首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The interaction of the Cu(II), Ni(II) and Co(III) complexes of the following six water-soluble cationic porphyrins with calf thymus DNA, poly(dG-dC)2 and poly(dA-dT)2 was studied by UV-visible and resonance Raman spectroscopy: tetrakis(2-N-) and (3-N-methylpyridyl) porphyrin (1, 2); monophenyl-tris(4-N-methylpyridyl)porphyrin (4); cis- and trans-diphenyl-bis (4-N-methylpyridyl)porphyrin (5, 6). The binding to nucleic acids was compared with that of tetrakis(4-N-methylpyridyl)porphyrin (3). If the N(+)-CH3 group is moved from the para (3) to the meta position (2), binding of the free porphyrin as well as that of the metal complexes is only gradually modified; thus, the square-planar Cu- and Ni-2 are intercalated at the G-C site whereas Co-2 is groove-bound at A-T. Additionally, Ni-2 is probably also intercalated at the A-T site. When the N(+)-CH3 group is located at ortho position (1), the high rotation barrier of the 2-N-methylpyridyl group prevents intercalation of Cu- and Ni-1, resulting in weak outside binding. At ionic strength mu = 0.2, there is no evidence of significant interaction of Co-1 with any of the polynucleotides. When the charged N-methylpyridyl groups in 3 are subsequently replaced by phenyl groups (4, 5/6), the tendency of the Cu(II) and Ni(II) complexes to bind to the outside of the helix or to intercalate only partially increases at the expense of full intercalation. The coulombic attraction remains strong, no significant differences can be detected between 3, 4, 5, and 6. Ni-4 binds to poly(dA-dT)2 in the same complicated manner as Ni-3. The outside-binding in Co-4, -5 and -6 differs slightly from that in Co-2 and Co-3.  相似文献   

2.
Recently cationic porphyrin-peptide conjugates were synthesized to enhance the cellular uptake of porphyrins or deliver the peptide moiety to the close vicinity of nucleic acids. DNA binding of such compounds was not systematically studied yet.We synthesized two new porphyrin-tetrapeptide conjugates which can be considered as a typical monomer unit corresponding to the branches of porphyrin-polymeric branched chain polypeptide conjugates. Tetra-peptides were linked to the tri-cationic meso-tri(4-N-methylpyridyl)-mono-(4-carboxyphenyl)porphyrin and bi-cationic meso-5,10-bis(4-N-methylpyridyl)-15,20-di-(4-carboxyphenyl)porphyrin. DNA binding of porphyrin derivatives, and their peptide conjugates was investigated with comprehensive spectroscopic methods. Titration of porphyrin conjugates with DNA showed changes in Soret bands with bathocromic shifts and hypochromicities. Decomposition of absorption spectra suggested the formation of two populations of bound porphyrins.Evidence provided by the decomposition of absorption spectra, fluorescence decay components, fluorescence energy transfer and induced CD signals reveals that peptide conjugates of di- and tricationic porphyrins bind to DNA by two distinct binding modes which can be identified as intercalation and external binding. Tri-cationic structure and elimination of negative charges in the peptide conjugates are preferable for the binding. Our findings provide essential information for the design of DNA-targeted porphyrin-peptide conjugates.  相似文献   

3.
Zupán K  Herényi L  Tóth K  Majer Z  Csík G 《Biochemistry》2004,43(28):9151-9159
The complexation of tetrakis(4-N-methylpyridyl)porphyrin (TMPyP) with free and encapsidated DNA of T7 bacteriophage was investigated. To identify binding modes and relative concentrations of bound TMPyP forms, the porphyrin absorption spectra at various base pair/porphyrin ratios were analyzed. Spectral decomposition, fluorescent lifetime, and circular dichroism measurements proved the presence of two main binding types of TMPyP, e.g., external binding and intercalation both in free and in encapsidated DNA. Optical melting studies revealed that TMPyP increases the strand separation temperature of both free and native phage DNA and does not change the phase transition temperature of phage capsid proteins. From these findings we concluded that TMPyP binding does not influence the protein structure and/or the protein-DNA interaction. A combined analysis of absorption spectra and fluorescence decay curves made possible the determination of concentrations of free, externally bound, and intercalated porphyrin. As a perspective, our results facilitate a qualitative analysis of the TMPyP binding process at various experimental conditions.  相似文献   

