首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of genetic drift on the genetic structure of seven Irish populations was investigated using anthropometric data collected during the 1890s on 259 adult males. These populations ranged in size from 769 to 3757, were relatively stable over time, and were located within 119 km of one another. Two populations are known to have experienced considerable English admixture. Data on ten anthropometric variables (three body measures and seven craniofacial measures) were adjusted for age and used to compute a relationship (R) matrix. The R matrix was converted into a distance measure and compared with a potential genetic drift distance measure, defined as (1/Ni + 1/Nj), where Ni and Nj are the effective population sizes of groups i and j (derivation of this formula is presented). Distances were rank-transformed, and the correlation between their pairwise elements was computed using matrix permutation methods to assess significance. Under the hypothesis that drift affects anthropometric variation, these correlations are expected to be positive. The correlation between anthropometric distance and potential genetic drift distance is 0.123, which is not significantly different from 0 (P = 0.368). When a multiple regression model is used to adjust for geographic distance and English admixture, the partial correlation (0.369) is significant (p = 0.021). As part of further analysis of the genetic structure of these populations, the same analyses were repeated using a distance matrix derived from surname frequencies. The correlation of surname distance and potential genetic drift distance is 0.164, which is not significant (p = 0.264). When the multiple regression model is applied, the correlation is 0.401, which is borderline significant (p = 0.055). These results show the influence of genetic drift, local migration, and admixture on Irish population structure.  相似文献   

2.
In humans and many other species, mortality is concentrated early in the life cycle, and is low during the ages of dispersal and reproduction. Yet precisely the opposite is assumed by classical population-genetics models of migration and genetic drift. We introduce a model in which population regulation occurs before migration. In contrast to the conventional model, our model implies that geographic variation in the allele frequencies of newborns should exceed that of adults. Thus, it is important to distinguish genetic variation of adults from that of newborns in species with human-like life cycles. Classical models deal with the variance of group allele frequencies about the allele frequency of a hypothetical “continent” or “foundation stock.” Empirical studies, however, can only measure “reduced” variance, i.e., variance about the current population mean. Our model deals with reduced variance, and should therefore be more relevant to field studies. We show that reduced variance converges faster, which implies that populations are more likely to be at equilibrium with respect to reduced than unreduced variance. To summarize the effect of migration on genetic population structure, we introduce a new parameter, the effective migration rate. Unlike most population structure statistics, it does not confound the effects of mobility and population size, and it should therefore be useful for comparisons between populations. Finally, we show that the difference between geographic variation of newborn and adult allele frequencies contains information about both effective population size and effective migration rate.  相似文献   

3.
Detecting Isolation by Distance Using Phylogenies of Genes   总被引:12,自引:3,他引:9       下载免费PDF全文
M. Slatkin  W. P. Maddison 《Genetics》1990,126(1):249-260
We introduce a method for analyzing phylogenies of genes sampled from a geographically structured population. A parsimony method can be used to compute s, the minimum number of migration events between pairs of populations sampled, and the value of s can be used to estimate the effective migration rate M, the value of Nm in an island model with local populations of size N and a migration rate m that would yield the same value of s. Extensive simulations show that there is a simple relationship between M and the geographic distance between pairs of samples in one- and two-dimensional models of isolation by distance. Both stepping-stone and lattice models were simulated. If two demes k steps apart are sampled, then, s, the average value of s, is a function only of k/(Nm) in a one-dimensional model and is a function only of k/(Nm)2 in a two-dimensional model. Furthermore, log(M) is approximately a linear function of log(k). In a one-dimensional model, the regression coefficient is approximately -1 and in a two-dimensional model the regression coefficient is approximately -0.5. Using data from several locations, the regression of log(M) on log(distance) may indicate whether there is isolation by distance in a population at equilibrium and may allow an estimate of the effective migration rate between adjacent sampling locations. Alternative methods for analyzing DNA sequence data from a geographically structured population are discussed. An application of our method to the data of R. L. Cann, M. Stoneking and A. C. Wilson on human mitochondrial DNA is presented.  相似文献   

