首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
River levels in Central Amazonia fluctuate up to 14 m annually, with the flooding period ranging from 50 to 270 days between the rising and falling phases. Vast areas of forest along the rivers contain plant species that are well adapted to annual flooding. We studied the effect of flooding level on tree species richness, diversity, density, and composition in lake, river, and stream habitats in Jaú National Park, Brazil. 3051 trees >10 cm diameter (at 1.3 m diameter at breast height, dbh) were measured and identified in 25 10 m × 40 m randomly selected plots in each habitat. Ordination methods and analysis of variance results showed that forested areas near lakes had significantly lower species richness of trees than riverine and streamside habitats. Plot species richness and diversity were strongly negatively correlated with the water level and duration of flooding. The drier (stream) habitat had more total species (54 species of trees) and more unique species of trees (6 tree species) than the riverine (52 tree species; 3 unique species) and lake (33 tree species; 3 unique species) habitats. Species composition overlap among habitats was surprisingly high (42.6–60.6% overlap), almost one-third of the species were found in all three habitat types, and few species were unique to each habitat. We conclude that: (1) duration of flooding has a strong impact on species richness, diversity and plant distribution patterns; (2) most species are adapted to a wide range of habitats and flood durations; and (3) while flood duration may decrease local diversity, it also creates and maintains high landscape-scale diversity by increasing landscape heterogeneity. Received: 20 April 1997 / Accepted: 14 January 1999  相似文献   

2.
Six hectares, three in a primary forest and three in a 40 year old secondary forest were inventoried for all trees with Diameter at Breast Height (DNH) of 10 cm or greater in a terra firme forest 200 km north-east of Manaus, central Amazonia in order to compare the difference between structure, species richness and floristic composition. Both species richness and tree density were significantly higher in the upland forest than in the secondary forest. The forest structure pattern analysed (DBH, basal area and estimated dry biomass) did not differ significantly between the two forest types. Similarity indices at species level were only 14%. In the 3 ha of primary forest the number of species varied from 137 to 159, the number of individuals from 639 to 713, total basal area from 32.8 to 40.2 m2 and estimate total of above-ground dry biomass (AGBM) from 405 to 560 tons per ha. In the 3 ha of secondary forest, the number of species varied from 86 to 90, the number of individuals from 611 to 653, total basal area from 28.8 to 39.9 m2 and estimated total AGBM from 340 to 586 tons per ha. Family Importance Value (FIV) is the sum of relative density, dominance and richness of a family. The most important families in relation to FIV were Burseraceae, Chrysobalanaceae, Lecythidaceae, Myristicaceae, Bombacaceae, Fabaceae and Mimosaceae in the 3 ha of primary forest, while Burseraceae, Lecythidaceae, Sapotaceae, Arecaceae and Cecropiaceae were the most important families in the 3 ha of secondary forest. Importance Value Index (IVI) is the sum of relative density, dominance and frequency of a species. Alexa grandiflora (Caesalpiniaceae), Sckronema micranthum (Bombacaceae) and Pourouma guianensis (Cecropiaceae) were the most important species in relation IVI, in the primary forest, while Eschweilera grandiflora (Lecythidaceae), Protium apiculatum (Burseraceae) and Bertholletia excelsa (Lecythidaceae) were the most important species in the secondary forest. We conclude that species richness was significandy different between the two forests, but that forest structure patterns analysed in this study (DBH, basal area and dry biomass) were similar. This demonstrates that 40 years was sufficient time for the secondary forest to recover the original structure of the primary forest, but not the original species richness. The low species similarity between the two forests indicates that the floristic composition was quite distinct and that the mixture of primary forest and disturbed forest has led to an increase in total species diversity.  相似文献   