4.
Studies of the solution properties of gold(III)tetrakis(4-N-methylpyridyl) porphine and its DNA binding characteristics have been conducted utilizing uv/vis absorption spectroscopy, circular dichroism (CD), Mossbauer spectroscopy, and temperature-jump relaxation techniques. These studies indicate that over the concentration range considered this water soluble gold(III) porphyrin does not aggregate, binds axial ligands only weakly with a preference for soft Lewis bases, and is capable of intercalation into nucleic acids of appropriate base pair content. The interaction of this and several other porphyrins with the synthetic polynucleotide poly(dA-dC).poly(dT-dG) has been studied. Spectroscopic signatures for intercalation were found for those derivatives not having axial ligands. Intercalation into chromatin in vitro can also occur with those porphyrins and metalloporphyrins which do not have axial ligands. Finally, studies utilizing microinjection techniques indicate that once within the cell, tetrakis(4-N-methylpyridyl)porphine tends to localize in the nucleus.  相似文献   

5.
Interactions of water soluble porphyrins with Z-poly(dG-dC).   总被引:1,自引:1,他引:0       下载免费PDF全文
The water soluble porphyrin tetrakis(4-N-methylpyridyl)porphine (H2TMpyP) and its copper(II) derivative (CuTMpyP) convert Z-poly(dG-dC) to the B-form. For H2TMpyP, the fraction Z character (fr-Z) is given by fr-Z = 1.0 - 21 rO and for CuTMpyP, fr-Z = .94 - 12 rO where rO identical to [Porphyrin]O/[DNA]O. Neither the manganese(III) derivative of of this porphyrin (MnTMpyP) nor tetrakis(2-N-methylpyridyl)porphine (H2TMpyP-2) is nearly as effective at causing the conversion. The former two porphyrins have been shown to intercalate into B-poly(dG-dC) whereas the latter two porphyrins do not. The kinetics of the Z----B conversion are independent of porphyrin or poly(dG-dC) concentration for 1/rO greater than 6. At smaller values of 1/rO, the conversion rate is greatly increased for H2TMpyP and CuTMpyP. The interaction of these porphyrins with Z-poly(dG-dC) follows simple first order kinetics in this latter concentration range. It is proposed that for small values of 1/rO the sequence of events begins with a porphyrin-unassisted distortion of the Z-duplex (with a rate constant of 0.6 s-1) followed by a rapid uptake of porphyrin in what may be an intercalative mode. The porphyrin thus located in Z-regions brings about rapid conversion to the B-form. Binding of H2TMpyP or CuTMpyP to B-regions of a predominantly Z-strand leads to conversion of Z to B. However, this conversion process is considerably slower than when the porphyrins bind directly to Z-regions.  相似文献   

6.
Kavitha M  Swamy MJ 《IUBMB life》2006,58(12):720-730
Due to the application of porphyrins as photosensitizers in photodynamic therapy to treat cancer, and the ability of some lectins to preferentially recognize tumor cells, studies on the interaction of porphyrins with lectins are of considerable interest. Here we report thermodynamic studies on the interaction of several free-base and metallo-porphyrins with pea (Pisum sativum) lectin (PSL). Association constants (Ka) were obtained by absorption titrations by monitoring changes in the Soret band of the porphyrins and the Ka values obtained for various porphyrins at different temperatures are in the range of 1.0 x 10(4) to 8.0 x 10(4) M(-1). Both cationic and anionic porphyrins were found to bind to PSL with comparable affinity. Presence of 0.1 M methyl-alpha-D-mannopyranoside--a carbohydrate ligand that is specifically recognised by PSL--did not affect the binding significantly, suggesting that porphyrin and sugar bind at different sites on the lectin. From the temperature dependence of the Ka values, the thermodynamic parameters, change in enthalpy and change in entropy associated with the binding process were estimated. These values were found to be in the range: delthaH degree = -95.4 to -33.9 kJ x mol(-1) and deltaS degree = -237.2 to -32.2 J x mol(-1) x K(-1), indicating that porphyrin binding to pea lectin is driven largely by enthalpic forces with the entropic contribution being negative. Enthalpy-entropy compensation was observed in the interaction of different porphyrins to PSL, with the exception of meso-tetra-(4-sulfonatophenyl)porphyrinato zinc(II), emphasizing the role of water structure in the overall binding process. Circular dichroism and differential scanning calorimetric studies indicate that while porphyrin binding does not induce significant changes in the lectin structure and thermal stability, carbohydrate binding induces moderate changes in the tertiary structure of the protein and also increases its thermal unfolding temperature and the enthalpy of the unfolding transition.  相似文献   

