首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Lectin-binding studies were performed at the ultrastructural level to characterize glycoconjugate patterns on membrane systems in pancreatic acinar cells of the rat. Five lectins reacting with different sugar moieties were applied to ultrathin frozen sections: concanavalin A (ConA): glucose, mannose; wheat-germ agglutinin (WGA): N-acetylglucosamine, sialic acid; Ricinus communis agglutinin I (RCA I): galactose; Ulex europaeus agglutinin I (UEA I): L-fucose; soybean agglutinin (SBA): N-acetylgalactosamine). Binding sites of lectins were visualized either by direct conjugation to colloidal gold or by the use of a three-step procedure involving additional immune reactions. The rough endoplasmic reticulum and the nuclear envelope of acinar cells was selectively labelled for ConA. The membranes of the Golgi apparatus bound all lectins applied with an increasing intensity proceeding from the cis- to the trans-Golgi area for SBA, UEA I and WGA. In contrast RCA I selectively labelled the trans-Golgi cisternae. The membranes of condensing vacuoles and zymogen granules were labelled for all lectins used although the density of the label differed between the lectins. In contrast the content of zymogen granules failed to bind SBA and WGA. Lysosomal bodies (membranes and content) revealed binding sites for all lectins used. The plasma membranes were heavily labelled by all lectins except for SBA which showed only a weak binding to the lateral and the apical plasma membrane. These results are in accordance to current biochemical knowledge of the successive steps in the glycosylation of membrane proteins. It could be demonstrated, that the cryo-section technique is suitable for the fine structural localisation of surface glycoconjugates of plasma membranes and internal membranes in pancreatic acinar cells using plant lectins.  相似文献   

2.
Carbohydrate-containing structures in rat liver rough microsomes (RM) were localized and characterized using iodinated lectins of defined specificity. Binding of [125I]Con A increased six- to sevenfold in the presence of low DOC (0.04--0.05%) which opens the vesicles and allows the penetration of the lectins. On the other hand, binding of [125I]WGA and [125I]RCA increased only slightly when the microsomal vesicles were opened by DOC. Sites available in the intact microsomal fraction had an affinity for [125I]Con A 14 times higher than sites for lectin binding which were exposed by the detergent treatment. Lectin-binding sites in RM were also localized electron microscopically with lectins covalently bound to biotin, which, in turn, were visualized after their reaction with ferritin-avidin (F-Av) markers. Using this method, it was demonstrated that in untreated RM samples, binding sites for lectins are not present on the cytoplasmic face of the microsomal vesicles, even after removal of ribosomes by treatment with high salt buffer and puromycin, but are located on smooth membranes which contaminate the rough microsomal fraction. Combining this technique with procedures which render the interior of the microsomal vesicles accessible to lectins and remove luminal proteins, it was found that RM membranes contain binding sites for Con A and for Lens culinaris agglutinin (LCA) located exclusively on the cisternal face of the membrane. No sites for WGA, RCA, soybean (SBA) and Lotus tetragonobulus (LTA) agglutinins were detected on either the cytoplasmic or the luminal faces of the rough microsomes. These observations demonstrate that: (a) sugar moieties of microsomal glycoproteins are exposed only on the luminal surface of the membranes and (b) microsomal membrane glycoproteins have incomplete carbohydrate chains without the characteristic terminal trisaccharides N-acetylglucosamine comes from galactose comes from sialic acid or fucose present in most glycoproteins secreted by the liver. The orientation and composition of the carbohydrate chains in microsomal glycoproteins indicate that the passage of these glycoproteins through the Golgi apparatus, followed by their return to the endoplasmic reticulum, is not required for their biogenesis and insertion into the endoplasmic reticulum (ER) membrane.  相似文献   

