首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Antibodies specific for N6-methyladenosine (m6A) were immobilized on Sepharose and the resulting immunoadsorbent was tested for its ability to retain those Escherichia coli tRNAs containing the antigenic hapten, i.e., m6A. Results obtained with [32P]PO4- and [methyl-3H]-methionine-labeled tRNAs indicated that approximately 3 to 5% of the radioactive RNA was retained by the immunoadsorbent. Under identical conditions, but in the presence of m6A (1 mg/mL), less than 0.2% of the radioactivity was retained. Subsequent characterization of the retained tRNA via (a) analysis of methyl-3H-labeled, methylated nucleosides, (b) two-dimensional gel electrophoresis, and (c) analysis of the retention of [3H]aminoacyl-tRNA species led to the conclusion that the anti-m6A/Sepharose adsorbent quantitatively and exclusively retained a single tRNA species containing m6A, namely, tRNAVal.  相似文献   

3.
Nuclear ligation of RNA 5''-OH kinase products in tRNA.   总被引:1,自引:0,他引:1       下载免费PDF全文
Mouse L-cell nuclei incorporate gamma-32P from ATP in vitro predominantly in 5'-monophosphoryl termini and internal phosphodiester bonds with a nonrandom nearest-neighbor distribution. In the presence of 1 microgram of alpha-amanitin per ml the gamma-32P showed a time-dependent appearance in RNA bands which migrated with mature tRNA species but not with pre-tRNA and 5S RNA. The gamma-32P was found in internal phosphodiester bonds as shown by alkaline phosphatase resistance and was identified in 3'-monophosphates after RNase T2, T1, and A digestion. The specificity of this incorporation was indicated by a limited number of labeled oligonucleotides from a T1 digest and identification of 70 to 80% of the 32P label as Cp on complete digestion of the eluted tRNA band. We also observed transiently [gamma-32P]ATP-labeled RNA bands (in 5'-monophosphate positions) that were 32 to 45 nucleotides long. The results presented suggest splicing of several mouse L-cell tRNA species in isolated nuclei which involve the RNA 5'-OH kinase products as intermediates.  相似文献   

4.
Bovine serum albumin conjugates of guanosine prepared by the periodate method was used as immunogen to elicit guanosine antibodies in rabbits. The specificities of the antibodies were studied by the inhibition of their binding to [3H]Gox-red, [32P]DNA and [3H]RNA by related non-radioactive compounds. A population of antibodies is specific to Gox-red with an average association constant of around 10(7) M-1 at 4 degrees C. There are a population of antibodies which bind to [32P]ssDNA and [3H]RNA specifically at guanosine residues. RNA binding antibodies were separated into two populations by affinity chromatography.  相似文献   

5.
By forming a complex with calf thymus DNA, Cr(III), i.e., CrCl3 and Cr(NO3)3, significantly enhanced its template activity for in vitro RNA synthesis as assayed by 3H incorporation from [5-3H]uridine triphosphate (UTP). The extent of the augmentation in RNA synthesis was proportional to the binding ratio of Cr(III) to the template DNA. K2CrO4, on the other hand, neither bound to DNA nor enhanced its template activity. Experiments using rifampicin and heparin suggested that incorrect and nonviable initiation sites for RNA synthesis became functional in Cr(III)-bound DNA. The incorporation of [gamma-32P]adenosine triphosphate (ATP) into RNA synthesized on Cr(III)-bound DNA was 8 to 9 times greater than that on control DNA. This value was much higher than that of the 3H incorporation form [5-3H]UTP, i.e., the incorporation of 32P on Cr(III) bound DNA was 8 to 9 times greater that of 3H and less than twice that on control DNA. These results suggest that Cr(III) possibly induces the abnormal synthesis of RNA of a very low molecular weight, for most if not all the molecules, by binding to the template DNA.  相似文献   

6.
G Keith 《Biochimie》1983,65(6):367-370
For several years most primary structure studies of ribonucleic acids have used the [32P] in vitro post-labeling techniques. We adapted our methods from the literature, and simplified them to make them accessible to any laboratory. These procedures are especially useful for preparation and purification of post labeling enzymes: T4 polynucleotide kinase, T4 RNA ligase and of gamma [32P] ATP. We developed a test tube method for 5' [32P] pCp preparation followed by tRNA labeling with T4 RNA ligase. The parameters for optimal labeling were determined. Labeling of 3.10(6) to 5.10(6) Cerenkov CPM per microgram tRNA are currently obtained.  相似文献   