7.
The interaction of transition metal complexes of cationic porphyrins bearing five membered rings, meso-tetrakis(1,2-dimethylpyrazolium-4-yl)porphyrin (MPzP, M=Mn(III), Ni(II), Cu(II) or Zn(II)), with calf thymus DNA (ctDNA) has been studied. Metalloporphyrins NiPzP and CuPzP are intercalated into the 5'GC3' step of ctDNA. MnPzP is bound edge-on at the 5'TA3' step of the minor groove of ctDNA, while ZnPzP is bound face-on at the 5'TA3' step of the major groove of ctDNA. The binding constants of the metalloporphyrins to ctDNA range from 1.05x10(5) to 2.66x10(6) M(-1) and are comparable to those of other reported cationic porphyrins. The binding process of the metallopyrazoliumylporphyrins to ctDNA is endothermic and entropically driven. These results have revealed that the kind of central metal ions of metalloporphyrins influences the binding characteristics of the porphyrin to DNA.  相似文献   

8.
9.
The interaction of several metallo-porphyrins with the galactose-specific lectin from Trichosanthes cucumeirna (TCSL) has been investigated. Difference absorption spectroscopy revealed that significant changes occur in the Soret band region of the porphyrins upon binding to TCSL and these changes have been monitored to obtain association constants (Ka) and stoichiometry of binding (n). The dimeric lectin binds two porphyrin molecules and the presence of the specific saccharide lactose did not affect porphyrin binding significantly, indicating that the sugar and the porphyrin bind at different sites. The Ka values obtained for the binding of different porphyrins with TCSL at 25 degrees C were in the range of 2 x 10(3)-5 x 10(5) m(-1). Association constants for meso-tetra(4-sulphonatophenyl)porphyrinato copper(II) (CuTPPS), a porphyrin bearing four negative charges and meso-tetra(4-methylpyridinium)porphyrinato copper(II) (CuTMPyP), a porphyrin with four positive charges, were determined at several temperatures; from the temperature dependence of the association constants, the thermodynamic parameters change in enthalpy (DeltaH degrees ) and change in entropy (DeltaS degrees ) associated with the binding process were estimated. The thermodynamic data indicate that porphyrin binding to TCSL is driven largely by a favourable entropic contribution; the enthalpic contribution is very small, suggesting that the binding process is governed primarily by hydrophobic forces. Stopped-flow spectroscopic measurements show that binding of CuTMPyP to TCSL takes place by a single-step process and at 20 degrees C, the association and dissociation rate constants were 1.89 x 10(4) m(-1).s(-1) and 0.29 s(-1), respectively.  相似文献   

10.
Jia T  Jiang ZX  Wang K  Li ZY 《Biophysical chemistry》2006,119(3):295-302
The binding properties of cationic porphyrin-phenylpiperazine hybrids to calf thymus (CT) DNA were investigated by using absorption, fluorescence and circular dichroism (CD) spectra, and the apparent affinity binding constants (K(app)) of the porphyrins for CT DNA were determined by using a competition method with ethidium bromide (EB). Intercalation of porphyrin into CT DNA occurred when two phenylpiperazines were introduced at cis position onto the periphery of cationic porphyrin. The photocleavages of pBR322 plasmid DNA by the porphyrins were consistent with the values of K(app). With [porphyrin]/[DNA base pairs] ratio increased, the binding mode tended to be outside binding, and the cleavage abilities of the porphyrins varied. In the presence of sodium azide, a quencher of 1O2, the cleavage of DNA by the porphyrin of intercalation was less inhibited.  相似文献   

