首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we investigated the immunocytochemical distribution of NK-1 and NK-3 tachykinin receptors in guinea pig and rat isolated pancreatic acini. In dispersed acinar cells from guinea pig, immunofluorescence staining detected similar densities of NK-1 and NK-3 receptors; conversely, rat acinar cells expressed NK-1 receptors more strongly than NK-3 receptors. In line with previous functional studies, these immunocytochemical findings suggest that guinea pig NK-1 and NK-3 receptors and rat NK-1 receptors alone play a direct stimulatory role in the basal pancreatic acinar amylase release.  相似文献   

2.
The psychopharmacology of tachykinin NK-3 receptors in laboratory animals   总被引:2,自引:0,他引:2  
Massi M  Panocka I  de Caro G 《Peptides》2000,21(11):1597-1609
The present article reviews the studies so far published on the psychopharmacological effects mediated by tachykinin NK-3 receptors in laboratory animals. Central administration of NK-3 receptor agonists has been reported to attenuate alcohol intake in alcohol-preferring rats and to evoke conditioned place preference. These findings suggest that NK-3 receptors may affect reward processes to drugs of abuse. Anxiolytic-like and antidepressant-like effects have been previously reported for NK-1 receptor antagonists, and anxiolytic-like effects for NK-2 receptor antagonists. More recently, it has been shown that NK-3 receptor agonists have anxiolytic-like and antidepressant-like effects in mice and rats, while an NK-3 receptor antagonist was reported to be anxiogenic in mice. These findings indicate that different TK receptor subtypes may be involved in anxiolytic-like and antidepressant-like effects in laboratory animals and raise interest for the possible role of NK-3 receptors in the control of anxiety and depression in man.  相似文献   

3.
4.
Experimental pancreatitis was induced by cooling the splenetic part of rat pancreas with chlorethyl, and the cells of duodenal area of the pancreas were studied at different stages of pancreatitis using cytomorphometry, cytomorphology and autoradiography. Interlobular and interacinar oedemas were observed at the first hours after treatment. In 24 hours the intracellular oedema of exocrine pancreatic cells (EP) was detected. On day 14 after treatment typical acute edematous pancreatitis developed. The observed changes involve a pathological activation of EP of the duodenal area, a subsequent restoration of the structure of this area, and later a passage of pancreatitis into the chronic form. The usefulness of this model of pancreatitis for quantitative cytochemical studies of EP during pathogenesis and drug treatment is discussed.  相似文献   

5.
The role of pancreatic acinar cells in initiating necro-inflammatory responses during the early onset of alcoholic acute pancreatitis (AP) has not been fully evaluated. We investigated the ability of acinar cells to generate pro- and anti-inflammatory mediators, including inflammasome-associated IL-18/caspase-1, and evaluated acinar cell necrosis in an animal model of AP and human samples. Rats were fed either an ethanol-containing or control diet for 14 weeks and killed 3 or 24 h after a single lipopolysaccharide (LPS) injection. Inflammasome components and necro-inflammation were evaluated in acinar cells by immunofluorescence (IF), histology, and biochemical approaches. Alcohol exposure enhanced acinar cell-specific production of TNFα, IL-6, MCP-1 and IL-10, as early as 3 h after LPS, whereas IL-18 and caspase-1 were evident 24 h later. Alcohol enhanced LPS-induced TNFα expression, whereas blockade of LPS signaling diminished TNFα production in vitro, indicating that the response of pancreatic acinar cells to LPS is similar to that of immune cells. Similar results were observed from acinar cells in samples from patients with acute/recurrent pancreatitis. Although morphologic examination of sub-clinical AP showed no visible signs of necrosis, early loss of pancreatic HMGB1 and increased systemic levels of HMGB1 and LDH were observed, indicating that this strong systemic inflammatory response is associated with little pancreatic necrosis. These results suggest that TLR-4-positive acinar cells respond to LPS by activating the inflammasome and producing pro- and anti-inflammatory mediators during the development of mild, sub-clinical AP, and that these effects are exacerbated by alcohol injury.  相似文献   

