首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The functional benefit of cell transplantation after a myocardial infarction is diminished by early cell losses. IGF-1 enhances cell proliferation and survival. We hypothesized that IGF-1-transfected smooth muscle cells (SMCs) would enhance cell survival and improve engraftment after cell transplantation. The IGF-1 gene was transfected into male SMCs and compared with SMCs transfected with a plasmid vector (vector control) and nontransfected SMCs (cell control). IGF-1 mRNA (n=10/group) and protein levels (n=6/group) were higher (P <0.05 for all groups) at 3, 7, and 14 days compared with controls. VEGF was also increased in parallel to enhanced IGF-1 expression. IGF-1-transfected cells demonstrated greater cell proliferation, stimulated angiogenesis, and decreased caspase-3 activity after simulated ischemia and reperfusion (P <0.05 for all groups compared with vector or cell controls). A uniform left ventricular injury was produced in female rats using a cryoprobe. Three weeks later, 2 x 10(6) cells from three groups were implanted into the scar. One week later, IGF-1-transfected SMCs had increased myocardial IGF-1 and VEGF levels, increased Bcl2 expression, limited cell apoptosis, and enhanced vessel formation in the myocardial scar compared with the two control groups (P <0.05 for all groups). The proportion of SMCs surviving in the implanted region was greater (P <0.05) in the IGF-1-transfected group than in the vector or cell controls. Gene enhancement with IGF-1 improved donor cell proliferation, survival, and engraftment after cell transplantation, perhaps mediated by enhanced angiogenesis and reduced apoptosis.  相似文献   

2.
Cell transplantation prevents cardiac dysfunction after myocardial infarction. However, because most implanted cells are lost to ischemia and apoptosis, the benefits of cell transplantation on heart function could be improved by increasing cell survival. To examine this possibility, male Lewis rat aortic smooth muscle cells (SMCs; 4 x 10(6)) were pretreated with antiapoptotic Bcl-2 gene transfection or heat shock and then implanted into the infarcted myocardium of anesthetized, syngenic female rats (n = 23 per group). On the first day after transplantation, apoptotic SMCs were quantified by using transferase-mediated dUTP nick-end labeling staining. On days 7 and 28, grafted cell survival was quantified by using real-time PCR, and heart function was assessed with the use of echocardiography and the Langendorff apparatus. SMCs given antiapoptotic pretreatments exhibited improvements in each measure relative to controls. Apoptosis was reduced in Bcl-2-treated cells relative to all other groups (P < 0.05), whereas survival (P < 0.01) was increased. Heat shock also significantly decreased apoptosis and increased survival relative to control groups (P < 0.05 for group effect), although these effects were less pronounced than in the Bcl-2-treated group. Further, scar areas were reduced in both Bcl-2- and heat shock-treated groups relative to controls (P < 0.05), and fractional area change and cardiac function were greater (P < 0.05 for both measures). These results indicate that antiapoptosis pretreatments reduced grafted SMC loss after transplantation and enhanced grafted cell survival and ventricular function, which was directly related (r = 0.72; P = 0.002) to the number of surviving engrafted cells.  相似文献   

3.
Postinfarct congestive heart failure is one of the leading causes of morbidity and mortality in developed and developing countries. The main purpose of this study was to investigate whether transplantation of bone marrow stromal cells (BMSC) directly into the myocardium could improve the performance of healed infarcted rat hearts. Cell culture medium with or without BMSC was injected into borders of cardiac scar tissue 4 wk after experimental infarction. Cardiac performance was evaluated 2 wk after cellular (n = 10) or medium (n = 10) injection by electro- and echocardiography. Histological study was performed 3 wk after treatment. Electrocardiography of BMSC-treated infarcted rats showed electrical and mechanical parameters more similar to those in control than in medium-treated animals: a normal frontal QRS axis in 6 of 10 BMSC-treated and all control rats and a rightward deviation of the QRS axis in all 10 medium-treated animals. BMSC treatment, assessed by echocardiography, improved fractional shortening (39.00 +/- 4.03%) compared with medium-treated hearts (18.20 +/- 0.74%) and prevented additional changes in cardiac geometry. Immunofluorescence microscopy revealed colocalization of 4',6-diamidino-2-phenylindole-labeled nuclei of transplanted cells with cytoskeletal markers for cardiomyocytes and smooth muscle cells, indicating regeneration of damaged myocardium and angiogenesis. These data provide strong evidence that BMSC implantation can improve cardiac performance in healed infarctions and open new promising therapeutic opportunities for patients with postinfarction heart failure.  相似文献   

