucial role for the phenylalanine in FG repeats and identified a lysine residue flanking some repeats that is crucial for importin-beta binding to those repeats. In addition to these expected binding sequences for importin-beta, we found multiple instances of a peptide lacking a canonical FG repeat that strongly bound importin-beta, indicating that additional Nup sequences may form binding sites for importin-beta.  相似文献   

3.
《The Journal of cell biology》1996,133(6):1163-1176
Characterization of the interactions between soluble factors required for nuclear transport is key to understanding the process of nuclear trafficking. Using a synthetic lethal screen with the rna1-1 strain, we have identified a genetic interaction between Rna1p, a GTPase activating protein required for nuclear transport, and yeast importin- beta, a component of the nuclear localization signal receptor. By the use of fusion proteins, we demonstrate that Rna1p physically interacts with importin-beta. Mutants in importin-beta exhibit in vivo nuclear protein import defects, and importin-beta localizes to the nuclear envelope along with other proteins associated with the nuclear pore complex. In addition, we present evidence that importin-alpha, but not importin-beta, mislocalizes to the nucleus in cells where the GTPase Ran is likely to be in the GDP-bound state. We suggest a model of nuclear transport in which Ran-mediated hydrolysis of GTP is necessary for the import of importin-alpha and the nuclear localization signal- bearing substrate into the nucleus, while exchange of GDP for GTP on Ran is required for the export of both mRNA and importin-alpha from the nucleus.  相似文献   

4.
The beta-karyopherin/RanGTP system constitutes the largest known family of cellular cargo transporters. The flexibility of the karyopherin transport receptors is the key to their versatility in binding cargoes of different shape and size. Despite strong binding of the Ran complex, the comparably low energy associated with GTP hydrolysis suffices to drive dissociation and fuel the transport cycle. Here, we elucidate the drastic structural dynamics of the prototypic karyopherin, importin-beta, and show that its flexibility also solves this energetic puzzle. Our nonequilibrium atomistic simulations reveal fast conformational changes, validated by small-angle X-ray scattering data, and unusually large structural fluctuations. The characteristic dynamic patterns of importin-beta and the observed unfolding pathway of the IBB domain suggest a cooperative mechanism of importin-beta function in the nucleus. We propose a molecular model in which the stored energy and structural dynamics account for an exchange pathway that explains the high observed rates of nucleocytoplasmic transport. Karyopherins utilize a mechanism of entropy/enthalpy control that might be a general feature of highly flexible proteins involved in protein-protein interactions.  相似文献   

5.
NTF2 and importin-beta are transport factors that mediate nuclear protein import and which interact with nuclear pore proteins (nucleoporins) during translocation from the cytoplasm to the nucleus through nuclear pore complexes. We employed a native gel electrophoresis method to assess the interaction of nucleoporin constructs that contain FxFG sequence repeats with NTF2 and truncation mutants of importin-beta to determine suitable fragments for crystallization. Based on these data, we obtained crystals of complexes between yeast NTF2 and a construct containing five FxFG nucleoporin repeats from the yeast nucleoporin Nsp1p and between a construct containing residues 1-442 of human importin-beta and the same nucleoporin construct. The yeast NTF2-nucleoporin crystals have trigonal symmetry and diffract past 2.8 A resolution using synchrotron radiation, whereas the importin-beta-nucleoporin complex crystals have P2(1)2(1)2 orthorhombic symmetry and diffract past 3.2 A resolution.  相似文献   

6.
The interaction between nuclear pore proteins (nucleoporins) and transport factors is crucial for the translocation of macromolecules through nuclear pores. Many nucleoporins contain FG sequence repeats, and previous studies have demonstrated interactions between repeats containing FxFG or GLFG cores and transport factors. The crystal structure of residues 1-442 of importin-beta bound to a GLFG peptide indicates that this repeat core binds to the same primary site as FxFG cores. Importin-beta-I178D shows reduced binding to both FxFG and GLFG repeats, consistent with both binding to an overlapping site in the hydrophobic groove between the A-helices of HEAT repeats 5 and 6. Moreover, FxFG repeats can displace importin-beta or its S. cerevisiae homologue, Kap95, bound to GLFG repeats. Addition of soluble GLFG repeats decreases the rate of nuclear protein import in digitonin-permeabilized HeLa cells, indicating that this interaction has a role in the translocation of carrier-cargo complexes through nuclear pores. The binding of GLFG and FxFG repeats to overlapping sites on importin-beta indicates that functional differences between different repeats probably arise from differences in their spatial organization.  相似文献   

