首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GABA(B) (gamma-aminobutyric acid type B) receptors are important for keeping neuronal excitability under control. Cloned GABA(B) receptors do not show the expected pharmacological diversity of native receptors and it is unknown whether they contribute to pre- as well as postsynaptic functions. Here, we demonstrate that Balb/c mice lacking the GABA(B(1)) subunit are viable, exhibit spontaneous seizures, hyperalgesia, hyperlocomotor activity, and memory impairment. Upon GABA(B) agonist application, null mutant mice show neither the typical muscle relaxation, hypothermia, or delta EEG waves. These behavioral findings are paralleled by a loss of all biochemical and electrophysiological GABA(B) responses in null mutant mice. This demonstrates that GABA(B(1)) is an essential component of pre- and postsynaptic GABA(B) receptors and casts doubt on the existence of proposed receptor subtypes.  相似文献   

2.
3.
NADPH-cytochrome P450 reductase (CPR or POR) is the obligatory electron donor for all microsomal cytochrome P450 (CYP or P450)-catalyzed monooxygenase reactions. Disruption of the mouse Cpr gene has been reported to cause prenatal developmental defects and embryonic lethality. In this study, we generated a mouse model with a floxed Cpr allele (termed Cpr(lox)). Homozygous Cpr(lox) mice are fertile and without any histological abnormality or any change in CPR expression. The floxed Cpr allele was subsequently deleted efficiently by crossing Cpr(lox) mice with transgenic mice having liver-specific Cre expression (Alb-Cre); the result was a decrease in the level of CPR protein in liver microsomes. The Cpr(lox) strain will be valuable for conditional Cpr gene deletion and subsequent determination of the impact of CPR loss on the metabolism of endogenous and xenobiotic compounds, as well as on postnatal development and other biological functions.  相似文献   

4.
5.
gamma-Aminobutyric acid, type B (GABA(B)) receptors are heterodimeric G protein-coupled receptors that mediate slow inhibitory synaptic transmission in the central nervous system. To identify novel interacting partners that might regulate GABA(B) receptor (GABA(B)R) functionality, we screened the GABA(B)R2 carboxyl terminus against a recently created proteomic array of 96 distinct PDZ (PSD-95/Dlg/ZO-1 homology) domains. The screen identified three specific PDZ domains that exhibit interactions with GABA(B)R2: Mupp1 PDZ13, PAPIN PDZ1, and Erbin PDZ. Biochemical analysis confirmed that full-length Mupp1 and PAPIN interact with GABA(B)R2 in cells. Disruption of the GABA(B)R2 interaction with PDZ scaffolds by a point mutation to the carboxyl terminus of the receptor dramatically decreased receptor stability and attenuated the duration of GABA(B) receptor signaling. The effects of mutating the GABA(B)R2 carboxyl terminus on receptor stability and signaling were mimicked by small interference RNA knockdown of endogenous Mupp1. These findings reveal that GABA(B) receptor stability and signaling can be modulated via GABA(B)R2 interactions with the PDZ scaffold protein Mupp1, which may contribute to cell-specific regulation of GABA(B) receptors in the central nervous system.  相似文献   

6.
We previously generated a conditional floxed mouse line to study androgen action, in which exon 3 of the androgen receptor (AR) gene is flanked by loxP sites, with the neomycin resistance gene present in intron 3. Deletion of exon 3 in global AR knockout mice causes androgen insensitivity syndrome, characterized by genotypic males lacking normal masculinization. We now report that male mice carrying the floxed allele (AR(lox)) have the reverse phenotype, termed hyperandrogenization. AR(lox) mice have increased mass of androgen-dependent tissues, including kidney, (P < 0.001), seminal vesicle (P < 0.001), levator ani muscle (P = 0.001), and heart (P < 0.05). Serum testosterone is not significantly different. Testis mass is normal, histology shows normal spermatogenesis, and AR(lox) males are fertile. AR(lox) males also have normal AR mRNA levels in kidney, brain, levator ani, liver, and testis. This study reaffirms the need to investigate the potential phenotypic effects of floxed alleles in the absence of cre in tissue-specific knockout studies. In addition, this androgen hypersensitivity model may be useful to further investigate the effects of subtle perturbations of androgen action in a range of androgen-responsive systems in the male.  相似文献   

7.
The functional properties of GABA(B) receptors were examined in the dorsal raphe nucleus (DRN) and the hippocampus of knock-out mice devoid of the 5-HT transporter (5-HTT-/-) or the 5-HT(1A) receptor (5-HT(1A)-/-). Electrophysiological recordings in brain slices showed that the GABA(B) receptor agonist baclofen caused a lower hyperpolarization and neuronal firing inhibition of DRN 5-HT cells in 5-HTT-/- versus 5-HTT+/+ mice. In addition, [(35)S]GTP-gamma-S binding induced by GABA(B) receptor stimulation in the DRN was approximately 40% less in these mutants compared with wild-type mice. In contrast, GABA(B) receptors appeared functionally intact in the hippocampus of 5-HTT-/-, and in both this area and the DRN of 5-HT(1A)-knock-out mice. The unique functional changes of DRN GABA(B) receptors closely resembled those of 5-HT(1A) autoreceptors in 5-HTT-/- mice, further supporting the idea that both receptor types are coupled to a common pool of G-proteins in serotoninergic neurons.  相似文献   

