首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined the effects of thermosensitive mutations in secA and secY (prlA) genes on the export of proteins to the three layers of the Escherichia coli cell surface. After several hours at the nonpermissive temperature, the export of two major outer membrane proteins, lipoprotein and OmpA, is delayed, then essentially blocked, in either a secA or secY strain. These mutations also have a strong effect on the export of several proteins, such as maltose binding protein, to the periplasm, though the export of many periplasmic proteins is not affected. secA and secY block the assembly of leader peptidase, which is made without a leader sequence, into the inner membrane. However, the membrane assembly of M13 coat protein (an inner membrane protein made with an amino-terminal leader sequence) is not affected. Thus, the requirement for sec function for export does not correlate with the presence or absence of leader peptide or with a particular subcellular compartment, but rather is specific to each particular protein.  相似文献   

2.
M Sugai  H C Wu 《Journal of bacteriology》1992,174(8):2511-2516
The export of major outer membrane lipoprotein has been found to be affected in secD, secE, and secF mutants of Escherichia coli, which are defective in protein export in general. After a shift to the nonpermissive temperature, the kinetics of accumulation of prolipoprotein and pre-OmpA protein was indistinguishable from that of pre-OmpA protein accumulation in the secD and secF mutants but different in the secE mutant. The prolipoprotein accumulated in the secD, secE, and secF mutants at the nonpermissive temperature was not modified with glyceride. We conclude from these results and those of previous studies that the export of lipoprotein requires all common sec gene products except the SecB protein, i.e., the SecA, SecD, SecE, SecF, and SecY proteins.  相似文献   

3.
K Ito  Y Hirota    Y Akiyama 《Journal of bacteriology》1989,171(3):1742-1743
Phenotypes of secY and secA temperature-sensitive mutants at permissive (low) temperature have been examined. The secY24 mutant was found to be extremely susceptible to export inhibition by a basal-level synthesis of the MalE-LacZ 72-47 hybrid protein or to overproduction of a normal secretory protein such as maltose-binding protein or beta-lactamase. Comparison of this phenotype of secY24 with those of the secY100 and secA51 mutants under similar conditions suggested that MalE-LacZ protein and overproduced secretory protein do not nonspecifically enhance the partial secretion defect but act synergistically with secY24 to inhibit protein export.  相似文献   

4.
Characterization of cold-sensitive secY mutants of Escherichia coli.   总被引:10,自引:2,他引:8       下载免费PDF全文
Mutations which cause poor growth at a low temperature, which affect aspects of protein secretion, and which map in or around secY (prlA) were characterized. The prlA1012 mutant, previously shown to suppress a secA mutation, proved to have a wild-type secY gene, indicating that this mutation cannot be taken as genetic evidence for the secA-secY interaction. Two cold-sensitive mutants, the secY39 and secY40 mutants, which had been selected by their ability to enhance secA expression, contained single-amino-acid alterations in the same cytoplasmic domain of the SecY protein. Protein export in vivo was partially slowed down by the secY39 mutation at 37 to 39 degrees C, and the retardation was immediately and strikingly enhanced upon exposure to nonpermissive temperatures (15 to 23 degrees C). The rate of posttranslational translocation of the precursor to the OmpA protein (pro-OmpA protein) into wild-type membrane vesicles in vitro was only slightly affected by reaction temperatures ranging from 37 to 15 degrees C, and about 65% of OmpA was eventually sequestered at both temperatures. Membrane vesicles from the secY39 mutant were much less active in supporting pro-OmpA translocation even at 37 degrees C, at which about 20% sequestration was attained. At 15 degrees C, the activity of the mutant membrane decreased further. The rapid temperature response in vivo and the impaired in vitro translocation activity at low temperatures with the secY39 mutant support the notion that SecY, a membrane-embedded secretion factor, participates in protein translocation across the bacterial cytoplasmic membrane.  相似文献   

5.
SecA protein synthesis levels were elevated 10- to 20-fold when protein secretion was blocked in secA, secD, and secY mutants or in a malE-lacZ fusion-containing strain but not in a secB null mutant. An active secB gene product was not required to derepress secA, since SecA levels were elevated during protein export blocks in secB secY and secB malE-lacZ double mutants.  相似文献   