4.
We evaluated the impact of donor age on the efficacy of myocardial cellular therapy for ischemic cardiomyopathy. Characteristics of smooth muscle cells (SMC), bone marrow stromal cells (MSCs), and skeletal muscle cells (SKMCs) from young, adult, and old rats were compared in vitro. Three weeks after coronary ligation, 3.5 million SMCs (n = 11) or MSCs (n = 9) from old syngenic rats or culture medium (n = 6) were injected into the ischemic region. Five weeks after implantation, cardiac function was assessed by echocardiography and the Langendorff apparatus. In the in vitro study, the numbers and proliferation of MSCs from fresh bone marrow and SKMCs from fresh tissue but not SMCs were markedly diminished in old animals (P < 0.05 both groups). SKMCs from old animals did not reach confluence. After treatment with 5-azacytidine (azacitidine), the myogenic potential of old MSCs was decreased compared with young MSCs. In the in vivo study, both SMC and MSC transplantation induced significant angiogenesis compared with media injections (P < 0.05 both groups). Transplantation of SMCs but not MSCs prevented scar thinning (P = 0.03) and improved ejection fraction and fractional shortening (P < 0.05). Load-independent indices of cardiac function in a Langendorff preparation confirmed improved function in the aged SMC group (P = 0.01) but not in the MSC group compared with the control group. In conclusion, donor age adversely impacts the efficacy of cellular therapy for myocardial regeneration and is cell-type dependent. SMCs from old donors retain their ability to improve cardiac function after implantation into ischemic myocardium.  相似文献   

5.
Liu J  Wu S  Wei H  Zhou K  Ruan Y  Lai W 《Hormone research》2002,58(1):16-20
OBJECTIVE: To investigate the adjustment of estrogen, progesterone and testosterone on the proliferation of female and male rat vascular endothelial cells (VECs) separately. METHODS: Rat lung VECs were cultured according to the block explanting method. MTT assay was used to measure the proliferation of VECs. RESULTS: 17beta-Estradiol (E(2)) at 3 x 10(-8) and 3 x 10(-7) M accelerated the proliferation of female rat VECs (p < 0.01). E(2) at 3 x 10(-9), 3 x 10(-8) and 3 x 10(-7) M accelerated the proliferation of male rat VECs (p < 0.05). Tamoxifen, the estrogen receptor antagonist, could block the effect of estrogen on the proliferation of VECs. Testosterone at 3 x 10(-8) and 3 x 10(-7) M significantly increased the proliferation of male rat VECs (p < 0.05), but had no effect on female rat VECs. Progesterone at 10(-9) and 10(-8) M had no effect on female rat VECs alone. When the ratio of E(2) to progesterone was 3/10, the proliferation of female rat VECs was accelerated (p < 0.05). When the ratio of E(2) to testosterone was 1/1, the proliferation of female rat VECs was also hastened (p < 0.05). However, when the ratio was reduced to 1/100, the hastening effect disappeared. CONCLUSION: Estrogen can speed up the proliferation of female and male rat VECs, while progesterone has no effect on female rat VECs alone. The balance of the ratio of E(2) to testosterone, E(2) to progesterone may play an important role in the proliferation of female rat VECs.  相似文献   

