首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 352 毫秒
1.
Fang LH  Kwon SC  Zhang YH  Ahn HY 《FEBS letters》2002,512(1-3):282-286
This study was undertaken to determine the role of tyrosine kinase on intracellular Ca(2+) ([Ca(2+)](i)), myosin light chain (MLC) phosphorylation, and contraction caused by norepinephrine (NE) in rat aorta. NE induced a sustained contraction with an increase of [Ca(2+)](i). On the other hand, NE increased the phosphorylation of the 20 kDa MLC transiently. Pretreatment with genistein and tyrophostin 25, tyrosine kinase inhibitors, significantly inhibited NE-induced contraction, but did not affect the increase of [Ca(2+)](i) and MLC phosphorylation. These results suggest that tyrosine kinase may regulate the NE-mediated contraction without altering [Ca(2+)](i) and MLC phosphorylation in rat aorta.  相似文献   

2.
Cortisol potentiated norepinephrine (NE)-mediated contractions in ovine uterine arteries (UA). We tested the hypothesis that cortisol regulated alpha(1)-adrenoceptor-mediated pharmacomechanical coupling differentially in nonpregnant UA (NUA) and pregnant UA (PUA). Cortisol (10 ng/ml for 24 h) significantly increased contractile coupling efficiency of alpha(1)-adrenoceptors in NUA, but increased alpha(1)-adrenoceptor density in PUA. Cortisol potentiated NE-induced inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] synthesis in both NUA and PUA, but increased coupling efficiency of alpha(1)-adrenoceptors to Ins(1,4,5)P(3) synthesis only in NUA. Carbenoxolone alone did not affect NE-mediated Ins(1,4,5)P(3) production, but significantly enhanced cortisol-mediated potentiation of NE-stimulated Ins(1,4,5)P(3) synthesis in PUA. In addition, cortisol potentiated the NE-induced increase in Ca(2+) concentration in PUA, but increased NE-mediated contraction for a given amount of Ca(2+) concentration in NUA. Collectively, the results indicate that cortisol potentiates NE-mediated contractions differentially in NUA and PUA, i.e., by upregulating alpha(1)-adrenoceptor density leading to increased Ca(2+) mobilization in PUA while increasing alpha(1)-adrenoceptor coupling efficiency and myofilament Ca(2+) sensitivity in NUA. In addition, the results suggest that pregnancy increases type 2 11 beta-hydroxysteroid dehydrogenase activity in the UA.  相似文献   

3.
The regulation of [Ca2+]i in rat pinealocytes was studied using the fluorescent indicator quin2. Pinealocyte resting [Ca2+]i was approximately 100 nM; this rapidly decreased in low Ca2+ medium (approximately 10 microM), indicating there was a high turnover of [Ca2+]i in these cells. Norepinephrine (NE, 10(-6) M) increased [Ca2+]i to approximately 350 nM within 1 min; [Ca2+]i then remained elevated for 30 min. The relative potency of adrenergic agonists was NE greater than phenylephrine much greater than isoproterenol. Phentolamine (10(-6) M) and prazosin (10(-8) M) blocked the effects of adrenergic agonists; in contrast, propranolol (10(-6) M) or yohimbine (10(-6) M) had little or no effect. These observations indicate NE acts via alpha 1-adrenoceptors to elevate [Ca2+]i. The [Ca2+]i response to NE did not occur when [Ca2+]e was reduced to approximately 10 microM by adding EGTA 5s before NE, indicating an increase in net Ca2+ influx is involved rather than mobilization of Ca2+ from intracellular stores. The effect of NE was not blocked by nifedipine (10(-6) M), which did block a K+-induced increase in [Ca2+]i, presumably involving voltage-sensitive channels. Ouabain (10(-5) M) caused a gradual increase in [Ca2+]i; this increase was not blocked by nifedipine. Together these data indicate that pinealocyte [Ca2+]i may be influenced by mechanisms regulated by alpha 1-adrenoceptors, voltage-dependent Ca2+ channels, and perhaps a Na+/Ca2+ exchange mechanism stimulated by ouabain. These studies indicate that the pinealocyte is an interesting model to use to study the adrenergic regulation of [Ca2+]i because of the rapid and prolonged changes in [Ca2+]i produced by alpha 1-adrenoceptor activation.  相似文献   