6.
The proteins expressed in pancreatic acinar cells during the initiation of acute pancreatitis may determine the severity of the disease. Cerulein pancreatitis is one of the best characterized models for acute pancreatitis. Present study aims to determine the differentially expressed proteins in cerulein-stimulated pancreatic acinar cells as an in vitro model for acute pancreatitis. Rat pancreatic acinar AR42J cells were treated with 10(-8)M cerulein for 12h. The protein patterns separated by two-dimensional electrophoresis using pH gradients of 5-8 were compared between the cells treated without cerulein and those with cerulein. The changed proteins were conclusively identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of the peptide digests. As a result, 10 proteins (Orp150 protein, protein disulfide isomerase related protein, dnaK-type molecular chaperone hsp72-ps1, mitochondrial glutamate dehydrogenase, similar to chaperonin containing TCP-1 beta subunit, RuvB-like protein 1, heterogeneous nuclear ribonucleoprotein H1, aldehyde reductase 1, triosephosphate isomerase 1, peroxiredoxin 2) were up-regulated while four proteins (vasolin-containing protein, 78 kDa glucose-regulated protein precursor, heat shock protein 8, adenosylhomocysteinase) were down-regulated by cerulein in pancreatic acinar AR42J cells. These proteins are related to chaperone, cell defense mechanism against oxidative stress or DNA damage, anti-apoptosis and energy generation. The differentially expressed proteins by ceruein share their functional roles in pancreatic acinar cells, suggesting the possible involvement of oxidative stress, DNA damage, and anti-apoptosis in pathogenesis of acute pancreatitis. Proteins involved in cellular defense mechanism and energy production may protect pancreatic acinar cells during the development of pancreatitis.  相似文献   

7.

Objective

The purpose of this study was to investigate the expression of collagen type I and the mRNA level of its regulatory factor, TGF-β1, in tissue samples of acute pancreatitis and to determine the significance of collagen type I in predisposition to pancreatic fibrosis during acute pancreatitis.

Methods

Sprague–Dawley rats were divided into an experimental group (30 rats) and a control group (12 rats). The rats in the experimental group were intraperitoneally injected with cerulein to induce acute pancreatitis. The distribution and expression of collagen type I in the pancreatic tissues were examined by immunohistochemical staining. The mRNA level of TGF-β1 was determined by real-time polymerase chain reaction (PCR).

Results

(1) Collagen type I was localized in the cytoplasm of pancreatic acinar cells. With pancreatitis progressed, strong positive staining for collagen type I covered whole pancreatic lobules, whereas, the islet tissue, interlobular area, and pancreatic necrotic area were negative for collagen type I. (2) The level of TGF-β1 mRNA in rats from the experimental group increased gradually the establishment of acute pancreatitis, and was significantly higher than that in the control group at every time point.

Conclusions

(1) During acute pancreatitis, pancreatic acinar cells, not pancreatic stellate cells as traditionally believed, were the naïve effector cells of collagen type I. (2) TGF-β1 played a key role in regulating collagen I expression during acute pancreatitis.  相似文献   

8.
Yu JH  Yun SY  Lim JW  Kim H  Kim KH 《Proteomics》2003,3(12):2446-2453
Cerulein pancreatitis was shown to be one of the best characterized models for acute pancreatitis. High doses of cerulein induce a dysregulation of the digestive enzyme production and cytoplasmic vacuolization and the death of acinar cells, edema formation, and an infiltration of inflammatory cells into the pancreas, which are similar symptoms shown in human acute pancreatitis. The present study aims to determine the differentially expressed proteins in cerulein-treated pancreatic acinar cells as an in vitro model for acute pancreatitis. Pancreatic acinar AR42J cells were treated with 10(-8) M cerulein for 24 h. The changed protein patterns separated by two-dimensional electrophoresis using pH gradients of 5-8 were conclusively identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry analysis of the peptide digests. Five differentially expressed proteins (heat shock protein 90, mitochondrial ATP synthase beta chain precursor, tubulin beta chain, 3-mercaptopyruvate sulfurtransferase, mitochondrial ATP synthase subunit D) were identified in cerulein-treated AR42J cells. These proteins are related to cellular stress such as reactive oxygen species, cytoskeletal function, and cell signaling. In conclusion, the differentially expressed proteins will provide valuable information to understand the pathophysiologic mechanism of acute pancreatitis and may be useful for prognostic indices of acute pancreatitis.  相似文献   