3.
The present study was conducted to characterize and localize the glycoconjugates in the tubotympanum (auditory or eustachian tube and middle ear cavity) of chinchilla on an ultrastructural level, using lectin-gold complexes with six different lectins: BPA, ConA, RCA-1, WGA, LFA, and SNA. A comparison of the affinity of these lectins demonstrated the heterogeneity of secretory cells. The glandular serous cells and epithelial dark granulated cells produced "serum"-type glycoprotein. The glandular mucous cells and goblet cells produced dominantly "mucin"-type glycoprotein in the light granules, but "serum"-type glycoprotein in the dark cores. The labeling of LFA and SNA showed that sialic acids existed mainly in the mucinous granules of secretory cells and ciliated epithelium glycocalyx, and in the mucous blanket. The results also suggested that the dominant linkage of sialic acids of mucin is a Neu5Ac(alpha 2-6)Gal/GalNAc sequence. Furthermore, the data obtained from ConA and BPA suggested that initial O-glycosylation of mucin took place in the cis side of the Golgi apparatus and that initial N-glycosylation of the serum occurred in the rough endoplasmic reticulum.  相似文献   

4.
Lectins were used to characterize mucin glycoproteins and other secretory glycoconjugates synthesized by a human colon adenocarcinoma-derived cell line which expresses a goblet cell phenotype. Despite being clonally derived, HT29-18N2 (N2) cells, like normal goblet cells in situ were heterogeneous in their glycosylation of mucin. Only wheat-germ agglutinin, which recognizes N-acetylglucosamine and sialic acid residues, and succinylated wheatgerm agglutinin, which binds N-acetylglucosamine, stained the contents of all secretory granules in all N2 goblet cells. The N-acetylgalactosamine binding lectins Dolichos biflorus and Glycine max stained 20% and 21% of N2 goblet cells respectively. Ricinus communis I, a galactose-binding lectin, stained 67% of N2 goblet cells although staining by another galactose-binding lectin, Bandeiraea simplicifolia I, was limited to 19%. Peanut agglutinin, a lectin whose Gal(beta 1-3)GalNAc binding site is not present on mucins produced in the normal colon but which is found on most mucins of cancerous colonic epithelia, stained 68% of the cells. Ulex europeus I, a fucose-binding lectin, did not stain any N2 goblet cells. Four lectins (Lens culinaris, Pisum sativum, Phaseolus vulgaris E, Phaseolus vulgaris L) which recognize sugars normally present only in N-linked oligosaccharides stained up to 38% of N2 goblet cells. The binding of these lectins indicates either both O-linked and N-linked oligosaccharide chains are present on the mucin protein backbone or the co-existence of non-mucin N-linked glycoproteins and O-linked mucins within the goblet cell secretory granule.  相似文献   

5.
Two hydrophilic, low temperature-embedding resins, Lowicryl K4M and LR White, were compared in lectin cytochemistry. Post-embedding staining of colloidal gold-labeled Griffonia symplicifolia agglutinin II (GSA-II) resulted in staining of the Golgi apparatus and mucous granules of mucous neck cells in the gastric fundic gland, pylorocytes, and Brunner's gland cells embedded in either resin, although it was much easier to make ultra-thin sections with LR White-embedded material than with the other. Post-fixation with uranyl acetate followed by LR White embedding improved general ultrastructure so that lectin binding sites were identified precisely. All examined lectins, soybean agglutinin (SBA), Maclura pomifera agglutinin (MPA), GSA-II, and Ulex europaeus agglutinin I (UEA-I), stained mucous granules and the Golgi apparatus, in which the staining pattern was characteristic of each lectin: cis cisternae were labeled with SBA and MPA, intermediate cisternae with GSA-II, and trans cisternae and mucous granules with SBA, GSA-II, UEA-I, and lightly with MPA. No labeling was observed in the rough endoplasmic reticulum with any lectin. These findings suggest that the Golgi apparatus is the site of O-linked glycosylation and can be divided into at least three distinct compartments with regard to the glycosylation.  相似文献   