6.
The Escherichia coli gene secY (pr1A) codes for an integral membrane protein that plays an essential role in protein export. We previously isolated cold-sensitive mutations (ssy) as extragenic suppressors of temperature-sensitive secY24 mutation. Now we show that the ssyG class of mutations are within infB coding for the translation initiation factor IF2. The mutants produce altered forms of IF2 with a cold-sensitive in vitro activity to form a translation initiation complex. The mutation suppresses not only secY24 but also other secretion-defective mutations such as secA51 and rp10215. The beta-galactosidase enzyme activity of the MalE-LacZ 72-47 hybrid protein is strikingly reduced in the ssyG mutant at the permissive high temperature, while the hybrid protein itself is normally synthesized. This effect, which was observed only for the hybrid protein with a functional signal sequence, may result from some alteration in the cellular localization of the protein. These results suggest that IF2 or the translation initiation step can modulate protein export reactions. The isolation of cold-sensitive ssyG mutations in infB provides genetic evidence that IF2 is indeed essential for normal growth of E. coli cells.  相似文献   

7.
The growth of secAts or secYts mutants at the restrictive temperature has been shown to inhibit the export of many outer membrane proteins. We report here that in two secAts strains the rate of incorporation of newly synthesized protein into both inner and outer membrane fractions decreased by about 70% at the restrictive temperature. The export of the outer membrane protein TonA was used as a model system in which to study the effects of SecA or SecY inactivation. pre-TonA that accumulated at the restrictive temperature was found to co-sediment with the outer membrane fraction. However, the precursor was sensitive to protease and did not float up a sucrose gradient with the membrane fractions. It was therefore concluded that pre-TonA was not integrated into the outer membrane fraction but probably accumulated in the cytoplasm. Studies on the rate of processing of pre-TonA, pulse-labelled at the restrictive temperature then chased at the permissive temperature, revealed differences between secA and secY mutants. In the secAts mutant the great majority of cytoplasmic pre-TonA was not apparently processed to the mature form, whereas in the secYts mutant significant amounts of precursors were rapidly chased into mature TonA, which appeared in the outer membrane. These results suggest that SecA and SecY may act sequentially in the export of proteins to the outer membrane. In particular these data indicate that SecA is required to maintain pre-TonA in a translocationally competent form prior to interaction with the SecY export site.  相似文献   

8.
P. D. Riggs  A. I. Derman    J. Beckwith 《Genetics》1988,118(4):571-579
It was shown previously that the secA gene of Escherichia coli is derepressed in cells that have a defect in protein export. Here it is demonstrated that the beta-galactosidase produced by a secA-lacZ gene fusion strain is regulated in the same way. Studies on the fusion strain reveal that the promoter or a site involved in regulation of the secA gene is located considerably upstream from the structural gene. The properties of the fusion strain provide a new selection for mutants that are defective in protein export. Selection for increased lac expression of a secA-lacZ fusion strain yields mutations in three of the known sec genes, secA, secD and prlA/secY. In addition, mutations in several genes not previously known to affect secA expression were obtained. A mutation in one of these genes causes a pleiotropic defect in protein export and a cold-sensitive growth defect; this gene, which maps at approximately 90 min on the bacterial chromosome, has been named secE.  相似文献   

9.
Honeybee prepromelittin (70 amino acid residues), the precursor of an eukaryotic secretory protein, and a hybrid protein between prepromelittin and mouse dihydrofolate reductase (257 amino acid residues) were expressed in Escherichia coli and characterized with respect to their requirements for transport across the plasma membrane. Both precursor proteins are posttranslationally processed and exported into the periplasm, and they both depend on the membrane potential for this to occur. With respect to dependence on components of the export machinery, however, the two precursor proteins show striking differences: the small precursor protein prepromelittin does not require the function of proteins secA and secY; the large precursor protein prepromelittin-dihydrofolate reductase, on the other hand, depends on both components. The implications of these observations with respect to the mechanisms of protein export in E. coli and of protein import into the endoplasmic reticulum are discussed.  相似文献   