4.
B Lei  Y Zhang  C Han 《Life sciences》2001,69(3):301-308
The norepinephrine (NE)-induced regulation of alpha1-adrenoceptors (ARs) expression in human embryonic kidney (HEK) 293 cells stably expressing cloned alpha1-AR subtypes with similar receptor densities was investigated. In the presence of 10 microM propranolol, the treatment of cells with 10 microM NE for 4-72 h down-regulated alpha1A- and alpha1D-AR. but increased alpha1B-AR expression in a time-dependent manner. The down-regulation of alpha1A-AR reached maximum of 40.3 +/- 14.7 % at 48h. The down-regulation of alpha1D-AR reached maximum of 51.3 +/- 3.7% at 24h. With the stimulation of NE, alpha1B-AR density was increased maximally by 112.4 +/- 43.4% at 48h. The protein kinase C (PKC) inhibitor calphostin C or R0-31-8220 abolished the NE-induced down-regulation of alpha1A- and alpha1D-AR, but showed no effect on the up-regulation of alpha1B-AR. The PKC agonist PMA not only mimicked the NE-induced down-regulation of alpha1A- and alpha1D-AR, but also induced a down-regulation of alpha1B-AR. The endoplasmic reticulum Ca2+-ATPase inhibitor cyclopiazonic acid (CPA) or thapsigargin, or the calcium chelator BAPTA/AM did not affect the down-regulation of alpha1A-AR, but inhibited the up-regulation of alpha1B-AR induced by NE. Calmodulin antagonist W-7. tyrosine kinase inhibitor genistein or tyrphostin A25 had no effect on NE-induced up-regulation of alpha1B-AR. The results suggest that three alpha1-AR subtypes are differently regulated by sustained NE stimulation with different signal transduction pathways.  相似文献   

5.
Tsai MH  Jiang MJ 《Life sciences》2005,76(8):877-888
Smooth muscle contractility is regulated by both intracellular Ca2+ concentration ([Ca2+]i) and Ca2+ sensitivity of the contractile apparatus. Extracellular signal-regulated kinases1/2 (ERK1/2) have been implicated in modulating Ca2+ sensitivity of smooth muscle contraction but mechanisms of action remain elusive. This study investigated the roles of ERK1/2 in modulating [Ca2+]i, calcium sensitivity and the 20-kDa myosin light chain (MLC20) phosphorylation during contraction activated by alpha1-adrenoceptor agonist phenylephrine and thromboxane A2 mimetic U46619 in rat tail artery strips. A specific inhibitor for ERK1/2 activation, U0126, inhibited phenylephrine- and U46619-induced contraction, shifting both concentration-response curves rightward. During phenylephrine-stimulated contraction, U0126 exhibited concentration-dependent inhibition towards force but significant decreases in [Ca2+]i were detected only at higher concentration. Both phenylephrine and U46619 induced a transient activation of ERK1/2 which was abolished by U0126 but unaffected by a general tyrosine kinase inhibitor genistein or Rho kinase inhibitor Y27632 at concentrations inhibiting more than 50% force. Interestingly, U0126 had no effect on steady-state MLC20 phosphorylation levels stimulated by both receptor agonists. These results indicated that during contraction of rat tail artery smooth muscle activated by alpha1-adrenoceptor agonist or thromboxane A2 analogue, ERK1/2 increase Ca2+ sensitivity that does not involve the modulation of MLC20 phosphorylation.  相似文献   

6.
The density of skin melanophores in many teleost fish decreases during long-term adaptation to a white background. Using the medaka, Oryzias latipes, we previously reported that apoptosis is responsible for the decrease in melanophores, and that a sympathetic neurotransmitter, norepinephrine (NE), induces their apoptosis in skin tissue cultures. In this study, we show that NE-induced apoptosis of melanophores is mediated by the activation of alpha2-adrenoceptors. Clonidine, an alpha2-adrenoceptor agonist, induced apoptotic melanophore death in skin organ culture, while phenylephrine, an alpha1-adrenoceptor agonist, had no effect. NE-induced apoptosis was diminished by an alpha2-adrenoceptor antagonist, yohimbine, but an alpha1-adrenoceptor antagonist, prazosin, did not abrogate the effect of NE. Furthermore, forskolin inhibited NE-induced apoptosis, while an inhibitor of PKA, H-89, mimicked the effect of NE. These results suggest that NE induces apoptosis in melanophores by attenuating cAMP-PKA signaling via alpha2-adrenoceptors.  相似文献   

7.
Li HW  Geng QM  Zhang YY  Han QD 《生理学报》1998,50(3):349-354
本文探讨了α1a,α1b,α1d三种亚型肾上腺素受体激动时细胞内Ca62+浓度升高的信号转导途径。在稳定表达三亚型α1-AR的HEK293细胞2系中,用fura-2方法细胞内Ca^2+信号强弱的变化。结果显示,百日咳毒素对去甲肾上腺素激动三亚型α1-AR而引起的「Ca^2+」i升高无影响,U-73122和PMA明显抑制「Ca^2+」i升高.  相似文献   

8.
Epinephrine (E) and norepinephrine (NE) alone did not increase free intracellular Ca2+ ([Ca2+]i) in human platelets loaded with Quin-2 or Fura-2; however, they did potentiate the effects of vasopressin (VP), serotonin (S) and platelet activating factor (PAF). The synergism in [Ca2+]i increase was also obtained in the presence of VP together with PAF, S with PAF as well as VP with S. The effect of E or NE was blocked by yohimbine and phentolamine. Prazosin was less effective, while propranolol had no effect at all. Clonidine did not potentiate the effects of VP, S or PAF on [Ca2+]i; however, it did block the potentiation induced by E or NE. E potentiated the VP-induced 45Ca2+ uptake as well as VP-stimulated inositol 1,4,5-trisphosphate (IP3) formation. E alone did not change significantly the level of IP3 in platelets, nor did it influence the cyclic AMP level. The experimental results suggest that both Ca2+ influx and polyphosphoinositide breakdown underlie the mechanism of potentiation.  相似文献   