7.
Molecular interactions between receptors and ligands can be characterized by their free energy landscape. In its simplest representation, the energy landscape is described by a barrier of certain height and width that determines the dissociation rate of the complex, as well as its dynamic strength. Some interactions, however, require a more complex landscape with additional barriers and roughness along the reaction coordinate. This roughness slows down the dissociation kinetics of the interaction and contributes to its dynamic strength. The streptavidin-biotin complex has been extensively studied due to its remarkably low dissociation kinetics. However, single molecule measurements from independent experiments showed scattered and disparate results. In this work, the energy landscape roughness of the streptavidin-biotin interaction was estimated to be in the range of 5-8kBT using dynamic force spectroscopy (DFS) measurements at three different temperatures. These results can be used to explain both its slow dissociation kinetics and the discrepancies in the reported force measurements.  相似文献   

8.
We describe the genetic and kinetic defects in a congenital myasthenic syndrome due to the mutation epsilonA411P in the amphipathic helix of the acetylcholine receptor (AChR) epsilon subunit. Myasthenic patients from three unrelated families are either homozygous for epsilonA411P or are heterozygous and harbor a null mutation in the second epsilon allele, indicating that epsilonA411P is recessive. We expressed human AChRs containing wild-type or A411P epsilon subunits in 293HEK cells, recorded single channel currents at high bandwidth, and determined microscopic rate constants for individual channels using hidden Markov modeling. For individual wild-type and mutant channels, each rate constant distributes as a Gaussian function, but the spread in the distributions for channel opening and closing rate constants is greatly expanded by epsilonA411P. Prolines engineered into positions flanking residue 411 of the epsilon subunit greatly increase the range of activation kinetics similar to epsilonA411P, whereas prolines engineered into positions equivalent to epsilonA411 in beta and delta subunits are without effect. Thus, the amphipathic helix of the epsilon subunit stabilizes the channel, minimizing the number and range of kinetic modes accessible to individual AChRs. The findings suggest that analogous stabilizing structures are present in other ion channels, and possibly allosteric proteins in general, and that they evolved to maintain uniformity of activation episodes. The findings further suggest that the fundamental gating mechanism of the AChR channel can be explained by a corrugated energy landscape superimposed on a steeply sloped energy well.  相似文献   

9.
Ultrafast folding proteins have served an important role in benchmarking molecular dynamics simulations and testing protein folding theories. These proteins are simple enough and fold fast enough that realistic simulations are possible, which facilitates the direct comparison of absolute folding rates and folding mechanisms with those observed experimentally. Such comparisons have achieved remarkable success, but have also revealed the shortcomings that remain in experiment, theory and simulation alike. Some ultrafast folding proteins may fold without encountering an activation barrier (downhill folding), allowing the exploration of the molecular timescale of folding and the roughness of the energy landscape. The biological significance of ultrafast folding remains uncertain, but its practical significance is crucial to progress in understanding how proteins fold.  相似文献   

10.
11.
We present a lattice Monte Carlo study to examine the effect of denaturants on the folding rates of simplified models of proteins. The two-dimensional model is made from a three-letter code mimicking the presence of hydrophobic, hydrophilic, and cysteine residues. We show that the rate of folding is maximum when the effective hydrophobic interaction epsilon H is approximately equal to the free energy gain epsilon S upon forming disulfide bonds. In the range 1 < or = epsilon H/ epsilon S < or = 3, multiple paths that connect several intermediates to the native state lead to fast folding. It is shown that at a fixed temperature and epsilon S the folding rate increases as epsilon H decreases. An approximate model is used to show that epsilon H should decrease as a function of the concentration of denaturants such as urea or guanidine hydrochloride. Our simulation results, in conjunction with this model, are used to show that increasing the concentration of denaturants can lead to an increase in folding rates. This occurs because denaturants can destabilize the intermediates without significantly altering the energy of the native conformation. Our findings are compared with experiments on the effects of denaturants on the refolding of bovine pancreatic trypsin inhibitor and ribonuclease T1. We also argue that the phenomenon of denaturant-enhanced folding of proteins should be general.  相似文献   