6.
The adult heart contains a population of cardiac progenitor cells (CPCs). Growing and collecting an adequate number of CPCs demands complex culture media containing growth factors. Since activated macrophages secrete many growth factors, we investigated if activated isolated heart cells seeded on a feeder layer of activated peritoneal macrophages (PM) could result in CPCs and if these, in turn, could exert cardioprotection in rats with myocardial infarction (MI). Heart cells of inbred Wistar rats were isolated by collagenase digestion and cultured on PM obtained 72 h after intraperitoneal injection of 12 ml thioglycollate. Cells (1 × 106) exhibiting CPC phenotype (immunohistochemistry) were injected in the periphery of rat MI 10 min after coronary artery occlusion. Control rats received vehicle. Three weeks later, left ventricular (LV) function (echocardiogram) was assessed, animals were euthanized and the hearts removed for histological studies. Five to six days after seeding heart cells on PM, spherical clusters composed of small bright and spherical cells expressing mostly c-Kit and Sca-1 antigens were apparent. After explant, those clusters developed cobblestone-like monolayers that expressed smooth muscle actin and sarcomeric actin and were successfully transferred for more than ten passages. When injected in the MI periphery, many of them survived at 21 days after coronary ligature, improved LV ejection fraction and decreased scar size as compared with control rats. CPC-derived cells with cardiocyte and smooth muscle phenotypes can be successfully grown on a feeder layer of activated syngeneic PM. These cells decreased scar size and improved heart function in rats with MI.  相似文献   

7.
Renal resistance to antidiuretic hormone (ADH) has been speculated to be a mechanism of transient nephrogenic diabetes insipidus occurring during late pregnancy. In order to study possible involvement of ovarian steroids in this mechanism, their effect on cyclic adenosine 3':5'-monophosphate (cAMP) response to arginine vasopressin (AVP) was examined utilizing rat and human renal medullary cells in monolayer culture. In both rat and human cells, estradiol significantly reduced cAMP response to AVP; estradiol at 1.84 x 10(-8) M, 1.84 x 10(-7) M and 1.84 x 10(-6) M decreased cAMP production stimulated by 10(-8) M AVP to 78 +/- 5%, 67 +/- 2% (P less than 0.05) and 52 +/- 1% (P less than 0.001) of the control in rat renal cells, respectively, and in human renal cells the effect of estradiol was comparable to that in rat cells. In rat renal cells, progesterone also reduced cAMP response to AVP dose-dependently; progesterone at 1.59 x 10(-7) M, 1.59 x 10(-6) M and 1.59 x 10(-5) M decreased cAMP production stimulated by 10(-8) M AVP to 87 +/- 1%, 72 +/- 5% (P less than 0.001) and 37 +/- 5% (P less than 0.001) of the control, respectively. On the other hand, corticosterone and dexamethasone at concentrations ranging from 10(-8) M to 10(-5) M and aldosterone at concentrations ranging from 10(-9) M to 10(-5) M did not alter cAMP response to AVP significantly. The suppressive effect of estradiol increased with time until six hours and thereafter it reached a plateau.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Cardiac tissue engineering has been motivated by the need to create functional tissue equivalents for scientific studies and cardiac tissue repair. We previously demonstrated that contractile cardiac cell-polymer constructs can be cultivated using isolated cells, 3-dimensional scaffolds, and bioreactors. In the present work, we examined the effects of (1) cell source (neonatal rat or embryonic chick), (2) initial cell seeding density, (3) cell seeding vessel, and (4) tissue culture vessel on the structure and composition of engineered cardiac muscle. Constructs seeded under well-mixed conditions with rat heart cells at a high initial density ((6-8) x 10(6) cells/polymer scaffold) maintained structural integrity and contained macroscopic contractile areas (approximately 20 mm(2)). Seeding in rotating vessels (laminar flow) rather than mixed flasks (turbulent flow) resulted in 23% higher seeding efficiency and 20% less cell damage as assessed by medium lactate dehydrogenase levels (p < 0.05). Advantages of culturing constructs under mixed rather than static conditions included the maintenance of metabolic parameters in physiological ranges, 2-4 times higher construct cellularity (p &le 0.0001), more aerobic cell metabolism, and a more physiological, elongated cell shape. Cultivations in rotating bioreactors, in which flow patterns are laminar and dynamic, yielded constructs with a more active, aerobic metabolism as compared to constructs cultured in mixed or static flasks. After 1-2 weeks of cultivation, tissue constructs expressed cardiac specific proteins and ultrastructural features and had approximately 2-6 times lower cellularity (p < 0.05) but similar metabolic activity per unit cell when compared to native cardiac tissue.  相似文献   

