首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cytofluorometric signals derived from some frequently used fluorophores were studied during illumination times in the millisecond range. These rapid signals were recorded on a storage oscilloscope. The objects studied included (1) Berberine sulphate stained mast cell heparin, (2) Acriflavine-Feulgen stained DNA, (3) Acridine orange stained mast cell heparin, (4) Acridine orange stained DNA and (5) Fluorescein isothiocyanate-conjugated IgG in an antinuclear factor test. A new rapid fading phenomenon, appearing as an initial peak upon the familiar slowly declining fluorescence signal, is reported. This fading, which had a duration of about 10 ms, also showed a very rapid recovery. The influence of this phenomenon on fluorometric measurement techniques is discussed. The millisecond fading phenomenon occurred in all the fluorophores studied except Fluorescein isothiocyanate-conjugated IgG. In the case of acridine orange the phenomenon was present when the dye was bound to nuclear DNA but absent when the dye was bound to mast cell heparin. This suggests that the millisecond fading and recovery phenomenon may be used in fluorescent microprobe studies.  相似文献   

2.
Summary Cytofluorometric signals derived from some frequently used fluorophores were studied during illumination times in the millisecond range. These rapid signals were recorded on a storage oscilloscope. The objects studied included (1) Berberine sulphate stained mast cell heparin, (2) Acriflavine-Feulgen stained DNA, (3) Acridine orange stained mast cell heparin, (4) Acridine orange stained DNA and (5) Fluorescein isothiocyanate-conjugated IgG in an antinuclear factor test. A new rapid fading phenomenon, appearing as an initial peak upon the familiar slowly declining fluorescence signal, is reported. This fading, which had a duration of about 10 ms, also showed a very rapid recovery. The influence of this phenomenon on fluorometric measurement techniques is discussed. The millisecond fading phenomenon occurred in all the fluorophores studied except Fluorescein isothiocyanate-conjugated IgG. In the case of acridine organge the phenomenon was present when the dye was bound to nuclear DNA but absent when the dye was bound to mast cell heparin. This suggests that the millisecond fading and recovery phenomenon may be used in fluorescent microprobe studies.Supported by grants from the Swedish Medical Research Council (Project 12X-2235) and from the Medical Faculty of Linköping University  相似文献   

3.
Fading is one of the major obstacles to reliable observation in fluorescence microscopy. Using a confocal laser scanning microscope (CLSM) coupled to a computer, we quantitatively measured fading of fluorescence to formulate an equation, evaluated the anti-fading ability of several anti-fading media, and restored the faded images to the original level according to this equation. NIH 3T3 cells were stained with fluorescein isothiocyanate (FITC)-phalloidin, mounted with several commercial and homemade anti-fade media, and observed with CLSM under repeated illumination. With any mounting medium, attenuation of fluorescence intensity at a certain pixel occurred stepwise and the decrease was proportional to the intensity of the previous scan. From these results, we formulated an equation that has three coefficients: anti-fading factor (A), indicating the ability to retard fading; fluorescent intensity at the first scan (EM(1)); and background fluorescence (B). The fluorescent intensity at a certain point following nth scan is given as EM(n) = EM(1) * A ((n-1)). This equation was available for restoring faded images to their original states, even after the image had faded to only 60% of its original intensity.  相似文献   

4.
The fading behavior of the 670 nm fluorescence emission band produced by unfixed rat mast cells stained with acridine orange (AO) has been found to be in excellent agreement with the behavior predicted by second order chemical kinetics. The reciprocal of fluorescence intensity plotted against time yields a straight line. When due account is taken of dye/cell ratio and the intensity of fluorescence-exciting radiation, Io (measured with the standard phosphor particle), the slope of this straight line is a constant, k', which is independent of dye/cell ratio and Io. k' differs from the second order photochemical rate constant by a constant factor. The fading of a given AO-biopolymer complex is described by a particular value of k'. Two values of k' have been found for rat mast cell granules, indicating the presence of two different AO-biopolymer complexes. Fading of fluorescence may serve to identify particular intracellular biopolymers in individual cells even when present in a heterogeneous population.  相似文献   

5.
HeLa cells were stained with a 1/12,000 concentration of acridine orange at pH 7.2 for 3 min and the fluorescence emission was measured quantitatively for effects of ultraviolet illumination with durations including intervals between 5 and 210 min. The total photometric fluorescence intensity increased for the first 30 min, then decreased with illumination time. The initial maximum fluorescence intensity occurred at 525 nm and shifted progressively to shorter wavelengths. Fluorescence intensity above 580 nm decreased with increasing duration of illumination time while that below 580 nm showed an initial increase in intensity followed by a gradual fading.  相似文献   