10.
We have followed the synthesis and secretion of a number of periplasmic and outer membrane proteins in three strains of Escherichia coli, a secA amber mutant, a secA temperature-sensitive mutant, and a strain that blocks protein secretion due to a high level of expression of an export-defective hybrid protein between maltose-binding protein and beta-galactosidase (MalE-LacZ). Our results show that after several hours under nonpermissive conditions the specificity and extent of the export blocks in the secA temperature-sensitive mutant and the strain producing the MalE-LacZ hybrid protein are identical, affecting at least four major outer membrane proteins and most but not all periplasmic proteins. The secA gene product, therefore, appears to be an essential component of the major export pathway in E. coli which is used by many envelope proteins independent of whether they are cotranslationally or post-translationally secreted. In contrast, the synthesis of only a subset of these envelope proteins is reduced in the secA amber mutant after shift to the nonpermissive condition. These results indicate that the SecA protein serves roles both in the synthesis and the secretion of certain cell envelope proteins.  相似文献   

11.
S Bost  D Belin 《The EMBO journal》1995,14(18):4412-4421
The signal sequence of the murine serine protease inhibitor PAI-2 promotes alkaline phosphatase export to the E. coli periplasm. However, high level expression of this chimeric protein interferes with cell growth. Since most suppressors of this toxic phenotype map to secA and secY, growth arrest results from a defective interaction of the chimeric protein with the export machinery. We have characterized suppressors which map in secG, a newly defined gene of the export machinery. All single amino acid substitutions map to three adjacent codons. These secG mutants have a weak Sec phenotype, as determined by their effect on export mediated by wild-type and mutant signal sequences. Whilst a secG disruption allele also confers a weak Sec phenotype, it does not suppress the toxicity of the chimeric protein. This difference results from a selective effect of the secG suppressors on the kinetics of export mediated by the PAI-2 signal sequence. Using a malE signal sequence mutant, which has a Mal-phenotype in secG mutant strains, we have isolated extragenic Mal+ suppressors. Most suppressors map to secY, and several are allele-specific. Finally, SecG overexpression accelerates the kinetics of protein export, suggesting that there are two types of functional translocation complexes: with or without SecG.  相似文献   

12.
A secA2 gene is present in the genomes of a wide variety of Gram-positive bacteria. In Streptococcus parasanguis, a primary colonizer of the tooth surface, secA2 is involved in the secretion of a small group of proteins including the fimbrial adhesin, Fap1. Although the substrate specificity is different, SecA2 is predicted to be similar to SecA in structure and function based on the homology between these two proteins. In this study, polyclonal antibodies against SecA2 and SecA did not cross-react with each other, indicating that these two proteins possessed distinct immunogenic epitopes. Fractionation analysis demonstrated that SecA2 was not evenly distributed between the cytoplasmic membrane and the cytoplasm as was noted for SecA. SecA2 was associated with the membrane in the wild type and in secA2 mutants with different regions deleted. The subcellular distribution of SecA2 was not dependent on secY2, suggesting that the membrane association is not through SecY2. These data suggested that SecA2 is distinct from SecA in many respects such as substrate specificity, immunogenic specificity, subcellular distribution and requirement for membrane anchoring.  相似文献   

13.
The secA gene product is an autoregulated, membrane-associated ATPase which catalyzes protein export across the Escherichia coli plasma membrane. Previous genetic selective strategies have yielded secA mutations at a limited number of sites. In order to define additional regions of the SecA protein that are important in its biological function, we mutagenized a plasmid-encoded copy of the secA gene to create small internal deletions or duplications marked by an oligonucleotide linker. The mutagenized plasmids were screened in an E. coli strain that allowed the ready detection of dominant secA mutations by their ability to derepress a secA-lacZ protein fusion when protein export is compromised. Twelve new secA mutations were found to cluster into four regions corresponding to amino acid residues 196 to 252, 352 to 367, 626 to 653, and 783 to 808. Analysis of these alleles in wild-type and secA mutant strains indicated that three of them still maintained the essential functions of SecA, albeit at a reduced level, while the remainder abolished SecA translocation activity and caused dominant protein export defects accompanied by secA depression. Three secA alleles caused dominant, conditional-lethal, cold-sensitive phenotypes and resulted in some of the strongest defects in protein export characterized to date. The abundance of dominant secA mutations strongly favors certain biochemical models defining the function of SecA in protein translocation. These new dominant secA mutants should be useful in biochemical studies designed to elucidate SecA protein's functional sites and its precise role in catalyzing protein export across the plasma membrane.  相似文献   