7.
Seven different tissue culture cells have been cultured with and without mycoplasma (M. hyorhinis) in the presence of various precursors of RNA. Total cellular RNA was isolated and analysed by electrophoresis on polyacrylamide gels. The results obtained with mycoplasma-infected cells can be summarized as follows:
1. 1. When cells are labelled with [8-3H]guanosine or [5-3H]uridine there is some incorporation into host cell 28S and 18S rRNA, but it is less than into mycoplasma 23S and 16S rRNA. [8-3H]guanosine or [5-3H]uridine are also incorporated into host cell and mycoplasma tRNA and mycoplasma 4.7S RNA, but the incorporation into host cell 5S rRNA and low molecular weight RNA components (LMW RNA) is reduced.
2. 2. [5-3H]uracil is not incorporated into host cell RNA but into mycoplasma tRNA, 4.7S RNA, a mycoplasma low molecular weight RNA component M1 and 23S and 16S rRNA.
3. 3. [3H]methyl groups are incorporated into mycoplasma tRNA, 23S and 16S rRNA, but not into host cell 28S, 18S, 5S rRNA nor into mycoplasma 4.7S RNA.
4. 4. With [32P]orthophosphate or [3H]adenosine as precursors, the labelling is primarily in the host RNA.
Mycoplasma infection influences the labelling of RNA primarily by an effect on the utilization of the exogenously added radioactive RNA precursors, since the generation time of mycoplasma infected cells is about the same as that of uninfected cells. Mycoplasma infection may completely prevent the identification of LMW RNA components.  相似文献   

8.
E Metspalu  M Ustav  R Villems 《FEBS letters》1983,153(1):125-127
The immobilized tRNA-50 S ribosomal subunit protein (TP50) complex binds the smaller ribosomal subunit. We constructed tRNA . TP50 . 5 S [32P] RNA and tRNA . TP50 . t [32P] RNA complexes and investigated the accessibility of the 32P-labelled tRNAs to ribonuclease T1. It was found that in this complex both 5 S RNA and tRNA are attacked by T1 RNase. In sharp contrast, the addition of 30 S subunit protects 5 S RNA as well as tRNA from degradation. We suggest that 5 S RNA-TP50 complex is exposed to the ribosomal interface and is involved in subunit interaction.  相似文献   

9.
tRNA preparations from Chlamydomonas and wheat germ contain small amounts of tRNA 5' halves and corresponding 3' halves. Incubation of cell-free extracts from the two sources with [γ-32P]ATP yielded 5'-32P-labeled tRNA 3' halves which were joined to their corresponding 5' counterparts to form mature tRNA containing 2'-phosphomonoester,3', 5'-phosphodiester bonds. tRNA 3' halves labelled with T4 kinase were purified, sequenced and also joined to their 5' counterparts. It is proposed that these tRNA halves may be intermediates of the tRNA splicing process, and that the RNA kinase and ligase activities observed here are part of the tRNA splicing complex.  相似文献   

10.
Sequence analysis of 5'-[32P] labeled tRNA and eukaryotic mRNA using an adaptation of a method recently described by Donis-Keller, Maxam and Gilbert for mapping guanines, adenines and pyrimidines from the 5'-end of an RNA is described. In addition, a technique utilizing two-dimensional polyacrylamide gel electrophoresis for identification of pyrimidines within a sequence is described. 5'-[32P] Labeled rabbit beta-globin mRNA and N. crassa mitochondrial initiator tRNA were partially digested with T1- RNase for cleavage at G residues, with U2-RNase for cleavage at A residues, with an extracellular RNase from B. cereus for cleavage at pyrimidine residues and with T2-RNase or with alkali for cleavage at all four residues. The 5'-[32P] labeled partial digestion products were separated according to their size, by electrophoresis in adjacent lanes of a polyacrylamide slab gel and the location of G's, A's and of pyrimidines extending 60-80 nucleotides from the 5'-end of the RNA determined. Two-dimensional polyacrylamide gel electrophoresis was used to separate the 5'-[32P] labeled fragments present in partial alkali digests of a 5'-[32P] labeled mRNA. The mobility shifts corresponding to the difference of a C residue were distinct from those corresponding to a U residue and this formed the basis of a method for distinguishing between the pyrimidines.  相似文献   