6.
Börsch M 《Biological chemistry》2011,392(1-2):135-142
Conformational changes of proteins can be monitored in real time by fluorescence resonance energy transfer (FRET). Two different fluorophores have to be attached to those protein domains which move during function. Distance fluctuations between the fluorophores are measured by relative fluorescence intensity changes or fluorescence lifetime changes. The rotary mechanics of the two motors of F(o)F(1)-ATP synthase have been studied in vitro by single-molecule FRET. The results are summarized and perspectives for other transport ATPases are discussed.  相似文献   

7.
Biological structures span many orders of magnitude in size, but far-field visible light microscopy suffers from limited resolution. A new method for fluorescence imaging has been developed that can obtain spatial distributions of large numbers of fluorescent molecules on length scales shorter than the classical diffraction limit. Fluorescence photoactivation localization microscopy (FPALM) analyzes thousands of single fluorophores per acquisition, localizing small numbers of them at a time, at low excitation intensity. To control the number of visible fluorophores in the field of view and ensure that optically active molecules are separated by much more than the width of the point spread function, photoactivatable fluorescent molecules are used, in this case the photoactivatable green fluorescent protein (PA-GFP). For these photoactivatable molecules, the activation rate is controlled by the activation illumination intensity; nonfluorescent inactive molecules are activated by a high-frequency (405-nm) laser and are then fluorescent when excited at a lower frequency. The fluorescence is imaged by a CCD camera, and then the molecules are either reversibly inactivated or irreversibly photobleached to remove them from the field of view. The rate of photobleaching is controlled by the intensity of the laser used to excite the fluorescence, in this case an Ar+ ion laser. Because only a small number of molecules are visible at a given time, their positions can be determined precisely; with only approximately 100 detected photons per molecule, the localization precision can be as much as 10-fold better than the resolution, depending on background levels. Heterogeneities on length scales of the order of tens of nanometers are observed by FPALM of PA-GFP on glass. FPALM images are compared with images of the same molecules by widefield fluorescence. FPALM images of PA-GFP on a terraced sapphire crystal surface were compared with atomic force microscopy and show that the full width at half-maximum of features approximately 86 +/- 4 nm is significantly better than the expected diffraction-limited optical resolution. The number of fluorescent molecules and their brightness distribution have also been determined using FPALM. This new method suggests a means to address a significant number of biological questions that had previously been limited by microscope resolution.  相似文献   

8.
L I Terr 《Stain technology》1986,61(5):309-313
This paper presents two simple, reliable methods for identification of lipofuscin and Nissl bodies in the same section. One method shows that lipofuscin stained with crystal violet retains its ability to fluoresce and can be observed under the fluorescence microscope after the stain has faded. Fading is accompanied by a gradual increase in the intensity of the fluorescence and is complete in about 5 min. Exciting illumination from this part of the spectrum also substantially fades staining of other autofluorescing tissue elements, such as lipids. Nonfluorescing structures, such as Nissl bodies, remain stained. By changing from transillumination with tungsten light to epifluorescent illumination and vice versa, both types of structures--Nissl bodies and lipofuscin--can be identified in the same section. The second technique uses pyronin Y for staining Nissl bodies in preparations previously stained with crystal violet. Nissl bodies are stained pink but lipofuscin remains violet. Lipofuscin in these sections also remains autofluorescent after the crystal violet stain has faded under violet or near-UV light.  相似文献   

9.
近场光学显微镜具有nm量级的空间分辨率,量子点(quantum dots,QDs)荧光探针具有激发谱宽、发射谱线窄、荧光强度高、抗光漂白和稳定性高等优点,两者结合用于生物大分子的成像探测和识别具有广泛的应用前景。用近场光学显微镜对链霉亲和素偶联的QDs进行近场荧光激发,并对其荧光发射特性和光稳定性进行研究,结果表明:近场光学显微镜nm量级的空间分辨率,可以同时观察到了QDs的单体、二聚体和三聚体;QDs的荧光发射强度高,近场荧光像对比度好,单量子点的荧光半高宽达到25nm;对一定入射波长的单色激发光,QDs的近场荧光强度随着激发功率密度的增加线性增加,并很快趋于稳定。与传统的荧光染料如异硫氰酸荧光素相比,QDs的稳定性非常好,在激发功率密度为300W/cm2的近场辐射下,量子点的荧光强度超过6h基本保持不变,其抗光漂白能力远远高于普通荧光染料。  相似文献   