12.
Using both analytical solutions obtained from simplified systems and numerical results from more realistic cases, we investigate the role played by the dielectric constant of membrane proteins epsilon(p) and pore water epsilon(w) in permeation of ions across channels. We show that the boundary and its curvature are the crucial factors in determining how an ion's potential energy depends on the dielectric constants near an interface. The potential energy of an ion outside a globular protein has a dominant 1/epsilon(w) dependence, but this becomes 1/epsilon(p) for an ion inside a cavity. For channels, where the boundaries are in between these two extremes, the situation is more complex. In general, we find that variations in epsilon(w) have a much larger impact on the potential energy of an ion compared to those in epsilon(p). Therefore a better understanding of the effective epsilon(w) values employed in channel models is desirable. Although the precise value of epsilon(p) is not a crucial determinant of ion permeation properties, it still needs to be chosen carefully when quantitative comparisons with data are made.  相似文献   

13.
Role of importin-beta in the control of nuclear envelope assembly by Ran   总被引:5,自引:0,他引:5  
Compartmentalization of the genetic material into a nucleus bounded by a nuclear envelope (NE) is the hallmark of a eukaryotic cell. The control of NE assembly is poorly understood, but in a cell-free system made from Xenopus eggs, NE assembly involves the small GTPase Ran. In this system, Sepharose beads coated with Ran induce the formation of functional NEs in the absence of chromatin. Here, we show that importin-beta, an effector of Ran involved in nucleocytoplasmic transport and mitotic spindle assembly, is required for NE assembly induced by Ran. Concentration of importin-beta on beads is sufficient to induce NE assembly in Xenopus egg extracts. The function of importin-beta in NE assembly is disrupted by a mutation that decreases affinity for nucleoporins containing FxFG repeats. By contrast, a truncated protein that cannot interact with importin-alpha is functional. Thus, importin-beta functions in NE assembly by recruiting FxFG nucleoporins rather than by interaction through importin-alpha with karyophilic proteins carrying classical nuclear localization signals. Importin-beta links NE assembly, mitotic spindle assembly, and nucleocytoplasmic transport to regulation by Ran and may coordinate these processes during cell division.  相似文献   

14.
Karyopherin flexibility in nucleocytoplasmic transport   总被引:4,自引:0,他引:4  
Recent structural work on nuclear transport factors of the importin-beta superfamily of karyopherins has shown that these proteins are superhelices of HEAT repeats that are able to assume different conformations in different functional states. The inherent flexibility of these helicoids facilitates the accommodation of different binding partners by an induced-fit type of mechanism. Moreover, the energy stored by distorting these molecules may partially balance binding energies to enable assembly and disassembly of their complexes with relatively small energy changes. Flexibility appears to be an intrinsic feature of such superhelices and might be functionally important not only for karyopherins and nuclear transport, but also for HEAT repeat proteins from other biological systems.  相似文献   

15.
Wang J  Huang W  Lu H  Wang E 《Biophysical journal》2004,87(4):2187-2194
We study the kinetics of the biomolecular binding process at the interface using energy landscape theory. The global kinetic connectivity case is considered for a downhill funneled energy landscape. By solving the kinetic master equation, the kinetic time for binding is obtained and shown to have a U-shape curve-dependence on the temperature. The kinetic minimum of the binding time monotonically decreases when the ratio of the underlying energy gap between native state and average non-native states versus the roughness or the fluctuations of the landscape increases. At intermediate temperatures, fluctuations measured by the higher moments of the binding time lead to non-Poissonian, non-exponential kinetics. At both high and very low temperatures, the kinetics is nearly Poissonian and exponential.  相似文献   

16.
Monte Carlo simulations of equilibrium selectivity of Na channels with a DEKA locus are performed over a range of radius R and protein dielectric coefficient epsilon(p). Selectivity arises from the balance of electrostatic forces and steric repulsion by excluded volume of ions and side chains of the channel protein in the highly concentrated and charged (approximately 30 M) selectivity filter resembling an ionic liquid. Ions and structural side chains are described as mobile charged hard spheres that assume positions of minimal free energy. Water is a dielectric continuum. Size selectivity (ratio of Na+ occupancy to K+ occupancy) and charge selectivity (Na+ to Ca2+) are computed in concentrations as low as 10(-5) M Ca2+. In general, small R reduces ion occupancy and favors Na+ over K+ because of steric repulsion. Small epsilon(p) increases occupancy and favors Na+ over Ca2+ because protein polarization amplifies the pore's net charge. Size selectivity depends on R and is independent of epsilon(p); charge selectivity depends on both R and epsilon(p). Thus, small R and epsilon(p) make an efficient Na channel that excludes K+ and Ca2+ while maximizing Na+ occupancy. Selectivity properties depend on interactions that cannot be described by qualitative or verbal models or by quantitative models with a fixed free energy landscape.  相似文献   