6.
Summary Lectin-binding studies were performed at the ultrastructural level to characterize glycoconjugate patterns on membrane systems in pancreatic acinar cells of the rat. Five lectins reacting with different sugar moieties were applied to ultrathin frozen sections: concanavalin A (ConA): glucose, mannose; wheat-germ agglutinin (WGA): N-acetylglucosamine, sialic acid; Ricinus communis agglutinin I (RCA I): galactose; Ulex europaeus agglutinin I (UEA I): l-fucose; soybean agglutinin (SBA): N-acetylgalactosamine). Binding sites of lectins were visualized either by direct conjugation to colloidal gold or by the use of a three-step procedure involving additional immune reactions. The rough endoplasmic reticulum and the nuclear envelope of acinar cells was selectively labelled for ConA. The membranes of the Golgi apparatus bound all lectins applied with an increasing intensity proceeding from the cis-to the trans-Golgi area for SBA, UEA I and WGA. In contrast RCA I selectively labelled the trans-Golgi cisternae. The membranes of condensing vacuoles and zymogen granules were labelled for all lectins used although the density of the label differed between the lectins. In contrast the content of zymogen granules failed to bind SBA and WGA. Lysosomal bodies (membranes and content) revealed binding sites for all lectins used. The plasma membranes were heavily labelled by all lectins except for SBA which showed only a weak binding to the lateral and the apical plasma membrane. These results are in accordance to current biochemical knowledge of the successive steps in the glycosylation of membrane proteins. It could be demonstrated, that the cryo-section technique is suitable for the fine structural localisation of surface glycoconjugates of plasma membranes and internal membranes in pancreatic acinar cells using plant lectins.  相似文献   

7.
A lectin histochemical study has been carried out on mouse granulated metrial gland cells, the major leucocyte population that differentiates in the uterine wall in pregnancy. The binding characteristics of 26 lectins were examined using light microscopical methods. Fourteen of the lectins, with affinities ranging through N-acetylgalactosamine, galactose, N-acetylglucosamine, mannose and sialic acid residues, bound to the cytoplasmic granules of granulated metrial gland cells, and each appeared to bind to the limiting membrane of the granules. The binding characteristics of three of these lectins (Wheat germ agglutinin, Concanavalin A and Helix pomatia agglutinin) were examined using electron microscopical methods. These showed a different binding pattern to the cytoplasmic granules of granulated metrial gland cells compared with that found using light microscopical methods, as they appeared to bind evenly across the granule's matrix. This binding pattern corresponds to the reactivity of the granule matrix in the periodic acid--Schiff technique. Six lectins bound to the cell membranes of granulated metrial gland cells. These included the E and L isoforms of Phaseolus vulgaris agglutinin, with affinities for complex carbohydrates, whose binding differences were related to the stage of differentiation of the granulated metrial gland cells. The lectin binding described presents additional markers of granulated metrial gland cells and tools for investigating carbohydrate moieties in the functional activities of granulated metrial gland cells  相似文献   

8.
We have determined the subcellular distribution of fucosyl residues in rat duodenal absorptive enterocytes and goblet cells, using the binding affinity of the lectin I of Ulex europaeus (UEA I). In absorptive enterocytes, UEA I-lectin gold complexes were detected at the brush border and at the basolateral plasma membrane; pits of the plasma membrane were labeled, as were small vesicles, multivesicular bodies, lysosomes, and the Golgi apparatus. In the Golgi stacks, about half of the cisternae showed gold marker particles: accessible fucosyl residues were sparse in the cis subcompartment, the cismost cisterna mostly remaining negative; more intense label was found in medial cisternae; reactions were concentrated in the trans and transmost Golgi subcompartments. Cisternae, tubules and vesicles located at the trans Golgi side were the most constantly and intensely stained Golgi elements. In goblet cells, mucin granules and trans Golgi cisternae were labeled. Rarely, UEA I-gold bound to cisternae of the medial subcompartment; the cis subcompartment remained unstained. In part, UEA I-gold particles were restricted to dilated portions of the transmost Golgi cisterna and to secretory granules.  相似文献   