4.
The analysis of anthropometric data often allows investigation of patterns of genetic structure in historical populations. This paper focuses on interpopulational anthropometric variation in seven populations in Ireland using data collected in the 1890s. The seven populations were located within a 120-km range along the west coast of Ireland and include islands and mainland isolates. Two of the populations (the Aran Islands and Inishbofin) have a known history of English admixture in earlier centuries. Ten anthropometric measures (head length, breadth, and height; nose length and breadth; bizygomatic and bigonial breadth; stature; hand length; and forearm length) on 259 adult Irish males were analyzed following age adjustment. Discriminant and canonical variates analysis were used to determine the degree and pattern of among-group variation. Mahalanobis' distance measure, D2, was computed between each pair of populations and compared to distance measures based on geographic distance and English admixture (a binary measure indicating whether either of a pair of populations had historical indications of admixture). In addition, surname frequencies were used to construct distance measures based on random isonymy. Correlations were computed between distance measures, and their probabilities were derived using the Mantel matrix permutation method. English admixture has the greatest effect on anthropometric variation among these populations, followed by geographic distance. The correlation between anthropometric distance and geographic distance is not significant (r = -0.081, P = .590), but the correlation of admixture and anthropometric distance is significant (r = 0.829, P = .047). When the two admixed populations are removed from the analysis the correlation between geographic and anthropometric distance becomes significant (r = 0.718, P = .025). Isonymy distance shows a significant correlation with geographic distance (r = 0.425, P = .046) but not with admixture distance (r = -0.052, P = .524). The fact that anthropometrics show past patterns of gene flow and surnames do not reflects the greater impact of stochastic processes on surnames, along with the continued extinction of surnames. This study shows that 1) anthropometrics can be extremely useful in assessing population structure and history, 2) differential gene flow into populations can have a major impact on local genetic structure, and 3) microevolutionary processes can have different effects on biological characters and surnames.  相似文献   

5.
The giant kangaroo rat, Dipodomys ingens (Heteromyidae), is an endangered rodent that inhabits approximately 3% of its estimated historic range. Its current distribution is centered in two geographic areas, situated about 150 km apart, in south-central California. We sequenced a 293 base-pair fragment at the 5' end of the control region in 95 giant kangaroo rats from nine localities to examine the genetic structure of extant populations. We determine that mutations in this section of the control region follow a negative binominal distribution, rather than a Poisson. However, the distance between haplotypes is small enough that the difference between a tree that corrects for the non-Poisson distribution of mutations and one that does not, is minimal. This implies that the use of methods that assume a Poisson distribution of mutations, such as those based on coalescent theory, are justified. We find that the correlation between levels of genetic diversity and estimated census size is poor. This suggests that population sizes have fluctuated over time or that populations have not been isolated from one another, or both. We also examine the hierarchical structure of populations and find that the southern populations are not genetically subdivided but that there is significant subdivision between northern and southern populations and between some northern subpopulations. The phylogeographic relationship between northern and southern populations can primarily be attributed to isolation by distance, although the time since divergence between them appears to be less than the age of either. To examine the phylogeographic relationships in more detail we construct a minimum spanning tree based on Tamura-Nei gamma-corrected distances and superimpose on it the geographic position of haplotypes. This reveals that there is more genetic distance between some northern haplotypes than between any northern and southern haplotypes, despite the geographic distance separating north from south and the larger size of the southern population. It also reveals that one northern population, in the Panoche Valley, contains old allelic lineages and shares ancestral polymorphism with several other populations. It also shows that two, small, geographically remote populations contain a surprising amount of genetic diversity, but that different population/geographic processes have affected the structure of that diversity. We estimate the average migration rate among all populations to be 7.5 per generation, and conclude that a disproportionate number of migration events involve gene flow with one northern population, the Panoche Valley. We find evidence for the hypothesis that there has been an increase in population size in the remaining populations in the north and suggest that the Panoche Valley could play a role in these expansions. Finally we discuss the probabilitiy that the genetic structure of the southern populations has been affected by fluctuations in size. These results are briefly compared to other studies on the genetic structure of rodent populations.  相似文献   

6.
Faubet P  Gaggiotti OE 《Genetics》2008,178(3):1491-1504
We present a new multilocus genotype method that makes inferences about recent immigration rates and identifies the environmental factors that are more likely to explain observed gene flow patterns. It also estimates population-specific inbreeding coefficients, allele frequencies, and local population F(ST)'s and performs individual assignments. We generate synthetic data sets to determine the region of the parameter space where our method is and is not able to provide accurate estimates. Our simulation study indicates that reliable results can be obtained when the global level of genetic differentiation (F(ST)) is >1%, the number of loci is only 10, and sample sizes are of the order of 50 individuals per population. We illustrate our method by applying it to Pakistani human data, considering altitude and geographic distance as explanatory factors. Our results suggest that altitude explains better the genetic data than geographic distance. Additionally, they show that southern low-altitude populations have higher migration rates than northern high-altitude ones.  相似文献   