10.
Synopsis A catecholamine, probably dopamine, was identified in rat peritoneal mast cells after subcutaneous injection of DOPA. Its identity was established by cytofluorometry of cells treated with hot formaldehyde vapour according to the Falck-Hillarp technique. Injections of 50–200 mg/kgl-DOPA were followed by a dose-dependent increase in fluorescence intensity, measured at the emission maximum for catecholamines. The increase in fluorescence intensity was accompanied by a change in the emission spectrum with displacement of the fluorescence maximum towards a shorter wavelength characteristic for a catecholamine. Recordings of rates of photodecomposition showed a rapid exponential fading of the fluorescence in mast cells of control rats comparable to that of 5-hydroxytryptamine-containing protein droplets, whereas the mast cells of DOPA-treated rats showed a slower fading rate, intermediate between that of dopamine- and 5-hydroxytryptamine-containing models.  相似文献   

11.
Bleaching of stained objects is a major problem in immunofluorescence. The prevention of fluorescence fading would allow longer observation times, photographic documentation, fluorometry, and pattern recognition. Fluorescein kinetics and fluorescence intensities (FI) of fluorescein isothiocyanate (FITC) conjugate-stained Sephadex beads were studied with previously described "antibleaching" reagents using an argon laser as the excitation light source. Eight antibleaching reagents were tested (sodium azide (NaN3), sodium iodide (NaI), polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), 1,4-di-azobicyclo-(2,2,2)-octane (DABCO), p-phenylenediamine (PPD), n-propylgallate, and sodium dithionite (Na2S2O4]. Sodium azide and sodium iodide were found to increase FI. This was likewise found with mercury arc illumination and hence they may prove useful for routine immunofluorescence tests. PPD was found to accumulate on the surface of the beads and to disturb immunofluorescence by autofluorescence. The value of any of the other reagents in immunofluorescence is questionable.  相似文献   

12.
Dermal collagens have several fluorescent moieties in the UV and visible spectral regions that may serve as molecular probes of collagen. We studied the temperature-dependence of a commercial calf skin collagen and acid-extracted Skh-1 hairless mouse collagen at temperatures from 9 degrees C to 60 degrees C for excitation/emission wavelengths 270/305 nm (tyrosine), 270/360 nm (excimer-like aggregated species), 325/400 nm (dityrosine) and 370/450 nm (glycation adduct). L-tyrosine (1 x 10(-5) M in 0.5 M HOAc) acted as a "reference compound" devoid of any collagen structural effects. In general, the fluorescence efficiency of these fluorophores decreases with increasing temperature. Assuming that rate constant for fluorescence deactivation has the form k(d)(T) = k(d) degrees exp (-DeltaE/RT), an Arrhenius plot of log[(1/Phi) - 1] vs. 1/T affords a straight line whose (negative) slope is proportional to the activation energy, DeltaE, of the radiationless process(es) that compete with fluorescence. Because it is difficult to accurately measure Phi(f) for collagen-bound fluorophores, we derived an approximate formula for an activation parameter, DeltaE*, evaluated from an Arrhenius-like plot of log 1/I(N)vs. 1/T, (1/I(N)vs. is the reciprocal normalized fluorescence intensity). Tyrosine in dilute solution affords a linear Arrhenius plot in both of the above cases. Using the known value of Phi(f) = 0.21 for free tyrosine at room temperature, we determined that DeltaE* is accurate to approximately 25% in the present instance. Collagen curves are non-linear, but they are quasi-linear below approximately 20 degrees C, where the helical form predominates. Values of DeltaE* determined from the data at T < 20 degrees C ranged from 6.2-8.4 kJ mol(-1) (1.5-2.0 kcal mol(-1)) for mouse collagen and 10.3-11.4 kJ mol(-1) (2.5-2.7 kcal mol(-1)) for calf skin collagen, consistent with collisional deactivation of the fluorescent state via thermally enhanced molecular vibrations and rotations. Above 20 degrees C, log 1/I(N)vs. 1/T plots from Skh-1 hairless mouse collagen are concave-downward, suggesting that fluorescence deactivation from the denatured coil has a significant temperature-independent component. For calf skin collagen, these plots are concave-upward, suggesting an increase in activation energy above Tm. These results suggest that collagen backbone and supramolecular structure can influence the temperature dependence of the bound fluorophores, indicating the future possibility of using activation data as a probe of supramolecular structure and conformation.  相似文献   