9.
The effects of RU 486 on the modulation of LH release by progesterone were investigated in cultured anterior pituitary cells from ovariectomized adult female rats. The inhibitory effect of progesterone on LH secretion was demonstrable in estrogen-treated pituitary cells, in which addition of 10(-6) M progesterone to cells cultured in the presence of 10(-9) M estradiol for 52 h reduced the LH response to GnRH (10(-11) to 10(-7) M). When RU 486 was superimposed upon such combined treatment with estradiol and progesterone, the suppressive effect of progesterone on GnRH-induced LH release was completely abolished. The converse (facilitatory) effect of progesterone on LH secretion was observed in pituitary cells pretreated with 10(-9) M estradiol for 48 h and then with 10(-6) M progesterone for 4 h. When RU 486 was added together with progesterone during the 4 h treatment period, the facilitatory effect of progesterone was blocked and LH release fell to below the corresponding control value. The direct effect of RU 486 on LH secretion in the absence of exogenous progesterone was evaluated in cells cultured in the absence or presence of 10(-9) M estradiol and then treated for 4 to 24 h with increasing concentrations of RU 486 (10(-12) to 10(-5) M) and stimulated with GnRH (10(-9) M) during the last 3 h of incubation. In estrogen-deficient cultures, 4 h exposure to RU 486 concentrations of 10(-6) M and above decreased the LH response to GnRH by up to 50%. In cultures pretreated with 10(-9) M estradiol, GnRH-stimulated LH responses was inhibited by much lower RU 486 concentrations, of 10(-9) M and above. After 24 h of incubation the effects of RU 486 were similar in control and estradiol-pretreated pituitary cell cultures. Thus, RU 486 alone has a significant inhibitory effect on LH secretion that is enhanced in the presence of estrogen. The antiprogestin is also a potent antagonist of both the inhibitory and the facilitatory actions of progesterone upon pituitary gonadotropin release in vitro.  相似文献   

10.
The effects of sarpogrelate on cardiomyocyte hypertrophy   总被引:3,自引:0,他引:3  
Ikeda K  Tojo K  Tokudome G  Hosoya T  Harada M  Nakao K 《Life sciences》2000,67(24):2991-2996
Sarpogrelate was developed as an antiplatelet agent antagonizing 5-hydroxytryptamine (5-HT) receptors. It had been reported that 5-HT receptors were expressed in cardiovascular system, and that sarpogrelate had antihypertrophic effects in vascular smooth muscle cells. Cardiac hypertrophy is a major problem in cardiac diseases, so the present study was designed to elucidate the effects of sarpogrelate on cardiac hypertrophy. Cultured rat cardiomyocytes (MCs) and cardiac nonmyocytes (NMCs) were prepared by Percoll gradient and adhesion method and MCs were incubated with (MCs/NMCs) or without NMCs. As an index of protein synthesis of MCs, [3H]-leucine uptake into MCs and MCs/NMCs was measured. Sarpogrelate decreased [3H]-leucine uptake into MCs (maximum 62.6+/-20.6% of control at 10(-4)M, p<0.05 vs. control). Sarpogrelate also significantly attenuated angiotensin-II- and endothelin-1-induced [3H]-leucine uptake. These results indicated that sarpogrelate might have antihypertrophic effects and could be a useful aid for cardiovascular disease.  相似文献   