14.
As an approach for studying how SecY, an integral membrane protein translocation factor of Escherichia coli, interacts with other protein molecules, we isolated a dominant negative mutation, secY-d1, of the gene carried on a plasmid. The mutant plasmid severely inhibited export of maltose-binding protein and less severely of OmpA, when introduced into sec+ cells. It inhibited growth of secY and secE mutant cells, but not of secA and secD mutant cells or wild-type cells. The mutation deletes three amino acids that should be located at the interface of cytoplasmic domain 5 and transmembrane segment 9. We also found that some SecY-PhoA fusion proteins that lacked carboxy-terminal portions of SecY but retain a region from periplasmic domain 3 to transmembrane segment 7 were inhibitory to protein export. We suggest that these SecY variants are severely defective in catalytic function of SecY, which requires cytoplasmic domain 5 and its carboxy-terminal side, but retain the ability to associate with other molecules of the protein export machinery, which requires the central portion of SecY; they probably exert the 'dominant negative' effects by competing with normal SecY for the formation of active Sec complex. These observations should provide a basis for further genetic analysis of the Sec protein complex in the membrane.  相似文献   

15.
The membrane insertion of the mannitol permease (MtlA protein) of Escherichia coli, a polytopic cytoplasmic membrane protein possessing an uncleaved amphiphilic signal sequence, was studied using a cell-free protein synthesis system. The MtlA protein synthesized in the presence of inside-out cytoplasmic membrane vesicles was shown to insert into the membranes based on the following criteria: (a) co-sedimentation of the majority of the MtlA protein with the vesicles; (b) selective extraction of the membrane-associated MtlA by doxycholate but not by urea treatment; and (c) protease resistance of a defined MtlA fragment observed exclusively in the presence of membranes. Post-translational addition of membrane vesicles allowed membrane association of MtlA but did not allow efficient integration. In cell-free systems having reduced levels of the export factors SecA and SecB and exhibiting defective translocation of preOmpA and preLamB, insertion of the in vitro synthesized MtlA apparently occurred normally. In contrast, when membranes from the secY24ts mutant or trypsin-treated membranes were used, insertion of MtlA was reduced. In vivo experiments monitoring the permease activity of MtlA in the secA and secY mutants supported the conclusions of the in vitro results. Thus, the insertion of MtlA is essentially SecA- and SecB-independent but may be dependent on SecY and/or an as yet unidentified membrane protein. The requirements for the insertion of the mannitol permease are therefore clearly different from those for the translocation of most proteins having a cleavable hydrophobic signal sequence.  相似文献   

16.
The pseudopilin PulG is an essential component of the pullulanase-specific type II secretion system from Klebsiella oxytoca. PulG is the major subunit of a short, thin-filament pseudopilus, which presumably elongates and retracts in the periplasm, acting as a dynamic piston to promote pullulanase secretion. It has a signal sequence-like N-terminal segment that, according to studies with green and red fluorescent protein chimeras, anchors unassembled PulG in the inner membrane. We analyzed the early steps of PulG inner membrane targeting and insertion in Escherichia coli derivatives defective in different protein targeting and export factors. The beta-galactosidase activity in strains producing a PulG-LacZ hybrid protein increased substantially when the dsbA, dsbB, or all sec genes tested except secB were compromised by mutations. To facilitate analysis of native PulG membrane insertion, a leader peptidase cleavage site was engineered downstream from the N-terminal transmembrane segment (PrePulG*). Unprocessed PrePulG* was detected in strains carrying mutations in secA, secY, secE, and secD genes, including some novel alleles of secY and secD. Furthermore, depletion of the Ffh component of the signal recognition particle (SRP) completely abolished PrePulG* processing, without affecting the Sec-dependent export of periplasmic MalE and RbsB proteins. Thus, PulG is cotranslationally targeted to the inner membrane Sec translocase by SRP.  相似文献   