9.
A lectin histochemical study has been carried out on mouse granulated metrial gland cells, the major leucocyte population that differentiates in the uterine wall in pregnancy. The binding characteristics of 26 lectins were examined using light microscopical methods. Fourteen of the lectins, with affinities ranging through N-acetylgalactosamine, galactose, N-acetylglucosamine, mannose and sialic acid residues, bound to the cytoplasmic granules of granulated metrial gland cells, and each appeared to bind to the limiting membrane of the granules. The binding characteristics of three of these lectins (Wheat germ agglutinin, Concanavalin A and Helix pomatia agglutinin) were examined using electron microscopical methods. These showed a different binding pattern to the cytoplasmic granules of granulated metrial gland cells compared with that found using light microscopical methods, as they appeared to bind evenly across the granule's matrix. This binding pattern corresponds to the reactivity of the granule matrix in the periodic acid--Schiff technique. Six lectins bound to the cell membranes of granulated metrial gland cells. These included the E and L isoforms of Phaseolus vulgaris agglutinin, with affinities for complex carbohydrates, whose binding differences were related to the stage of differentiation of the granulated metrial gland cells. The lectin binding described presents additional markers of granulated metrial gland cells and tools for investigating carbohydrate moieties in the functional activities of granulated metrial gland cells This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

10.
Reichert's membrane and the endodermal cells of the parietal yolk sac were examined for the presence of laminin antigenicity using anti-laminin antibodies and the peroxidase-antiperoxidase sequence. Immunostaining was observed through the full width of Reichert's membrane and within endodermal cells. In these cells immunostaining was observed in rough endoplasmic reticulum (rER) cisternae and Golgi apparatus. The Golgi staining could occur in any saccule, but predominated in components interpreted as the last saccule of the stack, the GERL element, and associated prosecretory granules. The secretory granules found in the ectoplasm were also immunostained. Finally, multivesicular bodies showed some staining. The immunostaining of Reichert's membrane indicates the presence of laminin itself, while that of rER cisternae and the Golgi apparatus is attributed to laminin precursors. Presumably the biosynthesis of laminin occurs along the usual protein pathway, that is, from rER through Golgi saccules and the GERL element to secretory granules, which release their content into Reichert's membrane. The laminin immunostaining of Reichert's membrane and endodermal cells is similar to that of type IV collagen. It is, therefore, likely that the two substances are processed and secreted simultaneously.  相似文献   

11.
Summary Normal human gastric mucosal cells were examined by light and electron microscopy using lectins as a probe. The ABC method was used with biotinylated lectins for light microscopy and HRP-labeled lectins for electron microscopy. The human gastric mucosal cells revealed specific binding patterns for each lectin by light microscopy. Among the lectins tested, in particular, DBA gave a characteristic pattern. It specifically stained the supranuclear region of surface epithelial cells and the perinuclear region of parietal cells. By electron microscopy, the stacked cisternae and the vesicles of the Golgi apparatus of the surface epithelial cells were positive for the DBA staining. These results show that the DBA-positive supranuclear region observed by light microscopy corresponds to the Golgi apparatus. In the parietal cells, DBA, RCA and ConA bound to the intracellular secretory canaliculi which are invaginations of the cell membrane running around the nucleus in the cytoplasm. Therefore, the tubular perinuclear positive region observed by light microscopy corresponds to the membranes of the intracellular secretory canaliculi. In addition, the ConA reagent stained the endoplasmic reticulum, Golgi apparatus, nuclear envelope, and cell membrane of the parietal cell, which explains the diffuse cytoplasmic staining observed at the light microscopic level with this lectin. Lectins have proved to be very useful for the evaluation of in situ cytochemical aspects of the glycoconjugates characteristic to human gastric mucosal cells.  相似文献   