11.
It is well known that the implantation of bone marrow mononuclear cells (BM-MNCs) into ischemic hearts can induce angiogenesis and improve cardiac function after myocardial infarction, but the precise mechanisms of these actions are unclear. We hypothesize that the cytokines produced by BM-MNCs play a key role in this cell-based therapy. BM-MNCs from rats were cultured under normoxic or hypoxic (1% O2) conditions for 24 h, and then supernatants were collected for study. ELISA and Western blotting analysis showed that various cytokines, including VEGF, IL-1 beta, PDGF, and IGF-1, were produced from BM-MNCs, some of which were enhanced significantly under hypoxia stimulation. When compared with a control blank medium, the supernatants of BM-MNCs cultured under normoxic or hypoxic conditions inhibited apoptosis significantly and preserved the contractile capacity of isolated adult rat cardiomyocytes in vitro (P < 0.05). Using a rat model of acute myocardial infarction, we injected the supernatants of BM-MNCs or control medium intramyocardially on day 0 and then intraperitoneally on days 2, 4, and 6 after infarction. When compared with the control medium, the supernatants of BM-MNCs cultured under both normoxic or hypoxic conditions increased the microvessel density and decreased the fibrotic area in the infarcted myocardium significantly, contributing to remarkable improvement in cardiac function. Various cytokines were produced by BM-MNCs, and these cytokines contributed to functional improvement of the infarcted heart by directly preserving the contractile capacity of the myocardium, inhibiting apoptosis of cardiomyocytes, and inducing therapeutic angiogenesis of the infarcted heart.  相似文献   

12.
Multiple mechanisms contribute to progressive cardiac dysfunction after myocardial infarction (MI) and inflammation is an important mediator. Mast cells (MCs) trigger inflammation after MI by releasing bio‐active factors that contribute to healing. c‐Kit‐deficient (KitW/W‐v) mice have dysfunctional MCs and develop severe ventricular dilatation post‐MI. We explored the role of MCs in post‐MI repair. Mouse wild‐type (WT) and KitW/W‐v MCs were obtained from bone marrow (BM). MC effects on fibroblasts were examined in vitro by proliferation and gel contraction assays. MCs were implanted into infarcted mouse hearts and their effects were evaluated using molecular, cellular and cardiac functional analyses. In contrast to WT, KitW/W‐v MC transplantation into KitW/W‐v mice did not improve cardiac function or scar size post‐MI. KitW/W‐v MCs induced significantly reduced fibroblast proliferation and contraction compared to WT MCs. MC influence on fibroblast proliferation was Basic fibroblast growth factor (bFGF)‐dependent and MC‐induced fibroblast contractility functioned through transforming growth factor (TGF)‐β. WT MCs transiently rescue cardiac function early post‐MI, but the benefits of BM cell implantation lasted longer. MCs induced increased inflammation compared to the BM‐injected mice, with increased neutrophil infiltration and infarct tumour necrosis factor‐α (TNF‐α) concentration. This augmented inflammation was followed by increased angiogenesis and myofibroblast formation and reduced scar size at early time‐points. Similar to the functional data, these beneficial effects were transient, largely vanishing by day 28. Dysfunctional KitW/W‐v MCs were unable to rescue cardiac function post‐MI. WT MC implantation transiently enhanced angiogenesis and cardiac function. These data suggest that increased inflammation is beneficial to cardiac repair, but these effects are not persistent.  相似文献   

13.

Background

Bradykinin (BK) induces angiogenesis by promoting vessel permeability, growth and remodeling. This study aimed to demonstrate that the B2R antagonist, fasitibant, inhibits the BK pro-angiogenic effects.

Methodology

We assesed the ability of fasibitant to antagonize the BK stimulation of cultured human cells (HUVEC) and circulating pro-angiogenic cells (PACs), in producing cell permeability (paracellular flux), migration and pseocapillary formation. The latter parameter was studied in vitro (matrigel assay) and in vivo in mice (matrigel plug) and in rat model of experimental osteoarthritis (OA). We also evaluated NF-κB activation in cultured cells by measuring its nuclear translocation and its downstream effectors such as the proangiogenic ciclooxygenase-2 (COX-2), prostaglandin E-2 and vascular endothelial growth factor (VEGF).