7.
Adult size, egg size, fecundity, and mass of gonads are affected by trade‐offs between reproductive investment and environmental conditions shaping the evolution of life history traits among populations for widely distributed species. Coho salmon Oncorhynchus kisutch have a large geographic distribution, and different environmental conditions are experienced by populations throughout their range. We examined the effect of environmental variables on female size, egg size, fecundity, and reproductive investment of populations of Coho Salmon from across British Columbia using an information theoretic approach. Female size increased with latitude and decreased with migration distance from the ocean to spawning locations. Egg size was lowest for intermediate intragravel temperature during incubation, decreased with migration distance, but increased in rivers below lakes. Fecundity increased with latitude, warmer temperature during the spawning period, and river size, but decreased in rivers below lakes compared with rivers with tributary sources. Relative gonad size increased with latitude and decreased with migration distance. Latitude of spawning grounds, migratory distance, and temperatures experienced by a population, but also hydrologic features—river size and headwater source—are influential in shaping patterns of reproductive investment, particularly egg size. Although, relative gonad size varied with latitude and migration distance, how gonadal mass was partitioned gives insight into the trade‐off between egg size and fecundity. The lack of an effect of latitude on egg size suggests that local optima for egg size related to intragravel temperature may drive the variation in fecundity observed among years.  相似文献   

8.
Economic, political, and cultural relationships connected virtually every population throughout Mexico during Postclassic period (AD 900–1520). Much of what is known about population interaction in prehistoric Mexico is based on archaeological or ethnohistoric data. What is unclear, especially for the Postclassic period, is how these data correlate with biological population structure. We address this by assessing biological (phenotypic) distances among 28 samples based upon a comparison of dental morphology trait frequencies, which serve as a proxy for genetic variation, from 810 individuals. These distances were compared with models representing geographic and cultural relationships among the same groups. Results of Mantel and partial Mantel matrix correlation tests show that shared migration and trade are correlated with biological distances, but geographic distance is not. Trade and political interaction are also correlated with biological distance when combined in a single matrix. These results indicate that trade and political relationships affected population structure among Postclassic Mexican populations. We suggest that trade likely played a major role in shaping patterns of interaction between populations. This study also shows that the biological distance data support the migration histories described in ethnohistoric sources. Am J Phys Anthropol 157:121–133, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
When natural populations exchange migrants at a rate proportional to their geographic distance, population genetics theory leads to the expectation of a pattern of isolation-by-distance (IBD), whereby geographic and genetic distance are correlated. However, the presence or absence of such patterns in modern populations may not fully reflect the historical relationships among those populations. Thus, historical samples, collected prior to modern human impacts, can often provide a critical baseline for comparison with modern populations. Steelhead, the anadromous form of rainbow trout, Oncorhynchus mykiss, are native to western North America and are endangered or threatened throughout most of California, near the southern extent of their native range. Population samples of steelhead collected in 1897 and 1909 in Central California rivers provided the opportunity to evaluate the historical genetic composition and population structure of these threatened fish. Here we show that these steelhead populations had a historically strong correlation between genetic and geographic distance that has been virtually erased in modern populations, suggesting that current relationships among modern steelhead populations are no longer reflective of natural migratory pathways. This demonstrates the critical role of migration in maintaining population relationships of threatened species and highlights the importance of natural history museums in providing historical baseline information.  相似文献   

10.
Observed patterns of genetic structure result from the interactions of demographic, physical, and historical influences on gene flow. The particular strength of various factors in governing gene flow, however, may differ between species in biologically relevant ways. We investigated the role of demographic factors (population size and sex-biased dispersal) and physical features (geographic distance, island size and climatological winds) on patterns of genetic structure and gene flow for two lineages of Greater Antillean bats. We used microsatellite genetic data to estimate demographic characteristics, infer population genetic structure, and estimate gene flow among island populations of Erophylla sezekorni/E. bombifrons and Macrotus waterhousii (Chiroptera: Phyllostomidae). Using a landscape genetics approach, we asked if geographic distance, island size, or climatological winds mediate historical gene flow in this system. Samples from 13 islands spanning Erophylla's range clustered into five genetically distinct populations. Samples of M. waterhousii from eight islands represented eight genetically distinct populations. While we found evidence that a majority of historical gene flow between genetic populations was asymmetric for both lineages, we were not able to entirely rule out incomplete lineage sorting in generating this pattern. We found no evidence of contemporary gene flow except between two genetic populations of Erophylla. Both lineages exhibited significant isolation by geographic distance. Patterns of genetic structure and gene flow, however, were not explained by differences in relative effective population sizes, island area, sex-biased dispersal (tested only for Erophylla), or surface-level climatological winds. Gene flow among islands appears to be highly restricted, particularly for M. waterhousii, and we suggest that this species deserves increased taxonomic attention and conservation concern.  相似文献   