9.
Cyclooxygenases as the key enzymes of prostaglandin synthesis have an important role in regulation of inflammation. We describe that Cox-1 and Cox-2 are synthesized in rat pancreatic acinar cells. Upon induction of pancreatitis, Cox-2 mRNA increases while Cox-1 expression remains constant. However, the cyclooxygenase inhibitor indomethacin has no influence by a feed-back mechanism on the expression of the two isoforms. We have previously shown that prostaglandins of the E-type inhibit cholecytoskinin-stimulated amylase secretion. Consistent with this observation, we find here that pancreatitis inhibits CCK-stimulated amylase secretion from isolated acini. In agreement with this result, the effect is neutralized by indomethacin inhibition of prostaglandin synthesis. In summary, we have found that both cyclooxygenases are synthesized in pancreatic acinar cells and that their expression is differentially regulated which in turn influences amylase secretion.  相似文献   

10.
This study determines the effect of 7-day pretreatment with L364,718 (a potent cholecystokinin (CCK) receptor antagonist) on pancreatic cell turnover during the course of acute pancreatitis (AP) induced in the rat by bile-pancreatic duct obstruction (BPDO). Cell cycle distribution and apoptosis were analyzed by flow cytometry using propidium iodide (PI) and Annexin V staining. Besides altering the pancreatic redox status, long-term CCK blockade inhibited the normal proliferation of acinar cells as indicated by the significant increase in G(0)/G(1)-phase cells and the decrease in G(2)/M-cells found in control rats treated with L364,718 for 7 days. A progressive depletion in pancreatic GSH was found from 3 to 24h after BPDO with similar values in L364,718-pretreated and non-treated rats, which led to a maximum peak in malondialdehyde (MDA) levels 6h after BPDO. However, plasma amylase activity and ascites volume indicated higher severity of AP in L364,718-pretreated rats. CCK blockade enhanced the alterations that appear in cell cycle distribution of acinar cells during AP demonstrated by the significantly higher increase in G(0)/G(1)-cells and decrease in S-cells found in L364,718-treated rats 48h after BPDO. Our results indicate that the renewal of acinar cells deleted by apoptosis 48h after BPDO worsens if CCK is blocked before inducing AP.  相似文献   

11.
12.
Extending our previous studies, our results indicate that cultured cortical astrocytes from the mouse possess only NK-1 receptors coupled to phospholipase C. An excellent correlation was found in the potency of tachykinins and selective analogs at inhibiting 125I-BHSP binding and at stimulating phospholipase C activity, their rank order being that of NK-1 receptors. No binding sites could be found with ligands of NK-2 or NK-3 receptors. No additive effect could be shown with NK-2 or NK-3 agonists when phospholipase C activity was estimated with high concentrations of NK-1 agonists. C- or N-terminal SP fragments did not modify SP- or [Pro9]SP-evoked responses.  相似文献   