3.
The present-day Rhine alluvial hardwood forest (Querco-Ulmetum minoris, Issler 24) in the upper Rhine valley (France/Germany) is comprised of three vegetation units, one still flooded by calm waters (F) and the two others unflooded, one for 30 years (UF30) (after the river canalisation) and the other for about 130 years (UF130) (after river straightening and embankment work in the middle nineteenth century). In the three stands, species composition, structure and diversity of vegetation and nutrient content of mature leaf, leaf litter and soil have been studied. Fungi (Macromycetae) were only studied in two stands (F and UF130). The intensity of nutrient recycling was exemplified by comparing the chemical composition of rainwater, flood, throughfall, mature leaf, leaf litter, soil and groundwater in two of these stands (F and UF30).The elimination of floods has caused a change in floristic composition, tree density and plant diversity. Tree density was higher in the two unflooded stands and was related to a large increase in sapling (< 6 cm dbh) density more than to a change of stem (> 6 cm dbh) density. Sapling density increased 2 times and three times in the UF30 and the UF130 respectively, whereas the stem density increased only 12% in the first stand and decreased 29% in the second one. The saprophytic macromycete communities have been supplemented with mycorrhizal species. Leaf litter production was slightly greater in the flooded (4.44 T ha-1 yr-1) than in the two unflooded stands ( 3.72 T ha-1 yr-1). Foliar N level is twice as high in the flooded stands in spite of an opposite soil status. P level decreased in soil and leaves with the duration of isolation and was at the same level in the groundwater in two stands (F and UF30). K, Mg and Ca contents of green leaf and leaf litter were high due to the geochemistry of the Rhine substrate (calcareous gravels and pebbles) and similar in all the stands studied, even though there are large inputs of these three elements by floods. Moreover we showed that the groundwater chemistry reflected the variations of nutrient inputs and thus could be a good indicator of the functioning of an alluvial ecosystem and of its change as a result of human activities. The restoration of floods in hardwood forest contributes to the preservation of alluvial vegetational structure and composition, the stimulation of biological processes and a better plant mineral nutrition and water supply.  相似文献   

4.
原始云杉林是青藏高原东部林区近林线森林的重要类型之一,但关于其林分结构与多样性的科学认识到目前为止仍然是贫乏的.为了揭示云杉原始林的层次结构及其相互关系、维管植物组成特点,选择四川省壤塘县北部日柯沟近林线的紫果云杉(Picea purpurea)原始林为对象,调查了6个40 m×50 m样地的乔木层结构,并在样地内采用机械布点的方法设置180个小样方,调查了林下灌木层、草本层和苔藓层结构以及灌草层物种组成.结果显示:(1)云杉原始林为复层异龄林,乔木层分化明显,可划分为4个亚层;幼树密度不高但集中分布于林窗及其边缘(144±93株/ha);(2)林下灌木盖度与物种丰富度低,层片结构简单,呈明显的斑块状分布;而草本层与苔藓层发达,盖度与物种丰富度均较高;(3)6个样地共发现维管植物124种,隶属于30科68属.其中草本109种,灌木15种,以温带区系成分占优势,特有性缺乏;生活型以地面芽植物为主体(61.29%).综合分析表明,该林分为藓类云杉林,群落结构完整、稳定,自然更新能力强,与本区域内亚高山或高山林线森林具有相似的物种组成和多样性特点,但群落结构则明显不同.  相似文献   

5.
Forest vegetation of a Protected Area (Askot Wildlife Sanctuary) in Kumaun (west Himalaya) was analysed for structure, composition and representativeness. A high percentage of non-natives was noticed in herbaceous flora of all representative forest types. Floristic representativeness in all growth forms (tree, shrub and herbs) increased significantly (tree, p<0.05; shrub and herbs, p<0.01) with altitude. The population structures of trees suggest, (i) expansion of riverine and Pinus roxburghii forests; (ii) compositional changes in Quercus leucotrichophora and Quercus lanuginosa forests, largely owing to preferred extraction demand of inhabitants; and (iii) infrequent regeneration and declining population of Quercus semecarpifolia and Abies pindrow forests. The possible pathways of non-native introduction in the study area were examined. Considering the existing status of forest vegetation and future trends, proliferation of non-native species in most forest types was discussed. It is suggested that the compositional changes vis-a`-vis proliferation of non-native species need priority attention while initiating conservation activities in the reserve.  相似文献   

6.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号