11.
Migration is a primary force of biological evolution that alters allele frequencies and introduces novel genetic variants into populations. Recent migration has been proposed as the cause of the emergence of many infectious diseases, including those carried by blacklegged ticks in North America. Populations of blacklegged ticks have established and flourished in areas of North America previously thought to be devoid of this species. The recent discovery of these populations of blacklegged ticks may have resulted from either in situ growth of long‐established populations that were maintained at very low densities or by migration and colonization from established populations. These alternative evolutionary hypotheses were investigated using Bayesian phylogeographic approaches to infer the origin and migratory history of recently detected blacklegged tick populations in the Northeastern United States. The data and results indicate that newly detected tick populations are not the product of in situ population growth from a previously established population but from recent colonization resulting in a geographic range expansion. This expansion in the geographic range proceeded primarily through progressive and local migration events from southern populations to proximate northern locations although long‐distance migration events were also detected.  相似文献   

12.
The Tropical Andes is a diversity hotspot for plants, but there is a scant knowledge about patterns of genetic variation within its constituent species. Phaedranassa tunguraguae is an IUCN endangered plant species endemic to a single valley in the Ecuadorian Andes. We estimate the levels of genetic differentiation across the geographic distribution of P. tunguraguae using 12 microsatellite loci. We discuss factors that might influence the genetic structure of this species. Genetic distance was used to evaluate relationship among populations and geographic patterns. Bayesian methods were used to investigate population structure, migration, evidence of recent bottlenecks, and time of divergence. The 7 populations form 2 genetic clusters. These clusters show highly significant differentiation between them, along with isolation by distance. Allele richness decreases from the most diverse westernmost population to the least diverse easternmost population. The species overall shows an excess of homozygotes, with highest levels of inbreeding in the easternmost population. We found evidence of recent bottleneck events. Migration rates were in general low but were higher between populations within each of the clusters. Time of divergence between populations was related to historical volcanic activity in the area. Based on our results, we propose 2 management units for P. tunguraguae.  相似文献   

13.
I formulate and analyse a model of population structure with different classes of individuals. These different classes may be age classes, other demographic classes, or different types of habitats homogeneously distributed over a geographical area. The value of population differentiation under an island model of dispersal and the increase of differentiation with geographical distance in one- and two-dimensional "isolation by distance" models are then obtained for a generalization of the FST measure of population structure, as a function of "effective" mutation, migration, and population size parameters. The relevant effective subpopulation size is related to the "mutation effective population size" of a single isolated subpopulation and, in models of age-structured populations, to the inbreeding effective population size.  相似文献   

14.
Recent controversies surrounding models of modern human origins have focused on among-group variation, particularly the reconstruction of phylogenetic trees from mitochondrial DNA (mtDNA) and, the dating of population divergence. Problems in tree estimation have been seen as weakening the case for a replacement model and favoring a multiregional evolution model. There has been less discussion of patterns of within-group variation, although the mtDNA evidence has consistently shown the greatest diversity within African populations. Problems of interpretation abound given the numerous factors that can influence within-group variation, including the possibility of earlier divergence, differences in population size, patterns of population expansion, and variation in migration rates. We present a model of within-group phenotypic variation and apply it to a large set of craniometric data representing major Old World geographic regions (57 measurements for 1,159 cases in four regions: Europe, Sub-Saharan Africa, Australasia, and the Far East). The model predicts a linear relationship between variation within populations (the average within-group variance) and variation between populations (the genetic distance of populations to pooled phenotypic means). On a global level this relationship should hold if the long-term effective population sizes of each region are correctly specified. Other potential effects on withingroup variation are accounted for by the model. Comparison of observed and expected variances under the assumption of equal effective sizes for four regions indicates significantly greater within-group variation in Africa and significantly less within-group variation in Europe. These results suggest that the long-term effective population size was greatest in Africa. Closer examination of the model suggests that the long-term African effective size was roughly three times that of any other geographic region. Using these estimates of relative population size, we present a method for analyzing ancient population structure, which provides estimates of ancient migration. This method allows us to reconstruct migration history between geographic regions after adjustment for the effect of genetic drift on interpopulational distances. Our results show a clear isolation of Africa from other regions. We then present a method that allows direct estimation of the ancient migration matrix, thus providing us with information on the actual extent of interregional migration. These methods also provide estimates of time frames necessary to reach genetic equilibrium. The ultimate goal is extracting as much information from present-day patterns of human variation relevannt to issues of human origins. Our results are in agreement with mismatch distribution analysis of mtDNA, and they support a “weak Garden o Eden” model. In this model, modern-day variation can be explained by divergence from an initial source (perhaps Africa) into a number o small isolated populations, followed by later population expansion throughout our species. The major populationn expansions of Homo sapiens during and after the late Pleistocene have had the effect of “freezing” ancient patterns of population structure. While this is not the only possible scenario, we do note the close agreement with ecent analyses of mtDNA mismatch distibutions. © 1994 Wiley-Liss, Inc.  相似文献   