13.
Fluorescent speckle microscopy (FSM) uses a small fraction of fluorescently labeled subunits to give macromolecular assemblies such as the cytoskeleton fluorescence image properties that allow quantitative analysis of movement and subunit turnover. We describe a multispectral microscope system to analyze the dynamics of multiple cellular structures labeled with spectrally distinct fluorophores relative to one another over time in living cells. This required a high-resolution, highly sensitive, low-noise, and stable imaging system to visualize the small number of fluorophores making up each fluorescent speckle, a means by which to switch between excitation wavelengths rapidly, and a computer-based system to integrate image acquisition and illumination functions and to allow a convenient interface for viewing multispectral time-lapse data. To reduce out-of-focus fluorescence that degrades speckle contrast, we incorporated the optical sectioning capabilities of a dual-spinning-disk confocal scanner. The real-time, full-field scanning allows the use of a low-noise, fast, high-dynamic-range, and quantum-efficient cooled charge-coupled device (CCD) as a detector as opposed to the more noisy photomultiplier tubes used in laser-scanning confocal systems. For illumination, our system uses a 2.5-W Kr/Ar laser with 100-300mW of power at several convenient wavelengths for excitation of few fluorophores in dim FSM specimens and a four-channel polychromatic acousto-optical modulator fiberoptically coupled to the confocal to allow switching between illumination wavelengths and intensity control in a few microseconds. We present recent applications of this system for imaging the cytoskeleton in migrating tissue cells and neurons.  相似文献   

14.
We assessed in protein droplet models the potential use of the formaldehyde condensation method for histochemical demonstration of a wide range of catecholamines and resorcinolamines. The experiments showed that all of the amines tested, except salbutamol and carbuterol, formed fluorophores, and that the fluorescence was specific [i.e., there was no fluorescence in the absence of formaldehyde, the fluorescence was quenched by water, and the fluorophores were subject to photodecomposition by the exciting (405-nm) light]. Peak wavelengths of the emission spectra were 480-485 nm for fluorophores of resorcinolamine derivatives. The fluorescence intensity of the catecholamines was greater than that of the resorcinolamines. Fluorophore formation was not hindered by substitution of t-butyl, phenylisoprophyl, or p-hydroxyphenylisopropyl on the amino-N in catecholamines (t-butylnorepinephrine, Cc24, Cc25, respectively) or resorcinolamines (terbutaline, Th1161, fenoterol, respectively), and fluorophores also formed for catecholamines with the amino-N in a ring structure (rimiterol) or with a long alkyl chain substituted on the amino-N (hexoprenaline). Our study showed that fluorescence microphotometry can be used to detect a range of drugs that are catecholamines or resorcinolamines, and hence it should be possible to use this technique to study the properties of dissipation of these amines in tissues.  相似文献   

15.
Slow fluorescence transients in Chlamydomonas reinhardi arise after transitions from high light intensities to low light or dark conditions. Characteristics of the newly described transient phenomena include: (a) A slow biphasic decrease in fluorescence yield occurs in the dark, followed by an even slower, hour long, increase in fluorescence. (b) A similar, but faster, fluorescence yield decrease and subsequent increase also occurs during low intensity illumination periods separating high light intervals, or after transitions from high intensity to low intensity light. (c) Short (several seconds) flashes of light given during a dark period have no effect on the dark fluorescence decay, regardless of the flash frequency. Such flash regimes accurately monitor the dark decline of the M2 level by tracing the parallel decay of flash-generated P2 (Kautsky) peaks. However, flashes during a low light illumination period do influence the decay kinetics. Frequent flashes allow decay similar to that occurring in dark, but less frequent flashes inhibit the decrease in fluorescence yield.  相似文献   

16.
The antioxidant beta-mercaptoethanol (BME) used in conjunction with the permanent mountant DPX (DPX-BME) retarded fluorescent fading of mithramycin, acridine orange and Hoechst 33258 stained chicken erythrocytes, each to a varying degree. The initial fluorescence of all dyes examined was more intense with DPX-BME than with DPX alone. Specimens mounted in DPX-BME showed strong fluorescence and excellent morphology; if kept in the dark, they could be stored indefinitely without deterioration. Retarding fading of fluorescence with DPX-BME faciliated quantitation of DNA using fluorescence cytophotometry.  相似文献   

17.
Platelet activation was elevated by changes in the fluorescence anisotropy of the sulfhydryl-reactive fluorescent probe, (5-[2-(iodoacetyl) aminacetyl]aminonaphthalene-1-sulfonic acid. The membrane-permeable fluorophore was shown to bind to a multitude of cytoplasmic and membrane proteins. Platelets were stimulated by addition of thrombin, arachidonic acid or ADP under conditions that did not induce aggregation. A sudden increase in the fluorescence anisotropy, r of moderate degree (25-33%) occurred during the first 60 s after exposure of platelets to the aggregating agents and was sustained during the entire period of observation (15-18 min). Phenylmethylsulfonyl thrombin was unable to produce these changes in fluorescence anisotropy. Preincubation of platelets with colchicine reduced r within 30-60 s after platelets were exposed to thrombin. These findings are interpreted as an indication of a general decrease in the 'motional freedom' of the fluorophores and indirectly their ligand molecules.  相似文献   