8.
The behavioral and functional significance of the extrasynaptic inhibitory GABA(A) receptors in the brain is still poorly known. We used a transgenic mouse line expressing the GABA(A) receptor alpha6 subunit gene in the forebrain under the Thy-1.2 promoter (Thy1alpha6) mice ectopically expressing alpha6 subunits especially in the hippocampus to study how extrasynaptically enriched alphabeta(gamma2)-type receptors alter animal behavior and receptor responses. In these mice extrasynaptic alpha6beta receptors make up about 10% of the hippocampal GABA(A) receptors resulting in imbalance between synaptic and extrasynaptic inhibition. The synthetic GABA-site competitive agonist gaboxadol (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol; 3 mg/kg) induced remarkable anxiolytic-like response in the light : dark exploration and elevated plus-maze tests in Thy1alpha6 mice, while being almost inactive in wild-type mice. The transgenic mice also lost quicker and for longer time their righting reflex after 25 mg/kg gaboxadol than wild-type mice. In hippocampal sections of Thy1alpha6 mice, the alpha6beta receptors could be visualized autoradiographically by interactions between gaboxadol and GABA via [(35)S]TBPS binding to the GABA(A) receptor ionophore. Gaboxadol inhibition of the binding could be partially prevented by GABA. Electrophysiology of recombinant GABA(A) receptors revealed that GABA was a partial agonist at alpha6beta3 and alpha6beta3delta receptors, but a full agonist at alpha6beta3gamma2 receptors when compared with gaboxadol. The results suggest strong behavioral effects via selective pharmacological activation of enriched extrasynaptic alphabeta GABA(A) receptors, and the mouse model represents an example of the functional consequences of altered balance between extrasynaptic and synaptic inhibition.  相似文献   

9.
10.
To generate conditional alleles, genes are commonly engineered to contain recognition sites for bacteriophage recombinases, such as Cre recombinase. When such motifs (lox sites) flank essential gene sequences, and provided that Cre recombinase is expressed, Cre recombinase will excise the flanked sequence-creating a conditional knockout allele. Targeted conditional alleles contain a minimum of three lox sites. It would be desirable to have Cre recombinase perform partial resolution (i.e., recombination some of the time between only the two lox sites flanking the marker gene). Here we report use of the commercially available Balancer2-Cre transgenic mouse line to carry out this function from a tri-loxP-site-containing cytochrome p450 1A1 (Cyp1a1) targeted allele. Such incomplete resolution of this complex locus occurred progressively with age in germ cells of male mice; the conditional Cyp1a1 gene was recovered in offspring from mice containing the targeted Cyp1a1 allele and the Cre recombinase transgene. Removal of the marker gene resulted in a conditional Cyp1a1 allele whose expression was indistinguishable from that of the wild-type allele.  相似文献   

11.
12.
GABA (gamma-aminobutyric acid) is a major inhibitory neurotransmitter in the central nervous system (CNS) which activates both ionotropic (GABA(A)/GABA(C)) and metabotropic (GABA(B)) receptor systems. We identified two alternatively spliced cDNA variants of the murine GABA(B) receptor 1 that are predominantly expressed in the CNS. Deduced protein structures are highly homologous to the previously characterized rat and human receptors. Comparison of the genomic structures of mouse and human revealed that alternative splicing occurred at the same position, whereas the mouse gene has an additional 5' exon. Radiation hybrid mapping, combined with database searches, indicated that the GABA(B) receptor gene (Gabbr1) is located on mouse chromosome 17, adjacent to the marker D17Mit24 in a region homologous to human chromosome 6p21.3.  相似文献   

13.
Serotonin (5‐HT)2C receptors play a role in psychoaffective disorders and often contribute to the antidepressant and anxiolytic effects of psychotropic drugs. During stress, activation of these receptors exerts a negative feedback on 5‐HT release, probably by increasing the activity of GABAergic interneurons. However, to date, the GABA receptor types that mediate the 5‐HT2C receptor‐induced feedback inhibition are still unknown. To address this question, we assessed the inhibition of 5‐HT turnover by a 5‐HT2C receptor agonist (RO 60‐0175) at the hippocampal level and under conditions of stress, after pharmacological or genetic inactivation of either GABA‐A or GABA‐B receptors in mice. Neither the GABA‐B receptor antagonist phaclofen nor the specific genetic ablation of either GABA‐B1a or GABA‐B1b subunits altered the inhibitory effect of RO 60‐0175, although 5‐HT turnover was markedly decreased in GABA‐B1a knock‐out mice in both basal and stress conditions. In contrast, the 5‐HT2C receptor‐mediated inhibition of 5‐HT turnover was reduced by the GABA‐A receptor antagonist bicuculline. However, a significant effect of 5‐HT2C receptor activation persisted in mutant mice deficient in the α3 subunit of GABA‐A receptors. It can be inferred that non‐α3 subunit‐containing GABA‐A receptors, but not GABA‐B receptors, mediate the 5‐HT2C‐induced inhibition of stress‐induced increase in hippocampal 5‐HT turnover in mice.