11.
Porphyrins have a unique aromatic structure determining particular photochemical properties that make them promising photosensitizers for anticancer therapy. Previously, we synthesized a set of artificial porphyrins by modifying side-chain functional groups and introducing different metals into the core structure. Here, we have performed a comparative study of the binding properties of 29 cationic porphyrins with plasma proteins by using microarray and spectroscopic approaches. The porphyrins were noncovalently immobilized onto hydrogel-covered glass slides and probed to bio-conjugated human and bovine serum albumins, as well as to human hemoglobin. The signal detection was carried out at the near-infrared fluorescence wavelength (800?nm) that enabled the effect of intrinsic visible wavelength fluorescence emitted by the porphyrins tested to be discarded. Competition assays on porphyrin microarrays indicated that long-chain fatty acids (FAs) (palmitic and stearic acids) decrease porphyrin binding to both serum albumin and hemoglobin. The binding affinity of different types of cationic porphyrins for plasma proteins was quantitatively assessed in the absence and presence of FAs by fluorescent and absorption spectroscopy. Molecular docking analysis confirmed results that new porphyrins and long-chain FAs compete for the common binding site FA1 in human serum albumin and meso-substituted functional groups in porphyrins play major role in the modulation of conformational rearrangements of the protein.  相似文献   

12.
Owing to the use of porphyrins in photodynamic therapy for the treatment of malignant tumors, and the preferential interaction of lectins with tumor cells, studies on lectin-porphyrin interaction are of significant interest. In this study, the interaction of several free-base and metalloporphyrins with Momordica charantia (bitter gourd) lectin (MCL) was investigated by absorption spectroscopy. Difference absorption spectra revealed that significant changes occur in the Soret band region of the porphyrins on binding to MCL. These changes were monitored to obtain association constants (Ka) and stoichiometry of binding. The tetrameric MCL binds four porphyrin molecules, and the stoichiometry was unaffected by the presence of the specific sugar, lactose. In addition, the agglutination activity of MCL was unaffected by the presence of the porphyrins used in this study, clearly indicating that porphyrin and carbohydrate ligands bind at different sites. Both cationic and anionic porphyrins bind to the lectin with comparable affinity (Ka =10(3)-10(5) m(-1)). The thermodynamic parameters associated with the interaction of several porphyrins, obtained from the temperature dependence of the Ka values, were found to be in the range: DeltaH degrees = -98.1 to -54.4 kJ.mol(-1) and DeltaS degrees =-243.9 to -90.8 J.mol(-1).K(-1). These results indicate that porphyrin binding to MCL is governed by enthalpic forces and that the contribution from binding entropy is negative. Enthalpy-entropy compensation was observed in the interaction of different porphyrins with MCL, underscoring the role of water structure in the overall binding process. Analysis of CD spectra of MCL indicates that this protein contains about 13%alpha-helix, 36%beta-sheet, 21%beta-turn, and the rest unordered structures. Binding of porphyrins does not significantly alter the secondary and tertiary structures of MCL.  相似文献   

13.
Thirty-three porphyrins or metalloporphyrins corresponding to the general formula [meso-[N-methyl-4(or 3 or 2)-pyridiniumyl]n(aryl)4-nporphyrin]M (M = H2, CuII, or ClFeIII), with n = 2-4, have been synthesized and characterized by UV-visible and 1H NMR spectroscopy and mass spectrometry. These porphyrins differ not only in the number (2-4) and position of their cationic charges but also in the steric requirements to reach even temporarily a completely planar geometry. In particular, they contain 0, 1, 2, 3, or 4 meso-aryl substituents not able to rotate. Interaction of these porphyrins or metalloporphyrins with calf thymus DNA has been studied and their apparent affinity binding constants have been determined by use of a competition method with ethidium bromide which was applicable not only for all the free base porphyrins but also for their copper(II) or iron(III) complexes. Whatever their mode of binding may be, their apparent affinity binding constants were relatively high (Kapp between 1.2 x 10(7) and 5 x 10(4) M-1 under our conditions), and a linear decrease of log Kapp with the number of porphyrin charges was observed. Studies of porphyrin-DNA interactions by UV and fluorescence spectroscopy, viscosimetry, and fluorescence energy transfer experiments showed that not only the tetracationic meso-tetrakis[N-methyl-4(or 3)-pyridiniumyl]porphyrins, which both involved four freely rotating meso-aryl groups, but also the corresponding tri- and dicationic porphyrins were able to intercalate into calf thymus DNA. Moreover, the cis dicationic meso-bis(N-methyl-2-pyridiniumyl)diphenylporphyrin, which involved only two freely rotating meso-aryl groups in a cis position, was also able to intercalate. The other meso-(N-methyl-2-pyridiniumyl)n(phenyl)4-nporphyrins, which involved either zero, one, or two trans freely rotating meso-aryl groups, could not intercalate into DNA. These results show that only half of the porphyrin ring is necessary for intercalation to occur.  相似文献   