Principal findings

HUVEC, exposed to BK (1–10 µM), showed increased permeability, disassembly of adherens and tight-junction, increased cell migration, and pseudocapillaries formation. We observed a significant increase of vessel density in the matrigel assay in mice and in rats OA model. Importantly, B2R stimulation elicited, both in HUVEC and PACs, NF-κB activation, leading to COX-2 overexpression, enhanced prostaglandin E-2 production. and VEGF output. The BK/NF-κB axis, and the ensuing amplification of inflammatory/angiogenic responses were fully prevented by fasitibant as well as by IKK VII, an NF-κB. Inhibitor.

Conclusion

This work illustrates the role of the endothelium in the inflammation provoked by the BK/NF-κB axis. It also demonstates that B2R blockade by the antaogonist fasibitant, abolishes both the initial stimulus and its amplification, strongly attenuating the propagation of inflammation.  相似文献   

14.
Quadruplicate wells of pig luteal cells were incubated for 24 h in the presence of different concentrations of retinol, beta-carotene (0, 1 x 10(-5), 1 x 10(-6) and 1 x 10(-7) M) or retinoic acid (0, 1 x 10(-6), 1 x 10(-7) and 1 x 10(-8) M). In addition, the responsiveness of luteal cells to LH challenge was also evaluated. Progesterone was assayed in the media. Cell viability was estimated using trypan blue exclusion and showed over 95% viability. In the presence of LH, progesterone content in the medium was increased by 7-fold. As compared to their respective controls, all concentrations of retinoic acid and beta-carotene increased progesterone content in the media. The highest level of stimulation was observed with 1 x 10(-6) M-retinoic acid (5-fold increase) and 1 x 10(-7) M-beta-carotene (10-fold increase). Only 1 x 10(-5) M-retinol stimulated progesterone secretion (over 3-fold). Therefore, retinol, retinoic acid and beta-carotene stimulate progesterone secretion by pig luteal cells in vitro.  相似文献   

15.
The highly toxic, polychlorinated aromatic compound 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) occurs as a contaminant throughout the environment. Epidemiology studies of populations accidentally exposed to TCDD have failed to identify TCDD as a human teratogen, but these studies are limited by the small numbers of exposed pregnancies and imprecise estimates of exposure. TCDD is highly teratogenic in mice, inducing cleft palate and hydronephrosis. TCDD exposure in vivo of embryonic mice alters the differentiation and expression of growth factors in the medial epithelial palatal cells. These alterations also occur in rat and mouse palates exposed to TCDD in organ culture. In the present study, human embryonic palatal shelves were cultured in the rodent organ culture system. In order to achieve in vitro the developmental stage at which fusion would normally occur, GD 52 shelves were cultured for 4 days, GD 53 shelves were cultured for 3 days, and GD 54 shelves were cultured for 3 days. Three of four palatal shelves exposed to 5 x 10(-11) M TCDD were identical to their homologous controls (right shelf cultured with control medium; left shelf cultured with TCDD-containing medium). TCDD at 1 x 10(-7) M produced cytotoxicity detected by transmission electron microscopy (TEM). Exposure to 1 x 10(-8) M TCDD resulted in continued incorporation of thymidine ([3H]-TdR detected autoradiographically) by palatal medial cells, failure of the medial peridermal cells to degenerate as observed by scanning electron microscopy (SEM), and differentiation into a stratified, squamous epithelium. These alterations are identical to those induced by TCDD in vitro in rat and mouse palatal cells. The main difference between these species is the level of TCDD required to elicit the responses. Cultured mouse palates respond to 5 x 10(-11) M TCDD with altered medial cell differentiation, and 1 x 10(-10) M TCDD is cytotoxic. The rat shelves respond with altered differentiation at 1 x 10(-8) M and cytotoxicity at 1 x 10(-7) M. All the human shelves respond at 1 x 10(-8) M TCDD with altered differentiation, 1 out of 4 responded at 5 x 10(-11) M, and cytotoxicity occurred at 1 x 10(-7) M. The present data suggest human embryonic palates are less sensitive than those of the C57BL/6N mouse, and that exposure to high levels of TCDD would be required to elicit altered differentiation in the palatal shelf.  相似文献   