18.
A series DNA helices of twenty-four base pairs has been prepared for the study of fluorescence resonance energy transfer. Each of the DNA helices contains two phosphorothioate diesters (one in each strand) at pre-selected sites for introduction of the desired donor and acceptor fluorophores. The phosphorothioate-containing oligodeoxynucleotides have been prepared as pure Rp or Sp derivatives or as deastereomeric mixtures. Fluorescein and eosin are employed as the respective donor and acceptor fluorophores. A series of donor-acceptor pairs was generated by labeling of the appropriate phosphorothioate diester with the desired fluorophore and annealing the two complementary DNA strands (one containing the acceptor and one containing the donor fluorophore) to form the double-stranded helix. The 24-mer helices containing two covalently attached fluorophores exhibited some thermal destabilization and the extent of this destabilization was dependent upon the stereochemical orientation of the fluorophore. The Sp derivatives direct the fluorophore out, away from the the DNA helix, while the Rp derivatives direct the fluorophore toward the major groove. As expected, the Sp labeled duplexes were more stable than the corresponding Rp labeled sequences. However, all of the duplex structures formed were stable under the conditions used to measure energy transfer. Energy transfer could be observed with these complexes from the quenching of the donor fluorescence in the presence of the acceptor fluorophore. Using F?rster's theories, distances separating the fluorophores could be calculated that were generally in reasonable agreement with the distances expected in an idealized B-form DNA helix. However anomalous results were obtained for one donor/acceptor pair where the expected distance was less than 20 A. Fluorescence anisotropy values determined in solutions of varying viscosity were quite high suggesting that the fluorophores did not experience complete freedom of movement when attached to the DNA helix.  相似文献   

19.
Fluorescence energy transfer between donors and acceptors confined to macromolecular interfaces is considered. In particular, we discuss two theoretical models for the ensemble-average fluorescence intensity decay of the donor when both fluorophores are incorporated into a planar (e.g., lamellar) interface. The first model is based on a continuous distribution of donor and acceptor molecules on a two-dimensional surface, whereas the other assumes a discrete distribution of fluorophores along the nodes of a two-dimensional square lattice. Results for the discrete model show that the fluorescence intensity kinetics of a donor depends strongly on the geometry of the molecular distribution (i.e., the lattice constant) and the photophysics of fluorophores (i.e., critical radius of the energy transfer). Furthermore, a "discrete molecular distribution" might manifest itself in the experimental data as an increase in the apparent dimensionality of the energy transfer with increasing acceptor concentration. Altogether, the experimental and theoretical underpinnings indicate the enormous potential of using fluorescence energy-transfer kinetics for revealing structural features of molecular ensembles (i.e., geometry, shape) based on a single experimental measurement. However, further understanding the effects of restricted geometries on the fluorescence energy transfer is required to take full advantage of this information. Basic theoretical considerations to that end are provided.  相似文献   

20.
Superresolution microscopy techniques based on the sequential activation of fluorophores can achieve image resolution of ~10 nm but require a sparse distribution of simultaneously activated fluorophores in the field of view. Image analysis procedures for this approach typically discard data from crowded molecules with overlapping images, wasting valuable image information that is only partly degraded by overlap. A data analysis method that exploits all available fluorescence data, regardless of overlap, could increase the number of molecules processed per frame and thereby accelerate superresolution imaging speed, enabling the study of fast, dynamic biological processes. Here, we present a computational method, referred to as deconvolution-STORM (deconSTORM), which uses iterative image deconvolution in place of single- or multiemitter localization to estimate the sample. DeconSTORM approximates the maximum likelihood sample estimate under a realistic statistical model of fluorescence microscopy movies comprising numerous frames. The model incorporates Poisson-distributed photon-detection noise, the sparse spatial distribution of activated fluorophores, and temporal correlations between consecutive movie frames arising from intermittent fluorophore activation. We first quantitatively validated this approach with simulated fluorescence data and showed that deconSTORM accurately estimates superresolution images even at high densities of activated fluorophores where analysis by single- or multiemitter localization methods fails. We then applied the method to experimental data of cellular structures and demonstrated that deconSTORM enables an approximately fivefold or greater increase in imaging speed by allowing a higher density of activated fluorophores/frame.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号