15.
Understanding patterns of genetic structure is fundamental for developing successful management programmes for deme‐structured organisms, such as amphibians. We used five microsatellite loci and DNA sequences of the mitochondrial control region to assess the relative influences of landscape (geographic distance, altitude and rivers as corridors for dispersal) and historical factors on patterns of gene flow in populations of the toad Bufo bufo in Central Spain. We sampled 175 individuals from eight populations distributed along two major river drainages and used maximum‐likelihood and Bayesian approaches to infer patterns of gene flow and population structure. The mitochondrial DNA data show closely‐related haplotypes distributed across the Iberian Peninsula with no geographic structuring, suggesting recent differentiation of haplotypes and extensive gene flow between populations. On the other hand, microsatellites provide finer resolution, showing that high altitude populations (> 2000 m) exchange lower numbers of migrants with other populations. The results of Bayesian estimates for recent migration rates in high altitude populations suggest source‐sink dynamics between ponds that are consistent with independent data from monitoring over the past 20 years. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 824–839.  相似文献   

16.
Fragmentation can affect the demographic and genetic structure of populations near the boundary of their biogeographic range. Higher genetic differentiation among populations coupled with lower level of within-population variability is expected as a consequence of reduced population size and isolation. The effects of these 2 factors have been rarely disentangled. Given their high gene flow, anemophilous forest trees should be more affected, in terms of loss of genetic diversity, by small population size rather than geographic isolation alone. We studied the impact of distance from the main range (a measure of isolation) and reduced population size on the within-population and among population components of genetic variability. We assayed 11 isozyme loci in a total of 856 individuals in 27 marginal populations of European beech (Fagus sylvatica L.) in Central Italy. Populations were divided into 3 groups with an increasing level of fragmentation. In the most fragmented group, the within-population genetic variability was slightly smaller and the among population differentiation significantly larger than in the other 2 groups. Isolation-by-distance was lost when only pairs of populations involving at least one from the most fragmented group were considered and maintained in the other groups. These results support the role of random genetic drift having a larger impact on the most fragmented group, whereas gene flow seems to balance genetic drift in the 2 less fragmented ones. Given that average distance from the main range is not different between the intermediate and the most fragmented group, but average population size is smaller, we can conclude that gene flow is effective, even at relatively long distances, in balancing the effect of fragmentation if population size is not too small.  相似文献   

17.
Many studies of subdivided populations have attempted to determine the underlying migration rates that generate observed patterns of genetic differentiation. Most previous analyses have yielded only qualitative inferences about migration. In this paper I present a new method for estimating the full migration matrix from information on polygenic trait variation. The method employs multivariate quantitative genetic theory to provide a matrix formulation of the expected covariance structure in multigenerational subdivided populations for which information is available at different points in the life cycle. I develop a restricted maximum likelihood technique (REML) to take account of this additional life-cycle information and to estimate both the migration matrix and the ratio of effective population size to census size. To make the problem computationally tractable, the migration matrix is modeled as a log-linear function of a few covariates, such as subdivision size and geographic distance. I apply the technique to data on dermatoglyphic ridge counts for 1015 individuals of the Jirel population of east Nepal, considering two different age cohorts. In the adult cohort (individuals over 21 years of age) I examine data by both birthplace and residence and for the subadult cohort (under 21 years of age), by birthplace. Results from the REML technique reveal that the best-fitting migration model is a finite island model with an estimated endemicity of 0.730 +/- 0.105 and an estimated ratio of effective size to census size of 0.287 +/- 0.095. Both estimates are reasonable given known demographic data. In addition, Fst values predicted by the migration model are concordant with REML estimates obtained directly from the dermatoglyphic variation.  相似文献   