17.
The molar absorption coefficient, epsilon, of a protein is usually based on concentrations measured by dry weight, nitrogen, or amino acid analysis. The studies reported here suggest that the Edelhoch method is the best method for measuring epsilon for a protein. (This method is described by Gill and von Hippel [1989, Anal Biochem 182:319-326] and is based on data from Edelhoch [1967, Biochemistry 6:1948-1954]). The absorbance of a protein at 280 nm depends on the content of Trp, Tyr, and cystine (disulfide bonds). The average epsilon values for these chromophores in a sample of 18 well-characterized proteins have been estimated, and the epsilon values in water, propanol, 6 M guanidine hydrochloride (GdnHCl), and 8 M urea have been measured. For Trp, the average epsilon values for the proteins are less than the epsilon values measured in any of the solvents. For Tyr, the average epsilon values for the proteins are intermediate between those measured in 6 M GdnHCl and those measured in propanol. Based on a sample of 116 measured epsilon values for 80 proteins, the epsilon at 280 nm of a folded protein in water, epsilon (280), can best be predicted with this equation: epsilon (280) (M-1 cm-1) = (#Trp)(5,500) + (#Tyr)(1,490) + (#cystine)(125) These epsilon (280) values are quite reliable for proteins containing Trp residues, and less reliable for proteins that do not. However, the Edelhoch method is convenient and accurate, and the best approach is to measure rather than predict epsilon.  相似文献   

18.
Nuclear protein import proceeds through the nuclear pore complex (NPC). Importin-beta mediates translocation via direct interaction with NPC components and carries importin-alpha with the NLS substrate from the cytoplasm into the nucleus. The import reaction is terminated by the direct binding of nuclear RanGTP to importin-beta which dissociates the importin heterodimer. Here, we analyse the sites of interaction on importin-beta for its multiple partners. Ran and importin-alpha respectively require residues 1-364 and 331-876 of importin-beta for binding. Thus, RanGTP-mediated release of importin-alpha from importin-beta is likely to be an active displacement rather than due to simple competition between Ran and importin-alpha for a common binding site. Importin-beta has at least two non-overlapping sites of interaction with the NPC, which could potentially be used sequentially during translocation. Our data also suggest that termination of import involves a transient release of importin-beta from the NPC. Importin-beta fragments which bind to the NPC, but not to Ran, resist this release mechanism. As would be predicted from this, these importin-beta mutants are very efficient inhibitors of NLS-dependent protein import. Surprisingly, however, they also inhibit M9 signal-mediated nuclear import as well as nuclear export of mRNA, U snRNA, and the NES-containing Rev protein. This suggests that mediators of these various transport events share binding sites on the NPC and/or that mechanisms exist to coordinate translocation through the NPC via different nucleocytoplasmic transport pathways.  相似文献   

19.
20.
The P446L mutant Drosophila importin-beta (P446L-imp-beta) has been reported to prohibit--in dominant negative fashion--nuclear envelope (NE) assembly. Along elucidating the mode of action of P446L-imp-beta we studied in vitro NE assembly on Sepharose beads. While Drosophila embryo extracts support NE assembly over Sepharose beads coated with Ran, NE assembly does not take place in extracts supplied with exogenous P446L-imp-beta. A NE also forms over importin-beta-coated beads. Surprisingly, when immobilized to Sepharose beads P446L-imp-beta as efficiently recruits NE vesicles as normal importin-beta. The discrepancy in behavior of cytoplasmic and bead-bound P446L-imp-beta appears to be related to icreased--as compared to normal importin-beta--microtubule (MT) binding ability of P446L-imp-beta. While wild-type importin-beta is able to bind MTs and the binding decreases upon RanGTP interaction, P446L-imp-beta cannot be removed from the MTs by RanGTP. P446L-imp-beta, like normal importin-beta, binds some types of the nucleoporins that have been known to be required for NE assembly at the end of mitosis. It appears that the inhibitory effect of P446L-imp-beta on NE assembly is caused by sequestering some of the nucleoporins required for NE assembly to the MTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号