12.
Normal human gastric mucosal cells were examined by light and electron microscopy using lectins as a probe. The ABC method was used with biotinylated lectins for light microscopy and HRP-labeled lectins for electron microscopy. The human gastric mucosal cells revealed specific binding patterns for each lectin by light microscopy. Among the lectins tested, in particular, DBA gave a characteristic pattern. It specifically stained the supranuclear region of surface epithelial cells and the perinuclear region of parietal cells. By electron microscopy, the stacked cisternae and the vesicles of the Golgi apparatus of the surface epithelial cells were positive for the DBA staining. These results show that the DBA-positive supranuclear region observed by light microscopy corresponds to the Golgi apparatus. In the parietal cells, DBA, RCA and ConA bound to the intracellular secretory canaliculi which are invaginations of the cell membrane running around the nucleus in the cytoplasm. Therefore, the tubular perinuclear positive region observed by light microscopy corresponds to the membranes of the intracellular secretory canaliculi. In addition, the ConA reagent stained the endoplasmic reticulum, Golgi apparatus, nuclear envelope, and cell membrane of the parietal cell, which explains the diffuse cytoplasmic staining observed at the light microscopic level with this lectin. Lectins have proved to be very useful for the evaluation of in situ cytochemical aspects of the glycoconjugates characteristic to human gastric mucosal cells.  相似文献   

13.
The O-linked oligosaccharides of mucin-type glycoproteins contain N- acetyl-D-galactosamine (GalNAc) that is not found in N-linked glycoproteins. Because Helix pomatia lectin interacts with terminal GalNAc, we used this lectin, bound to particles of colloidal gold, to localize such sugar residues in subcellular compartments of intestinal goblet cells. When thin sections of low temperature Lowicryl K4M embedded duodenum or colon were incubated with Helix pomatia lectin- gold complexes, no labeling could be detected over the cisternal space of the nuclear envelope and the rough endoplasmic reticulum. A uniform labeling was observed over the first and several subsequent cis Golgi cisternae and over the last (duodenal goblet cells) or the two last (colonic goblet cells) trans Golgi cisternae as well as forming and mature mucin droplets. However, essentially no labeling was detected over several cisternae in the central (medial) region of the Golgi apparatus. The results strongly suggest that core O-glycosylation takes place in cis Golgi cisternae but not in the rough endoplasmic reticulum. The heterogenous labeling for GalNAc residues in the Golgi apparatus is taken as evidence that termination of certain O- oligosaccharide chains by GalNAc occurs in trans Golgi cisternae.  相似文献   

14.
K Jezernik  N Pipan 《Histochemistry》1986,85(6):515-521
The localization of complex carbohydrates in the Golgi apparatus, secretory granules and plasmalemma of mouse parotid acinar cells was studied using the fracture-labelling method. The hexose residues of glycoconjugates were identified using ferritin conjugated with Wheat Germ Agglutinin (WGA-), Ricinnus Communis Agglutinin II (RCA-II-), Phaseolus Vulgaris Agglutinin (PHA-) and Limulus Polyphemus Agglutinin (LPA-). We found that the fracture-labelling method allows not only the labelling of membrane faces but also analysis of the compartment's content that is exposed during the fracturing of the tissue. Our results revealed differences in the hexose residues located in the Golgi apparatus, secretory granules and the apical and lateral plasmalemma. Numerous binding sites for WGA-, PHA- and RCA-II-ferritin were demonstrable in the Golgi apparatus. In secretory granules, the WGA- and RCA-II-ferritin binding sites were most numerous, while LPA-ferritin binding sites were very rare. The density of the binding sites for PHA-ferritin showed considerable variation in secretory granules. The apical plasmalemma exhibited a high density of binding sites for all of the lectins used. In the lateral plasmalemma, LPA-ferritin was not bound, and there were fewer binding sites for WGA-, RCA-II- and PHA-ferritin.  相似文献   