11.
The high-molecular-weight subunit RNA of feline leukemia virus (Rickard strain) (FeLV-R) was analyzed for the presence of methyl groups. After purification of native 50-60S FeLV-R RNA on nondenaturing aqueous sucrose density gradients. FeLV-R 28S subunit RNA, doubly labeled with [14C]uridine and [methyl-3H]methionine, was isolated by centrifugation through denaturing sucrose density gradients in dimethyl sulfoxide. As calculated from their respective 3H/14C ratios. FeLV-R 28S RNA was methylated to the same degree as host cell poly(A)+ mRNA. When the 28S FeLV-R RNA was hydrolyzed to completion with RNase T2 or alkali, all of the methyl-3H chromatographed with mononucleotides on Pellionex-WAX, a weak anion exchanger. The methyl-labeled material co-chromatographed with 6-methyladenosine if the mononucleotide fraction obtained by Pellionex-WAX chromatography was hydrolyzed to nucleosides by bacterial alkaline phosphatase or with 6-methyladenine if purine bases were released from the mononucleotides by acid hydrolysis. In another experiment in which FeLV-R 28S RNA uniformly labeled with 32P was hydrolyzed and then analyzed by Pellionex-WAX chromatography, all of the 32P label again co-chromatographed with mononucleotides. Thus FeLV-R 28S RNA does not appear to contain a 5' structure, either methylated or nonmethylated similar to those recently reported for cellular and some animal virus mRNA's.  相似文献   

12.
The use of some bifunctional Pt(II)-containing cross-linking reagents for investigation of structural organization of ribosomal tRNA- and mRNA-binding centres is demonstrated for various types of [70S ribosome.mRNA-tRNA] complexes. It is shown that treatment of the complexes [70S ribosome.Ac[14C]Phe-tRNA(Phe).poly(U)], [70S ribosome.3'-32pCp-tRNA(Phe).poly(U)] and [70S ribosome.f[35S]Met-tRNA(fMet).AUGU6] with Pt(II)-derivatives results in covalent attachment of tRNA to ribosome. AcPhe-tRNA(Phe) and 3'-pCp-tRNA(Phe) bound at the P site were found to be cross-linked preferentially to 30S subunit. fMet-tRNA(fMet) within the 70S initiation complex is cross-linked to both ribosome subunits approximately in the same extent, which exceeds two-fold the level of the tRNA(Phe) cross-linking. All used tRNA species were cross-linked in the comparable degree both to rRNA and proteins of both subunits in all types of the complexes studied. 32pAUGU6 cross-links exclusively to 30S subunit (to 16S RNA only) within [70S ribosome.32pAUGU6.fMet-tRNA(fMet)] complex. In the absence of fMet-tRNAfMet the level of the cross-linking is 4-fold lower.  相似文献   

13.
In discontinuous polyoma DNA replication, the synthesis of Okazaki fragments is primed by RNA. During viral DNA synthesis in nuclei isolated from infected cells, 40% of the nascent short DNA fragments had the polarity of the leading strand which, in theory, could have been synthesized by a continuous mechanism. To rule out that the leading strand fragments were generated by degradation of nascent DNA, they were further characterized. DNA fragments from a segment of the genome which replication forks pass in only one direction were strand separated. The sizes of the fragments from both strands were similar, suggesting that one strand was not specifically degraded. Most important, however, the majority of the Okazaki fragments of both strands were linked to RNA at their 5' ends. For identification, the RNA was labeled at the 5' ends by [beta-32P]GTP, internally by [3H]CTP, [3H]GTP, and [3H]UTP, or at the 3' ends by 32P transfer from adjacent [32P]dTMP residues. All three kinds of labeling indicated that an equal proportion of DNA fragments from the two strands was linked to RNA primers.  相似文献   