  相似文献   


14.
15.
16.
Psychostimulants induce neuroadaptations in excitatory and fast inhibitory transmission in the ventral tegmental area (VTA). Mechanisms underlying drug-evoked synaptic plasticity of slow inhibitory transmission mediated by GABA(B) receptors and G protein-gated inwardly rectifying potassium (GIRK/Kir(3)) channels, however, are poorly understood. Here, we show that 1 day after methamphetamine (METH) or cocaine exposure both synaptically evoked and baclofen-activated GABA(B)R-GIRK currents were significantly depressed in VTA GABA neurons and remained depressed for 7 days. Presynaptic inhibition mediated by GABA(B)Rs on GABA terminals was also weakened. Quantitative immunoelectron microscopy revealed internalization of GABA(B1) and GIRK2, which occurred coincident with dephosphorylation of serine 783 (S783) in GABA(B2), a site implicated in regulating GABA(B)R surface expression. Inhibition of protein phosphatases recovered GABA(B)R-GIRK currents in VTA GABA neurons of METH-injected mice. This psychostimulant-evoked impairment in GABA(B)R signaling removes an intrinsic brake on GABA neuron spiking, which may augment GABA transmission in the mesocorticolimbic system.  相似文献   

17.
18.
GABA(B) receptors are the G-protein-coupled receptors for gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the brain. GABA(B) receptors are promising drug targets for a wide spectrum of psychiatric and neurological disorders. Receptor subtypes exhibit no pharmacological differences and are based on the subunit isoforms GABA(B1a) and GABA(B1b). GABA(B1a) differs from GABA(B1b) in its ectodomain by the presence of a pair of conserved protein binding motifs, the sushi domains (SDs). Previous work showed that selectively GABA(B1a) contributes to heteroreceptors at glutamatergic terminals, whereas both GABA(B1a) and GABA(B1b) contribute to autoreceptors at GABAergic terminals or to postsynaptic receptors. Here, we describe GABA(B1j), a secreted GABA(B1) isoform comprising the two SDs. We show that the two SDs, when expressed as a soluble protein, bind to neuronal membranes with low nanomolar affinity. Soluble SD protein, when added at nanomolar concentrations to dissociated hippocampal neurons or to acute hippocampal slices, impairs the inhibitory effect of GABA(B) heteroreceptors on evoked and spontaneous glutamate release. In contrast, soluble SD protein neither impairs the activity of GABA(B) autoreceptors nor impairs the activity of postsynaptic GABA(B) receptors. We propose that soluble SD protein scavenges an extracellular binding partner that retains GABA(B1a)-containing heteroreceptors in proximity of the presynaptic release machinery. Soluble GABA(B1) isoforms like GABA(B1j) may therefore act as dominant-negative inhibitors of heteroreceptors and control the level of GABA(B)-mediated inhibition at glutamatergic terminals. Of importance for drug discovery, our data also demonstrate that it is possible to selectively impair GABA(B) heteroreceptors by targeting their SDs.  相似文献   

19.
gamma-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system and exerts its actions via both ionotropic (GABA(A)/GABA(C)) and metabotropic (GABA(B)) receptors (R). In addition to their location on neurons, GABA and functional GABA(B) receptors have been detected in nonneuronal cells in peripheral tissue. Although the GABA(B)R has been shown to function as a prejunctional inhibitory receptor on parasympathetic nerves in the lung, the expression and functional coupling of GABA(B) receptors to G(i) in airway smooth muscle itself have never been described. We detected the mRNA encoding multiple-splice variants of the GABA(B)R1 and GABA(B)R2 in total RNA isolated from native human and guinea pig airway smooth muscle and from RNA isolated from cultured human airway smooth muscle (HASM) cells. Immunoblots identified the GABA(B)R1 and GABA(B)R2 proteins in human native and cultured airway smooth muscle. The GABA(B)R1 protein was immunohistochemically localized to airway smooth muscle in guinea pig tracheal rings. Baclofen, a GABA(B)R agonist, elicited a concentration-dependent stimulation of [(35)S]GTPgammaS binding in HASM homogenates that was abrogated by the GABA(B)R antagonist CGP-35348. Baclofen also inhibited adenylyl cyclase activity and induced ERK phosphorylation in HASM. Another GABA(B)R agonist, SKF-97541, mimicked while pertussis toxin blocked baclofen's effect on ERK phosphorylation, implicating G(i) protein coupling. Functional GABA(B) receptors are expressed in HASM. GABA may modulate an uncharacterized signaling cascade via GABA(B) receptors coupled to the G(i) protein in airway smooth muscle.  相似文献   

20.
Hepatitis C virus (HCV) is not infectious in vivo exceptfor primates, so the proper HCV culture system andinbred animal model are difficult to set up, which has ham-pered detailed analysis on viral life cycle and pathogenesisof HCV infection [1,2]. Hepati…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号