首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Enhancer factor 1A (EF-1A) is a mammalian nuclear protein that previously was shown to bind cooperatively to the repeated core enhancer element I sequence in the adenovirus E1A enhancer region. We now have characterized three binding sites for EF-1A in the polyomavirus A2 (Py) enhancer region. Site 1 resides in the Py A enhancer domain, and sites 2 and 3 reside in the Py B enhancer domain. EF-1A binding to Py site 1 is independent of cooperation with other EF-1A sites or the adjacent binding sites for PEA-1 and PEA-2, two murine nuclear factors that bind in the Py A enhancer domain. EF-1A binding to Py sites 2 and 3, in contrast, is cooperative, similar to the situation previously observed with binding sites in the adenovirus E1A enhancer region. In a transient replication assay, EF-1A site 1 functions synergistically with the PEA-1 and PEA-2 sites in the A enhancer domain to enhance Py replication. The functional cooperativity observed with the EF-1A, PEA-1, and PEA-2 sites in vivo does not reflect cooperative DNA binding interactions, as detected in vitro. Py EF-1A site 1 alone is capable of weakly stimulating Py replication. EF-1A site 1 overlaps with the binding sites for the murine nuclear protein PEA-3 and the ets family of oncoproteins.  相似文献   

9.
10.
11.
12.
13.
When a plasmid containing the wild-type polyomavirus intergenic regulatory region fused to the bacterial cat gene was introduced into mouse NIH 3T3 cells along with a plasmid coding for the early viral proteins (T antigens), chloramphenicol transacetylase enzyme activity and mRNA levels were increased about 10-fold over levels observed in the absence of early proteins. To investigate this transactivation phenomenon further, 11 specific deletion mutant derivatives of the wild-type parent plasmid were constructed and studied. One mutant (NAL) with a minimal level of chloramphenicol transacetylase expression in the absence of T antigens was capable of being transactivated more than 40-fold. A number of other mutants, however, had little capacity for transactivation. Each of these mutants had in common a defect in large T-antigen-mediated DNA replication. Interestingly, one of the transactivation-defective mutants showed a basal late promoter activity fivefold higher than that of wild type and replicated in mouse cells in the absence of large T antigen. Subsequently, a small deletion abolishing viral DNA replication was introduced into those mutants capable of transactivation. The effect of the second deletion was to eliminate both replication and transactivation. Finally, wild-type and mutant constructs were transfected into Fisher rat F-111 cells in the presence or absence of early proteins. No transactivation or replication was ever observed in these cells. We concluded from these studies that the observed transactivation of the polyomavirus late promoter by one or more of the viral early proteins was due to either higher template concentration resulting from DNA replication or replication-associated changes in template conformation.  相似文献   

14.
15.
16.
17.
18.
19.
Key regulatory regions necessary for the expression of the gene encoding FcepsilonRI alpha-chain, a component of the high-affinity IgE receptor primarily responsible for IgE-dependent allergic response, were investigated. Two regions, -74/-69 and -55/-47, which contained binding motifs for proteins belonging to the Ets family and the GATA family, respectively, were shown to be necessary for the activation of the alpha-chain promoter. Both the regulatory elements enhanced the promoter activity only in alpha-chain-producing cells PT18 and RBL-2H3 (mast cell lines), indicating that the elements required specific trans-acting proteins present in the alpha-chain-producing cells. EMSA using nuclear extracts and in vitro-translated proteins revealed that Elf-1 and GATA-1 bound to the enhancer elements. This is the first report describing the regulation in the expression of the FcepsilonRI alpha-chain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号