14.
Solution properties of three manganese porphyrins, in monomeric form, were investigated. These were the 'picket-fence-like' porphyrin Mn(III)-alpha,alpha,alpha,beta- tetra-ortho(N-methylisonicotinamidophenyl)porphyrin (Mn(III)PFP) and two 'planar unhindered' porphyrins, the Mn(III)TMPyP (tetrakis (4-N-methylpyridyl)porphyrin) and Mn(III)TAP (tetra(4-N,N,N-trimethylanilinium)porphyrin). The porphyrin properties studied were: the absorption spectra in their manganic and manganous forms; acid/base properties of the aquo complexes; the effect of potential axial ligands (up to a concentration of 0.1 mol dm-3) and their one electron reduction potentials. Knowing these properties, the reaction of the Mn(III) porphyrins with the superoxide radical and other reducing radicals were studied using the pulse radiolysis technique. The second-order reaction rate constant of O2- with the Mn(III) porphyrins, which governs the catalytic efficiency of the metalloporphyrins upon the disproportionation of the superoxide radical, was 5.1 X 10(7) to 4.0 X 10(5) dm3 mol-1 s-1, depending on the pH and the nature of the metalloporphyrin. These values are at least one order of magnitude lower than found for Fe(III)TMPyP. One electron reduction of the three Mn(III) porphyrins by eaq-, CO2-, CH2OH and (CH3)2COH had similar second-order rate constants (10(9)-10(10) dm3 mol-1 s-1). That for (CH3)2(CH2)COH was about 10(5) dm3 mol-1 s-1. Reduction in all cases produced the corresponding Mn(II) porphyrin and no intermediate was found. The oxidation reaction of the Mn(II) porphyrins by O2- was approximately two orders of magnitude faster when compared to the reduction of Mn(III) porphyrins with the same radical. Since the reactivities of O2- towards the three manganese (III) compounds follow their reduction potentials, it is suggested that these reactions are governed by an outer-sphere mechanism. This suggestion is corroborated by the finding that water molecules acting as axial ligands, in these aqueous solution systems, are not replaced by another potential ligand when the latter is in the concentration range of 100 mM or less.  相似文献   

15.
The interaction of meso-tetra(4-N-hydroxyethylpyridyl)porphyrin, meso-tetra(3-N-hydroxyethylpyridyl)porphyrin, and their zinc complexes with bovine serum albumin (BSA) was studied by electronic spectroscopy, CD, and equilibrium dialysis at pH 7.2. The titration of the porphyrins with BSA was accompanied by a decrease in light absorption and a bathochromic shift of the Soret band, as well as by the appearance of an isobestic point. The porphyrin interaction with BSA also led to the induction of positive CD spectra in the visible region, which is explained by the porphyrin sorption on the protein globule. The equilibrium dialysis helped in determining the stoichiometry of binding and the binding constants of the porphyrins under study with BSA using Scatchard plots. This interaction is nonspecific and reversible. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 2; see also http://www.maik.ru.  相似文献   

16.
The interaction of meso-tetra(4-N-hydroxyethylpyridyl)porphyrin, meso-tetra(3-N-hydroxyethylpyridyl)porphyrin, and their zinc complexes with bovine serum albumin (BSA) was studied by electronic spectroscopy, CD, and equilibrium dialysis at pH 7.2. The titration of the porphyrins with BSA was accompanied by a decrease in light absorption and a bathochromic shift of the Soret band, as well as by the appearance of an isobestic point. The porphyrin interaction with BSA also led to the induction of positive CD spectra in the visible region, which is explained by the porphyrin sorption on the protein globule. The equilibrium dialysis helped in determining the stoichiometry of binding and the binding constants of the porphyrins under study with BSA using Scatchard plots. This interaction is nonspecific and reversible.  相似文献   

17.
Four new cationic porphyrins, compounds 1-4, with five to seven positive charges, were synthesized, characterized, and investigated for their binding properties towards calf-thymus DNA (CT-DNA). UV/VIS and fluorescence-titration data indicated strong binding, the apparent binding constants (K(app); (1.3-10)x10(-6) M) increasing with increasing number of charges, as determined by competitive fluorescence titration using ethidium bromide (EB) as molecular probe. These results were qualitatively confirmed by the observed photocleavage efficiency of the porphyrins towards plasmid pBR322 DNA.  相似文献   