18.
Extranuclear differentiation and gene flow in the finite island model   总被引:15,自引:8,他引:7       下载免费PDF全文
Takahata N  Palumbi SR 《Genetics》1985,109(2):441-457
Use of sequence information from extranuclear genomes to examine deme structure in natural populations has been hampered by lack of clear linkage between sequence relatedness and rates of mutation and migration among demes. Here, we approach this problem in two complementary ways. First, we develop a model of extranuclear genomes in a population divided into a finite number of demes. Sex-dependent migration, neutral mutation, unequal genetic contribution of separate sexes and random genetic drift in each deme are incorporated for generality. From this model, we derive the relationship between gene identity probabilities (between and within demes) and migration rate, mutation rate and effective deme size. Second, we show how within- and between-deme identity probabilities may be calculated from restriction maps of mitochondrial (mt) DNA. These results, when coupled with our results on gene flow and genetic differentiation, allow estimation of relative interdeme gene flow when deme sizes are constant and genetic variants are selectively neutral. We illustrate use of our results by reanalyzing published data on mtDNA in mouse populations from around the world and show that their geographic differentiation is consistent with an island model of deme structure.  相似文献   

19.
Ten qualitative traits were observed in two isolated human populations in Bosnia for prewar and postwar periods. Due to recent war in Bosnia and Herzegovina two million citizens was forced to migrate. Dramatic migration effects occurred in the investigated populations. Population characteristics found were geographic isolation, high levels of marital distance “zero”, patrilocality and propagation isolation. Relative recessive allele frequencies of ten qualitative traits were calculated. Average heterozigosity, genetic differentiation, total heterozigosity, within populations heterozigosity, genetic distance and relative measures based on results of genetic distance analysis were observed. The total number of observed individuals was 1875. We have observed 1209 individuals in prewar period (Bijela population 731 and Memici population 478) and 666 individuals in the postwar period (Bijela population 248 and Memici population 478). Results ofFst andGst analysis showed changed degree of genetic differentiation across observed loci. Significant changes in differentiation were recorded for crooked little finger and PTC tasting. Modest changes of gene differentiation were recorded for ear lobe type and thumb proximal extensibility. Genetic distance analisis between Bijela and Memici has lower value after then before the war, but genetic distance between Bijela-prewar and Bijela-postwar has higher value, as well as Memici-prewar and Memici-postwar genetic distance. Genetic distance between Bijela-prewar and Memiciprewar, as well as Bijela-postwar and Memici-postwar showed similarity. Constructed dendrogram based on results of genetic distance analyses indicated two clusters groups (1. Bijela-prewar, Memici-prewar; 2. Bijela-postwar, Memici-postwar). Changed genetic differentiation and results of genetic distance analyses indicated possibility of significant impact of forced migration in genetic structure of observed populations.  相似文献   

20.
Isolation by distance is usually tested by the correlation of genetic and geographic distances separating all pairwise populations' combinations. However, this method can be significantly biased by only a few highly diverged populations and lose the information of individual population. To detect outlier populations and investigate the relative strengths of gene flow and genetic drift for each population, we propose a decomposed pairwise regression analysis. This analysis was applied to the well-described one-dimensional stepping-stone system of stream-dwelling Dolly Varden charr ( Salvelinus malma ). When genetic and geographic distances were plotted for all pairs of 17 tributary populations, the correlation was significant but weak ( r 2 = 0.184). Seven outlier populations were determined based on the systematic bias of the regression residuals, followed by Akaike's information criteria. The best model, 10 populations included, showed a strong pattern of isolation by distance ( r 2 = 0.758), suggesting equilibrium between gene flow and genetic drift in these populations. Each outlier population was also analysed by plotting pairwise genetic and geographic distances against the 10 nonoutlier populations, and categorized into one of the three patterns: strong genetic drift, genetic drift with a limited gene flow and a high level of gene flow. These classifications were generally consistent with a priori predictions for each population (physical barrier, population size, anthropogenic impacts). Combined the genetic analysis with field observations, Dolly Varden in this river appeared to form a mainland-island or source-sink metapopulation structure. The generality of the method will merit many types of spatial genetic analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号