15.
Summary Binding sites for wheat germ agglutinin (WGA), Dolichos biflorus agglutinin (DBA), Ricinus communis I agglutinin (RCA I) and Limax flavus agglutinin (LFA) have been ultrastructurally detected in rat epiphyseal chondrocytes by a post-embedding cytochemical technique using colloidal gold as marker. The four lectins labelled exclusively the Golgi apparatus of chondrocytes embedded in Lowicryl K4M resin by two different methods. WGA binding sites were localized in medial and trans cisternae as well as in immature secretory vesicles, whereas those for DBA were seen concentrated in cis and medial cisternae. Labelling with both RCA I and LFA lectins was distributed throughout all the cisternac of the Golgi stack, and the latter also in vesicles and tubules at the trans face. Neuraminidase pretreatment of the sections abolished LFA staining, decreased reaction with WGA and increased that with RCA I, while it did not affect DBA staining. After chondroitinase ABC treatment only the RCA I reaction was modified, revealing new binding sites in the trans Golgi face, secretory granules and extracellular matrix. These results indicate that the distribution of subcompartments in the Golgi apparatus of chondrocytes is different from that in cells secreting glycoproteins as major products.  相似文献   

16.
Arabinogalactan-protein (AGP, "beta-lectin") was isolated from leek seeds, tested for specificity, conjugated with gold colloids, and used as a cytochemical probe to detect beta-linked bound sugars in ultrathin sections of wheat leaves infected with a compatible race of stem rust fungus. Similar sections were probed with other gold-labeled lectins to detect specific sugars. AGP-gold detected beta-glycosyl in all fungal walls and in the extrahaustorial matrix. Other lectin gold conjugates localized galactose in all fungal walls except in walls of the haustorial body. Limulus polyphemus lectin bound only to the outermost layer of intercellular hyphal walls of the fungus. Binding of these lectins was inhibited by their appropriate haptens and was diminished or abolished in specimens pretreated with protease, indicating that the target substances in the tissue were proteinaceous or that polysaccharides possessing affinity to the lectin probes had been removed by the enzyme from a proteinaceous matrix by passive escape. Binding of Lotus tetragonolobus lectin was limited to the two outermost fungal wall layers but was not hapten-inhibitable. Limax flavus lectin, specific for sialic acids, had no affinity to any structure in the sections. In the fungus, the most complex structure was the outermost wall layer of intercellular hyphal cells; it had affinity to all lectins tried so far, except to Limax flavus lectin and to wheat germ lectin included in an earlier study. In the host, AGP and the galactose-specific lectins bound to the inner domain of the wall in areas not in contact with the fungus. At host cell penetration sites, affinity to these lectins often extended throughout the host wall, confirming that it is modified at these sites. Pre-treatment with protease had no effect on lectin binding to the host wall. After protease treatment, host starch granules retained affinity to galactose-specific lectins, but lost affinity for AGP.  相似文献   

17.
Summary The localization of complex carbohydrates in the Golgi apparatus, secretory granules and plasmalemma of mouse parotid acinar cells was studied using the fracture-labelling method. The hexose residues of glycoconjugates were identified using ferritin conjugated with Wheat Germ Agglutinin (WGA-), Ricinnus Communis Agglutinin II (RCA-II-), Phaseolus Vulgaris Agglutinin (PHA-) and Limulus Polyphemus Agglutinin (LPA-). We found that the tracture-labelling method allows not only the labelling of membrane faces but also analysis of the compartment's content that is exposed during the fracturing of the tissue. Our results revealed differences in the hexose residues located in the Golgi apparatus, secretory granules and the apical and lateral plasmalemma. Numerous binding sites for WGA-, PHA-and RCA-II-ferritin were demonstrable in the Golgi apparatus. In secretory granules, the WGA-and RCA-II-ferritin binding sites were most numerous, while LPA-ferritin binding sites were very rate. The density of the binding sites for PHA-ferritin showed considerable variation in secretory granules. The apical plasmalemma exhibited a high density of binding sites for all of the lectins used. In the lateral plasmalemma, LPA-ferritin was not bound, and there were fewer binding sites for WGA-, RCA-H-and PHA-ferritin.  相似文献   