14.
Abstract: The biosynthesis of tRNA was investigated in cultured astroglial cells and the 3-day-old rat brain in vivo. In the culture system astrocytes were grown for 19 days and were then exposed to [3H]guanosine for 1.5–7.5 h; 3-day-old rats were injected with [3H]guanosine and were killed 5–45 min later. [3H]tRNA was extracted, partially purified, and hydrolyzed to yield [3H]-guanine and [3H]methyl guanines. The latter were separated from the former by high performance liquid chromatography and their radioactivity determined as a function of the time of exposure to [3H]guanosine. The findings indicate that labeling of astrocyte tRNA continued for 7.5 h and was maximal, relative to total RNA labeling, at 3 h, while in the immature brain tRNAs were maximally labeled at 20 min after [3H]guanosine administration. The labeling pattern of the individual methyl guanines differed considerably between astrocyte and brain tRNAs. Thus, [3H]1-methylguanine represented up to 35% of the total [3H]methyl guanine radioactivity in astrocyte [3H]tRNA, while it became only negligibly labeled in brain [3H]tRNA. Conversely, brain [3H]tRNA contained more [3H]N2-methylguanine than did astrocyte [3H]tRNA. Approximately equal proportions of [3H]7-methylguanine were found in the [3H]tRNAs of both neural systems. The [3H]methylguanine composition of brain [3H]tRNA was followed through several stages of tRNA purification, including benzoylated DEAE-cellulose and reverse phase chromatography (RPC-5), and differences were found between the [3H]methylguanine composition of RPC-5 fractions containing, respectively, tRNAlys and tRNAphe. The overall results of this study suggest that developing brain cells biosynthesize their particular complement of tRNAs actively and in a cell-specific manner, as attested by the significant differences in the labeling rates of their methylated guanines. The notion is advanced that cell-specific tRNA modifications may be a prerequisite for the successful synthesis of cell-specific neural proteins.  相似文献   

15.
Axoplasmic Transport of Transfer RNA in the Chick Optic System   总被引:3,自引:3,他引:0  
It has previously been shown that 4S RNA is transported in the optic nerve of the chick, but that no movement of rRNA can be detected. The 4S component behaved as though it were composed mainly of transfer RNA (tRNA), but the possibility remained that it could contain significant amounts of material resulting from RNA degradation. The transport of this 4S component has been examined in more detail to determine its nature. In addition, the transported material was examined to establish whether the transport of tRNA is a general phenomenon or that there are only a limited number of species involved. This was done using the same principles applied in the previous study; i.e., the specific activities of separated 4S RNA species appearing in the optic tectum 4 days after intraocular injection of [3H]uridine were compared with that of 5S RNA, a nontransported species. The separation was accomplished using 2.8-5-10-17% slab polyacrylamide gels, and 18 separate regions of 4S species could be identified. The results show that at least most, if not all 4S RNA species are transported. In a separate series of experiments the 4S RNA was aminoacylated and again separated on slab gels. In this instance, the RNA was labelled with [3H]uridine and the aminoacyl component with [14C]amino acids. Gel profiles of these dual-labelled components showed excellent correspondence between the two labels, demonstrating that 4S RNA species could be aminoacylated and were therefore tRNA species.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Both 3'- and 5'-terminal structures of human rotavirus genome double-stranded RNA segments were determined. RNAs were labeled at the 3'-termini with [32P]pCp by incubation with RNA ligase and at the 5'-termini with [32P]phosphate by polynucleotide kinase or, in the case of 5' caps, with 3H by chemical modification with [3H]NaBH4. Examination of radiolabeled termini released by digestion with several base-specific RNases revealed that rotavirus RNA segments are base paired end-to-end and contain the same terminal structures: (formula; see text)  相似文献   

17.
The internal transcribed spacer (ITS) regions of members of Pasteurellaceae isolated from rodents, including the [Pasteurella] pneumotropica biotypes Jawetz and Heyl, [Actinobacillus] muris, "Hemophilus influenzaemurium" and Bisgaard taxon 17 were studied and their feasibility to discriminate these species was analyzed. The reference strains of all species analyzed showed unique species-specific ITS patterns which were further present in 49 clinical isolates of [P.] pneumotropica biotypes Jawetz and Heyl and [A.] muris allowing their identification by comparison to the reference strains pattern. Sequence analysis of the amplified fragments revealed in all species, with exception of "H. influenzaemurium", a larger ITS(ile+ala) which contained the genes for tRNA(Ile(GAU)) and tRNA(Ala(UGC)) and a smaller ITS(glu) with the tRNA(Glu(UUC)) gene. "H. influenzaemurium" revealed two each of the larger and respectively the smaller ITS fragments. Both the length and the sequence of each ITS type were highly conserved within the [P.] pneumotropica biotypes Jawetz and Heyl and [A.] muris strains tested. On the contrary, ITS sequences revealed significant interspecies variations with identity levels ranging from 61.2 to 89.5% for ITS(ile+ala) and 56.5 to 86.8% for ITS(glu). Sequences regions with significant interspecies variation but highly conserved within the species were identified and might be used to design probes for the identification of rodent Pasteurellaceae to the species level.  相似文献   