16.
Preincubation of rat thoracic aortic smooth muscle cells with endothelin inhibits the atrial natriuretic factor (ANF)-induced cGMP accumulation in these cells in a concentration dependent manner. The maximal inhibition of 64% was afforded by 1 x 10(-6) M endothelin and the half maximal inhibition (IC50) was achieved with 1 x 10(-9) M endothelin. Endothelin (1 x 10(-6) M) also increased the plasma membrane bound protein kinase C (PKC) activity by 4 fold. Hormone-dependent increase in PKC activity was limited to plasma membranes only and some decrease in cytosolic PKC activity was observed. However, phorbol 12-myristate 13-acetate (PMA) (1 x 10(-6)M) provoked a total loss of cytosolic PKC activity and a net gain in membranous PKC activity indicative of the translocation of the enzyme. Pretreatment of these cells with H-7, a PKC inhibitor, released the endothelin and PMA-mediated attenuation of ANF-stimulated cGMP formation. These results suggest that PKC is involved in the regulation of ANF-induced cGMP accumulation and that the vasoconstrictor activity of endothelin might involve inhibition of the vasorelaxant activity of ANF through the inhibition of cGMP accumulation in smooth muscle cells (SMCs) of the rat aorta.  相似文献   

17.
In vitro cultured endothelial progenitor cells (cEPC) are used for intracoronary cell therapy in cardiac regeneration. The aim of this study was to investigate whether cEPC and circulating mononuclear cells (MNC), which include a small number of in vivo circulating EPC, are able to transmigrate through the endothelial barrier into the cardiac tissue. MNC and EPC were isolated from the peripheral blood from healthy male volunteers (n = 13, 25+/-6 years) and stained with a fluorescent marker. The cells were perfused in vitro through organs with endothelial layers of different phenotypes (rat aorta, human umbilical vein, isolated mouse heart). The endothelium and the basal lamina were then stained by immunofluorescence and the cryo-sections analysed using a confocal laser scanning microscope. After perfusion through the rat aorta, an adhesion/integration of MNC was observed at the endothelial layer and the basal lamina beneath endothelial cells. However, no migration of MNC over the endothelial barrier was found. This remained true even when the cell numbers were increased (from 0.5 to 10 million cells/h), when the time of perfusion was prolonged (1.5-4 h) and when the aorta was cultivated for 24 h. In the Langendorff-perfused mouse heart with intact endothelium, no migration of MNC (1 x 10(7)) or cEPC (1 x 10(6)) was observed after 0.5 and 2 h. In conclusion, MNC and cEPC do not possess any capacity to transmigrate the endothelial barrier. In the context of stem cell therapy, these cells may therefore serve as endothelial regenerators but not as cardiomyocyte substitutes.  相似文献   

18.
The purpose of the study was to investigate the rabies virus multiplication in Vero cell cultures performed on porous microcarriers, MCs (cellulose-Cytopore and gelatin-Cultispher G), which provide higher available surface area compared with solid (nonporous) MCs (DEAE-Cytodex 1). In a set of experiments performed at the same MC concentration (MCs per milliliter), cell densities regularly obtained in porous MC cultures were comparable, but almost twice as high as those in solid MC cultures. In addition, 41.1 +/- 3.9-, 35.2 +/- 2-, and 19.6 +/- 5.8-fold increases in cell concentration, relative to the initial cell number, along with maximum rabies virus titers of 6.3 +/- 0.3 x 10(4), 5 +/- 0.1 x 10(4), and 4.3 +/- 0.2 x 10(4) FFD(50)/mL were observed in Cytopore, Cultispher G, and Cytodex 1 MC cultures, respectively. When higher concentrations of MCs were employed, lower performances of virus production and MC-cell occupation (cells per MC or cells per square millimeter) were observed. Cell attachment to MCs was shown to be faster for Cytopore MCs and Cytodex 1 MCs than for Cultispher G MCs. Concerning the kinetics of cell multiplication on MCs, exponential cell growth, at similar specific cell growth rates, took place on Cytopore, Cultispher G, and Cytodex 1 MCs. In addition, cell densities as high as 2.1 +/- 0.2 x 10(6) cells/mL on Cytopore MCs, 1.8 +/- 0.1 x 10(6) cells/mL on Cultispher G MCs, and 1 +/- 0.3 x 10(6) cells/mL on Cytodex 1 MCs were regularly obtained in batch cultures. Optical as well as scanning and transmission electron microscopy studies carried out to analyze MC structure, MC cell occupation, and cell permissivity to virus infection demonstrated that there was uniform cell distribution in the external and internal areas of the MCs, suggesting an efficiency of virus synthesis. Our results indicate the usefulness of these supports for rabies virus antigen production, as well as possibilities for further optimization.  相似文献   