18.
Electron Paramagnetic Resonance (EPR) spectroscopy was employed in the study of the interaction between L-3,4-dihydroxyphenylalanine (L-Dopa) melanin and the cat-ionic porphyrins meso-tetrakis(1-methylpyridinium-4yl)-porphyrin (TMPyP), meso-tetrakis-(1-benzylpyridinium-4-yl)-porphyrin (TBzPyP), and their respectives complexes ZnTMPyP and ZnTBzPyP. By monitoring signal intensities and progressive microwave power saturation it was shown that the interaction increases the equilibrium concentration of free radicals in L-Dopa melanin in the dark. The extent of increase is dependent on the presence of molecular oxygen and on the type of porphyrin. Not all interacting sites available for complexation in L-Dopa melanin are involved in the formation of free radicals. It was also observed that the interaction with porphyrins promotes an increase in the number of photoinduced free radicals in L-Dopa melanin during illumination with visible light.  相似文献   

19.
Interactions of porphyrins with nucleic acids   总被引:24,自引:0,他引:24  
The interactions of nucleic acids with water-soluble porphyrins and metalloporphyrins have been investigated by stopped-flow and temperature-jump techniques. Both natural DNA (calf thymus) and synthetic homopolymers [poly(dG-dC) and poly(dA-dT)] have been employed. The porphyrins studied belong to the tetrakis(4-N-methylpyridyl)porphine (H2TMpyP-4) series and can be divided into two groups: (i) those which have no axial ligands when bound to nucleic acids [e.g., Ni(II), Cu(II), and the nonmetallic derivatives] and (ii) those which maintain axial ligands upon binding [e.g., Mn(III), Fe(III), Co(III), and Zn(II) derivatives]. The reaction of both axially and nonaxially liganded porphyrins at AT sites is too rapid to be measured by the kinetic methods utilized, whereas at GC sites the interaction of the nonaxially liganded porphyrins is in the millisecond time range and can be monitored by both stopped-flow and temperature-jump techniques. These results corroborate previous static studies, utilizing visible spectroscopy and circular dichroism, which indicate that the formation of an intercalated complex occurs only at GC base pair sites with porphyrins which do not possess axial ligands. With all the porphyrins investigated, the complexes formed at AT sites are envisioned as being of an "external" type involving some degree of overlap between the porphyrin and the bases of the duplex. In relaxation experiments of poly-(dG-dC) with H2TMpyP-4, a large, reproducible effect is observed which can be analyzed as a single exponential. Rate constants for association and dissociation of the H2TMpyP-4/poly(dG-dC) complex are 3.7 X 10(5) M-1 s-1 and 1.8 s-1, respectively. Relaxation studies of mixtures of poly(dA-dT) and poly(dG-dC) with H2TMpyP-4 indicate that the transfer of the porphyrin from one homopolymer to another occurs via a mechanism involving dissociation rather than direct transfer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Raman scattering spectra of 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DPPG) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) dispersions, mixed with water-soluble porphyrins, i.e. cationic copper(II)-5,10,15,12-tetrakis(4-N-methylpyridyl) and anionic silver(II)-5,10,15,20-tetrakis(4-carboxyphenyl)porphyrins, were measured in the 2800-3100 cm(-1) C-H stretching vibration region as a function of the temperature within the 5-55 degrees C range. Temperature profiles of Raman data were constructed from a quantitative data treatment based on factor analysis. This method is shown to be more efficient than the commonly used approach employing peak intensity ratios. Parameters of the gel phase to liquid crystal phase transition determined from Raman temperature profiles were used to monitor the porphyrin influence on DPPG and DPPC structures. Both negatively and positively charged porphyrins significantly perturb DPPC and DPPG dispersions, causing significant downshift of the transition temperature and broadening of the transition region. Water-soluble porphyrins are assumed to set at the outside part of phospholipid dispersions and interact via coulombic forces with charged lipid heads. For the cationic CuTMPyP, the strongest effect has been observed for negatively charged DPPG. In contrast, anionic AgTPPC4 has been found to interact more efficiently with DPPC possessing both positive and negative charges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号