13.
J Wang  G Chen  H Gong  W Huang  D Long  W Tang 《PloS one》2012,7(7):e40160
Severity of acute pancreatitis contributes to the modality of cell death. Pervious studies have demonstrated that the herb medicine formula "Dachengqi Decoction" (DCQD) could ameliorate the severity of acute pancreatitis. However, the biological mechanisms governing its action of most remain unclear. The role of apoptosis/necrosis switch within acute pancreatitis has attracted much interest, because the induction of apoptosis within injured cells might suppress inflammation and ameliorate the disease. In this study, we used cerulein (10(-8) M)-stimulated AR42J cells as an in vitro model of acute pancreatitis and retrograde perfusion into the biliopancreatic duct of 3.5% sodium taurocholate as an in vivo rat model. After the treatment of DCQD, cell viability, levels of apoptosis and necrosis, reactive oxygen species positive cells, serum amylase, concentration of nitric oxide and inducible nitric oxide syntheses, pancreatic tissue pathological score and inflammatory cell infiltration were tested. Pretreatment with DCQD increased cell viability, induced apoptosis, decreased necrosis and reduced the severity of pancreatitis tissue. Moreover, treatment with DCQD reduced the generation of reactive oxygen species in AR42J cells but increased the concentration of nitric oxide of pancreatitis tissues. Therefore, the regulation of apoptosis/necrosis switch by DCQD might contribute to ameliorating the pancreatic inflammation and pathological damage. Further, the different effect on reactive oxygen species and nitric oxide may play an important role in DCQD-regulated apoptosis/necrosis switch in acute pancreatitis.  相似文献   

14.
Caerulein-induced acute pancreatitis is characterized by the occurrence of two membrane-bound vacuolar systems in acinar cells. Beside digestive enzymes containing secretory vacuoles, lysosomal autophagic structures can be identified at the ultrastructural level. In the present study glycoconjugate patterns of the surrounding membranes were characterized by ultrastructural lectin-binding experiments using five colloidal-gold labeled lectins with distinct sugar specificities. Furthermore, the profile of membrane glycoproteins of isolated vacuolar fractions was studied by SDS-PAGE and lectin-blotting. In pancreatitis, membranes of secretory vacuoles showed a significant lower degree of lectin-binding compared to normal zymogen granules. In contrast, newly appearing autophagic vacuoles in pancreatitis revealed a strong membrane labelling for most lectins used. The pattern of membrane glycoproteins of secretory and autophagic vacuoles as determined by SDS-PAGE and lectin-blotting differed from those of normal zymogen granules resembling the protein profile of smooth microsomes. Since this pattern requires a previous passage through Golgi stacks, it is assumed that the two types of vacuoles derive from Golgi elements. For the pathogenesis of caerulein pancreatitis these vacuolar post-Golgi structures seem to play an important role.  相似文献   

15.
Summary Caerulein-induced acute pancreatitis is characterized by the occurrence of two membrane-bound vacuolar systems in acinar cells. Beside digestive enzymes containing secretory vacuoles, lysosomal autophagic structures can be identified at the ultrastructural level. In the present study glycoconjugate patterns of the surrounding membranes were characterized by ultrastructural lectin-binding experiments using five colloidal-gold labeled lectins with distinct sugar specificities. Furthermore, the profile of membrane glycoproteins of isolated vacuolar fractions was studied by SDS-PAGE and lectin-blotting. In pancreatitis, membranes of secretory vacuoles showed a significant lower degree of lectin-binding compared to normal zymogen granules. In contrast, newly appearing autophagic vacuoles in pancreatitis revealed a strong membrane labelling for most lectins used. The pattern of membrane glycoproteins of secretory and autophagic vacuoles as determined by SDS-PAGE and lectin-blotting differed from those of normal zymogen granules resembling the protein profile of smooth microsomes. Since this pattern requires a previous passage through Golgi stacks, it is assumed that the two types of vacuoles derive from Golgi elements. For the pathogenesis of caerulein pancreatitis these vacuolar post-Golgi structures seem to play an important role.  相似文献   

16.
The time-course of oxygen free radicals (OFR) generation within acinar cells was studied at different stages of acute pancreatitis (AP) induced in rats by duct obstruction (PDO) for 48 h by flow cytometry, using dihydrorhodamine-123 (DHR) as fluorescent dye. Parallel measurements of the most common markers of oxidative stress such as glutathione (GSH) depletion and malondialdehyde (MDA) levels in pancreas were also performed. OFR production significantly increased within acinar cells at early stages of AP, concomitant with a marked depletion in pancreatic GSH. Lipid peroxidation was significantly enhanced 6 h after PDO, suggesting that the antioxidant defence system of the cell is overwhelmed by OFR production. Both MDA and OFR production in acinar cells decreased to normal values at late AP stages, thus allowing the recovery of pancreatic GSH levels 48 h after PDO. Among the two types of acinar cells differentiated by flow cytometry, R1 and R2, it was the R2 population that showed higher values of DHR dye. However, no differences between the two cell types were found regarding the amount of OFR generation. Our results demonstrate that individual acinar cells significantly contribute to produce large amounts of OFR at early stages of AP. The two existing populations of acinar cells displayed similar behaviour regarding oxidative stress over the course of the disease.  相似文献   