19.
Adrenomedullin (AM), a potent vasodilator, induces angiogenesis and inhibits cell apoptosis through the phosphatidylinositol 3-kinase/Akt pathway. Transplantation of bone marrow-derived mononuclear cells (MNC) induces angiogenesis. We investigated whether infusion of AM enhances the therapeutic potency of MNC transplantation in a rat model of myocardial infarction. Immediately after coronary ligation, bone marrow-derived MNC (5 x 10(6) cells) were injected into the ischemic myocardium, followed by subcutaneous administration of 0.05 microg x kg(-1) x min(-1) AM (AM-MNC group) or saline (MNC group) for 3 days. Another two groups of rats received subcutaneous administration of AM alone (AM group) or saline (control group). Hemodynamic and histological analyses were performed 4 wk after treatment. Cardiac infarct size was significantly smaller in the MNC and AM groups than in the control group. A combination of AM infusion and MNC transplantation demonstrated a further decrease in infarct size. Left ventricular (LV) maximum change in pressure over time and LV fractional shortening were significantly improved only in the AM-MNC group. AM significantly increased capillary density in ischemic myocardium, suggesting the angiogenic potency of AM. AM infusion plus MNC transplantation demonstrated a further increase in capillary density compared with AM or MNC alone. Although MNC apoptosis was frequently observed 72 h after transplantation, AM markedly decreased the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells among the transplanted MNC. In conclusion, AM enhanced the angiogenic potency of MNC transplantation and improved cardiac function in rats with myocardial infarction. This beneficial effect may be mediated partly by the angiogenic property of AM itself and by its antiapoptotic effect on MNC.  相似文献   

20.
There is an inverse relationship between cellular proliferation and smooth muscle alpha-isoactin expression in cultured vascular smooth muscle cells (SMCs) (Owens, G.K., Loeb, A., Gordon, D., and Thompson, M.M. (1986) J. Cell Biol. 102, 343-352). In the present studies, changes in isoactin expression were studied during developmental growth of rat aortic SMCs (ages 1-180 days) to better understand interrelationships between growth and cytodifferentiation in these cells in vivo. Actin expression (i.e. content and synthesis) was evaluated by one- and two-dimensional gel electrophoresis and using isoactin-specific antibodies. The major actin present in cells from newborn rats was nonmuscle beta-actin (56% of total actin), whereas cells from adult animals contained principally smooth muscle alpha-actin (Sm-alpha-actin) (76% of total actin). Increases in Sm-alpha-actin content with increasing age were due, in part, to an increase in Sm-alpha-actin synthesis. However, in SMCs from 90- and 180-day-old rats, the fractional content of Sm-alpha-actin exceeded its fractional synthesis at a time when total Sm-alpha-actin content was increasing. This suggests that Sm-alpha-actin turns over more slowly in mature animals. Decreases in the frequency of SMCs undergoing DNA synthesis with age could not account for increases in Sm-alpha-actin expression with age. However, combined immunocytological and [3H]thymidine autoradiographic studies demonstrated that nearly 50% of the medial derived cells from newborn rat aortas did not show detectable staining with a monoclonal antibody to smooth muscle-specific isoactins, and the replicative frequency was much higher in these cells than in cells that contained Sm-alpha-isoactins. Taken together, the results of the present studies and previous studies in cultured SMCs support the hypothesis that cessation of proliferation during development is associated with the induction of Sm-alpha-actin expression, but that factors other than cellular growth state play an important role in determining the level of Sm-alpha-actin expression in fully differentiated SMCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号