18.
The reaction patterns of the Golgi apparatus following staining with the lectins concanavalin A (ConA), Ricinus communis I agglutinin (RCA I), and Helix pomatia lectin (HPA) were studied in the pancreas acinar cells of rat embryos in the course of cell differentiation from day 13 through day 20 of gestation. The binding reactions were localized by means of pre-embedment incubation of 10-microns-thick cryosections of pancreas tissue, prefixed in a mixture of 4% formaldehyde/0.5% glutaraldehyde, using horseradish peroxidase for electron microscope visualization. ConA, which preferentially binds to alpha-D-mannosyl residues, consistently stained the cisternae of the cis Golgi side. The majority of the stacks also showed ConA staining of medial cisternae. The reaction of the trans side was variable; in each stage of development, the cisternae of the trans Golgi side either were devoid of labeling or appeared intensely stained. The reactions obtained with RCA I, which recognizes terminal beta-D-galactosyl residues, changed in the course of cell differentiation; in the protodifferentiated and early differentiated states, the system of "rigid lamellae," located at the trans side of the Golgi stacks, was intensely labeled, but became unreactive after production of secretion granules had started, the reaction then being restricted to the stacked saccules. In regard to the Golgi stacks in each of the developmental stages, RCA I binding sites either were confined to the trans cisternae, or, in addition, were found distributed across elements of the medial and cis compartments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Tritrichomonas foetus is an obligate parasite of the bovine urogenital tract producing infection associated with inflammatory changes, abortion, and infertility, Tritrichomonas mobilensis was isolated from squirrel monkey colon, and symptoms involve diarrheal complications. Both tritrichomonads produced hemagglutinins with the properties of sialic acid-specific lectins. Assays on the adherence of these protozoans to Chinese hamster ovary (CHO) cells and to bovine cervical and monkey colon mucus were performed to assess the function of the lectins in adhesion. Sialic acid at concentration as low as 2 mM inhibited the adhesion to CHO cells, less effectively to the mucus. Predigestion with Clostridium perfringens sialidase prevented the adhesion to both epithelial cells and the mucus. Inhibition of endogenous sialidases with 2,3-dehydro-2-deoxy-NeuAc increased the adhesion of T. mobilensis to CHO cells. Specific anti-T. foetus lectin (TFL) and anti-T. mobilensis lectin (TML) antibodies inhibited adhesion of the trichomonads to the epithelial cells and to the mucus. TFL histochemistry disclosed the presence of lectin ligands on keratinized vaginal epithelia, cervical mucosa, and mucin and on endometrial glands and their secretions. TML histochemistry showed reactivity with the luminal membranes of colonic glandular epithelium and less with the colonic mucin. Both lectins bound to the surface membrane of CHO cells. Anti-lectin antibodies showed granular cytoplasmic and strong membrane localization of the lectins in both tritrichomonads. Although the 2 tritrichomonads have different habitats, the results indicate that both these protozoa use lectins with sialic acid specificity for adhesion to mucosal surfaces.  相似文献   

20.
We examined the intracellular localization of sugar residues of the rat gastric surface mucous cells in relation to the functional polarity of the cell organellae using preembedding method with several lectins. In the surface mucous cells, the nuclear envelope and rough endoplasmic reticulum (rER) and cis cisternae of the Golgi stacks were intensely stained with Maclura pomifera (MPA), which is specific to alpha-Gal and GalNAc residues. In the Golgi apparatus, one or two cis side cisternae were stained with MPA and Dolichos biflorus (DBA) which is specific to terminal alpha-N-acetylgalactosamine residues, while the intermediate lamellae were intensely labeled with Arachis hypogaea (PNA) which is specific to Gal beta 1,3 GalNAc. Cisternae of the trans Golgi region were also stained with MPA, Ricinus communis I (RCA I) which is specific to beta-Gal and Limax flavus (LFA) which is specific to alpha-NeuAc. Immature mucous granules which are contiguous with the trans Golgi lamellae were weakly stained with RCA I, while LFA stained both immature and mature granules. The differences between each lectin's reactivity in the rough endoplasmic reticulum, in each compartment of the Golgi lamellae and in the secretory granules suggest that there are compositional and structural differences between the glycoconjugates in the respective cell organellae, reflecting the various processes of glycosylation in the gastric surface mucous cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号