17.
The possible existence of NK-2 receptor subtypes in peripheral smooth muscle preparations from rabbit and hamster was investigated by studying the effect of neurokinin A, the selective NK-2 receptor agonist [beta Ala8] neurokinin A (4-10), the selective NK-2 tachykinin receptor antagonists, MEN 10,376, L 659,877 and R 396, and the pseudopeptide derivative of neurokinin A (4-10), MDL 28,564. All experiments were performed in the presence of peptidase inhibitors (captopril, bestatin and thiorphan, 1 microM each). Both neurokinin A and [beta Ala8] neurokinin A (4-10) produced concentration-dependent contractions of the rabbit isolated bronchus and hamster isolated stomach and colon, as well as enhancement of the nerve-mediated twitches of rabbit isolated vas deferens (pars prostatica). MEN 10,376, L 659,877 and R 396 antagonized the effect of the NK-2 receptor selective agonist in all four tissues under study, although marked differences in antagonist potency were evident for the three antagonists. Thus MEN 10,376 was distinctly more potent (about 100 times) in rabbit than in hamster preparations while L 659,877 and R 396 were more potent in hamster than rabbit preparations. MDL 28,564 showed a distinct agonist character in rabbit preparations while it was virtually inactive in hamster preparations, where it antagonized the effect of the NK-2 receptor selective agonist.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Acinar cells from guinea pig pancreas possess six different classes of receptors that mediate the actions of various secretagogues on enzyme secretion. Four classes of receptors stimulate enzyme secretion by causing mobilization of adenylate cyclase and increased cellular cyclic AMP. This paper summarizes the results of studies that have employed radiolabeled secretagogues of high specific activity and have measured directly the interaction of secretagogues with their receptors on pancreatic acinar cells.  相似文献   

19.
20.
Acute pancreatitis (AP) has been associated with an up-regulation of substance P (SP) and neurokinin-1 receptor (NK1R) in the pancreas. Increased SP-NK1R interaction was suggested to be pro-inflammatory during AP. Previously, we showed that caerulein treatment increased SP/NK1R expression in mouse pancreatic acinar cells, but the effect of SP treatment was not evaluated. Pancreatic acinar cells were obtained from pancreas of male swiss mice (25–30 g). We measured mRNA expression of preprotachykinin-A (PPTA) and NK1R following treatment of SP (10−6M). SP treatment increased PPTA and NK1R expression in isolated pancreatic acinar cells, which was abolished by pretreatment of a selective NK1R antagonist, CP96,345. SP also time dependently increased protein expression of NK1R. Treatment of cells with a specific NK1R agonist, GR73,632, up-regulated SP protein levels in the cells. Using previously established concentrations, pre-treatment of pancreatic acinar cells with Gö6976 (10 nM), rottlerin (5 μM), PD98059 (30 μM), SP600125 (30 μM) or Bay11-7082 (30 μM) significantly inhibited up-regulation of SP and NK1R. These observations suggested that the PKC-ERK/JNK-NF-κB pathway is necessary for the modulation of expression levels. In comparison, pre-treatment of CP96,345 reversed gene expression in SP-induced cells, but not in caerulein-treated cells. Overall, the findings in this study suggested a possible auto-regulatory mechanism of SP/NK1R expression in mouse pancreatic acinar cells, via activation of NK1R. Elevated SP levels during AP might increase the occurrence of a positive feedback loop that contributes to abnormally high expression of SP and NK1R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号