18.
In vitro incorporation of [Me-3H] thymidine and [5-3H] uridine into human platelets was demonstrated. Thymidine incorporation was inhibited by three specific inhibitors of DNA synthesis: hydroxyurea, cytosine arabinoside and daunomycin. The effect was dose-dependent. Uridine uptake by platelets was found to be inhibited by specific inhibitors of RNA synthesis such as actinomycin D, rifampicin and vincristine, the effect of actinomycin D being dose dependent. The drug also led to a time-dependent inhibition of protein synthesis when preincubated with platelets. The platelet RNA profile on polyacrylamide gel was demonstrated to be similar to that of embryonic mouse erythroblast RNA. Synthesis of all three fractions, 28 S, 18 S and 4 S, was inhibited by actinomycin D. These findings show that human platelets are capable of DNA and RNA synthesis, and that these activities play a role in controlling protein synthesis in these cells. Detectable amounts of DNA have been found in whole human platelets, and in isolated mitochondria derived from these cells. Isolated platelet mitochondria incorporated [3H] thymidine and [3H] uridine into their macromolecules. These activities were inhibited by daunomycin and by both rifampicin and actinomycin D, respectively. These results support the assumption that DNA and RNA synthesis found in intact cell preparations takes place most probably in platelet mitochondria.  相似文献   

19.
G F Gerard 《Biochemistry》1981,20(2):256-265
The mechanism of action of the ribonuclease H (RNase H) activity associated with Moloney murine leukemia virus RNA-directed DNA polymerase (RNase H I) and the two-subunit (alpha beta) form of avian myeloblastosis virus DNA polymerase were compared by utilizing the model substrate (A)n.(dT)n and polyacrylamide gel electrophoresis in 7 M urea to analyze digestion products. Examination on 25% polyacrylamide gels revealed that a larger proportion of the RNase H I oligonucleotide products generated by limited digestion of [3H](A)(1100).(dT)n were acid insoluble (15-26 nucleotides long) than acid soluble (less than 15 nucleotides long), while the opposite was true for products generated by alpha beta RNase H. RNase H I was capable of attacking RNA in RNA.DNA in the 5' to 3' and 3' to 5' directions, as demonstrated by the use of [3H,3'- or 5'-32P](A)(380).(dT)n and cellulose--[3H](A)n.(dT)n. Both RNase H I and alpha beta RNase H degraded [3H]-(A)n.(dT)n with a partially processive mechanism, based upon classical substrate competition experiments and analyses of the kinetics of degradation of [3H,3'- or 5'-32P](A)(380).(dT)n. That is, both enzymes remain bound to a RNA.DNA substrate through a finite number of hydrolytic events but dissociate before the RNA is completely degraded. Both RNase H I and alpha beta RNase H were capable of degrading [14C](A)n in [3H](C)n-[14C](A)n-[32P](dA)n.(dT)n, suggesting that retroviral RNase H is capable of removing the tRNA primer at the 5' terminus of minus strand DNA at the appropriate time during retroviral DNA synthesis in vitro.  相似文献   

20.
T2, T4, and T6 bacteriophage tRNAs coding for arginine, leucine, proline, isoleucine, and glycine were isolated under conditions of short term and long term infection of Escherichia coli B cells. The corresponding phage tRNA species were examined for sequence homology by RNA-DNA hybridization analysis and by their relative behavior on reversed phase chromatography. The results indicate that all three T-even phages code for similar tRNA species; however, some tRNA species are homologous, others are not, and not all of the same tRNA species are coded by each bacteriophage. Reversed phase chromatography showed the presence of isoacceptor tRNAs for each phage aminoacyl-tRNA species. Pulse-chase experiments for [32P]tRNAGly suggest that the multiple isoacceptor species observed derive from the intracellular modification of a single tRNAGly gene product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号