17.
N Kosic  M Sugai  C K Fan    H C Wu 《Journal of bacteriology》1993,175(19):6113-6117
The kinetics of processing of glyceride-modified prolipoprotein that accumulated in globomycin-treated Escherichia coli has been found to be affected by sec mutations, i.e., secA, secE, secY, secD, and secF, and by metabolic poisons which affect proton motive force (PMF). The effect of sec mutations on processing of glyceride-modified prolipoprotein in vivo was not due to a secondary effect on PMF. Neither a secF mutation nor metabolic poisons affected the processing of previously accumulated proOmpA protein in vivo, suggesting that the requirements for functional sec gene products and PMF are specific to the processing of lipoprotein precursors by signal peptidase II.  相似文献   

18.
Translational control of exported proteins in Escherichia coli   总被引:5,自引:4,他引:1       下载免费PDF全文
We recently described the suppression of export of a class of periplasmic proteins of Escherichia coli caused by overproduction of a C-terminal truncated periplasmic enzyme (GlpQ'). This truncated protein was not released into the periplasm but remained attached to the inner membrane and was accessible from the periplasm. The presence of GlpQ' in the membrane strongly reduced the appearance in the periplasm of some periplasmic proteins, including the maltose-binding protein (MBP), but did not affect outer membrane proteins, including the lambda receptor (LamB) (R. Hengge and W. Boos, J. Bacteriol., 162:972-978, 1985). To investigate this phenomenon further we examined the fate of MBP in comparison with the outer membrane protein LamB. We found that not only localization but also synthesis of MBP was impaired, indicating a coupling of translation and export. Synthesis and secretion of LamB were not affected. The possibility that this influence was exerted via the level of cyclic AMP could be excluded. Synthesis of MBP with altered signal sequences was also reduced, demonstrating that export-defective MBP which ultimately remains in the cytoplasm abortively enters the export pathway. When GlpQ' was expressed in a secA51(Ts) strain, the inhibition of MBP synthesis caused by GlpQ' was dominant over the precursor accumulation usually caused by secA51(Ts) at 41 degrees C. Therefore, GlpQ' acts before or at the level of recognition by SecA. For LamB the usual secA51(Ts) phenotype was observed. We propose a mechanism by which GlpQ' blocks an yet unknown membrane protein, the function of which is to couple translation and export of a subclass of periplasmic proteins.  相似文献   

19.
T Watanabe  S Hayashi    H C Wu 《Journal of bacteriology》1988,170(9):4001-4007
Export of the outer membrane lipoprotein in Escherichia coli was examined in conditionally lethal mutants that were defective in protein export in general, including secA, secB, secC, and secD. Lipoprotein export was affected in a secA(Ts) mutant of E. coli at the nonpermissive temperature; it was also affected in a secA(Am) mutant of E. coli at the permissive temperature, but not at the nonpermissive temperature. The export of lipoprotein occurred normally in E. coli carrying a null secB::Tn5 mutation; on the other hand, the export of an OmpF::Lpp hybrid protein, consisting of the signal sequence plus 11 amino acid residues of mature OmpF and mature lipoprotein, was affected by the secB mutation. The synthesis of lipoprotein was reduced in the secC mutant at the nonpermissive temperature, as was the case for synthesis of the maltose-binding protein, while the synthesis of OmpA was not affected. Lipoprotein export was found to be slightly affected in secD(Cs) mutants at the nonpermissive temperature. These results taken together indicate that the export of lipoprotein shares the common requirements for functional SecA and SecD proteins with other exported proteins, but does not require a functional SecB protein. SecC protein (ribosomal protein S15) is required for the optimal synthesis of lipoprotein.  相似文献   

20.
Escherichia coli genes were cloned onto a multicopy plasmid and selected by the ability to restore growth and protein export defects caused by a temperature-sensitive secY or secA mutation. When secA51 was used as the primary mutation, only clones carrying groE, which specifies the chaperonin class of heat shock protein, were obtained. Selection using secY24 yielded three major classes of genes. The first class encodes another heat shock protein, HtpG; the most frequently obtained second class encodes a neutral histonelike protein, H-NS; and the third class, msyB, encodes a 124-residue protein of which 38 residues are acidic amino acids. Possible mechanisms of suppression as well as the significance and limitations of the multicopy suppression approach are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号