9.
High-altitude long-term hypoxia (LTH) alters cerebral vascular contractile and relaxation responses in both fetus and adult. We tested the hypotheses that LTH-mediated vascular responses were secondary to altered K+ channel function and that in the fetus these responses differ from those of the adult. In middle cerebral arteries (MCA) from both nonpregnant adult and fetal (approximately 140 days gestation) sheep, which were either acclimatized to high altitude (3,820 m) or sea-level controls, we measured norepinephrine (NE)-induced contractions and intracellular Ca2+ concentration ([Ca2+]i) simultaneously, in the presence or absence of different K+ channel openers or blockers. In adult MCA, LTH was associated with approximately 20% decrease in NE-induced tension and [Ca2+]i, with a significant increase in Ca2+ sensitivity. In contrast, in fetal MCA, LTH failed to affect significantly NE-induced contraction or [Ca2+]i but significantly decreased the ATP-sensitive K+ (K(ATP)) channel and Ca2+-activated K+ (K(Ca)) channel-mediated relaxation. The significant effect of K(ATP) and K(Ca) channel activators on the relaxation responses and the fact that K+ channels play a key role in myogenic tone support the hypotheses that K+ channels play an important role in hypoxia-mediated responses. These results also support the hypothesis of significant developmental differences with maturation from fetus to adult.  相似文献   

10.
The effect of external calcium concentration on the NE-induced contraction after beta-adrenergic blocking was studied in vitro. It resulted that the effect of NE was enhanced by increase, or reduced by decrease of calcium concentration. NE-induced contraction was not abolished when the bathing fluid was Ca++-free. The disappearance of the NE effect was only obtained in preparations treated with EDTA and perfused with Ca++-free Ringer-Locke solution. It is concluded that NE induced contraction after beta-adrenergic blocking is Ca++-dependent and on the tissue bound Ca++.  相似文献   

11.
1. 3H-gamma-Aminobutyric acid (GABA) release elicited by a depolarizing K+ stimulus or by noradrenergic transmitter was examined in rat pineals in vitro. 2. The release of 3H-GABA was detectable at a 20 mM K+ concentration in medium and increased steadily up to 80 mM K+. 3. In a Ca2+-free medium 3H-GABA release elicited by 30 mM K+, but not that elicited by 50 mM K+, became blunted. 4. Norepinephrine (NE; 10(-6)-10(-4) M) stimulated 3H-GABA release from rat pineal explants in a dose-dependent manner. 5. The activity of 10(-5) M NE on pineal GABA release was suppressed by equimolecular amounts of prazosin or phentolamine (alpha 1- and alpha 1/alpha 2-adrenoceptor blockers, respectively) and was unaffected by propranolol (beta-adrenoceptor blocker). 6. The alpha 1-adrenoceptor agonist phenylephrine (10(-7)-10(-5) M) and the beta-adrenoceptor agonist isoproterenol (10(-5) M) mimicked the GABA releasing activity of NE, while 10(-7) M isoproterenol failed to affect it; the alpha 2-adrenoceptor agonist clonidine (10(-7)-10(-5) M) did not modify 3H-GABA release. 7. The addition of 10(-4) M GABA or of the GABA transaminase inhibitor gamma-acetylenic GABA or aminooxyacetic acid inhibited the melatonin content and/or release to the medium in rat pineal organotypic cultures. 8. GABA at concentrations of 10(-5) M or greater partially inhibited the NE-induced increase in melatonin production by pineal explants. 9. The depressant effect of GABA on melatonin production was inhibited by the GABA type A receptor antagonist bicuculline; bicuculline alone increased the pineal melatonin content. Baclofen, a GABA type B receptor agonist, did not affect the pineal melatonin content or release. 10. The decrease in serotonin (5-HT) content of rat pineal explants brought about by NE was not modified by GABA; GABA by itself increased 5-HT levels. 11. These results indicate that (a) GABA is released from rat pineals by a depolarizing stimulus of K+ through a mechanism which is partially Ca2+ dependent; (b) NE releases rat pineal GABA via interaction with alpha 1-adrenoceptors; (c) GABA inhibits melatonin production in vitro via interaction with GABA type A receptor sites; and (d) GABA's effect on NE-induced melatonin release does not correlate with the lack of effect on the NE-induced decrease in pineal 5-HT content.  相似文献   

12.
Sympathetic denervation of the iris muscle produces increases in both the breakdown of phosphatidylinositol 4,5-bisphosphate (PIP2) and in muscle contraction in response to norepinephrine (NE). To shed more light on the biochemical basis underlying this supersensitivity we investigated: the effects of NE on PIP2 breakdown, measured as myo-inositol trisphosphate (IP3) accumulation, and on muscle contraction in normal and denervated rabbit iris dilator; and the effects of denervation on selected biochemical properties of this muscle. The data obtained from these studies can be summarized as follows: The EC50 values (microM) for NE-induced IP3 accumulation in normal and denervated dilators were 14 and 3, respectively. This accumulation of IP3 was blocked by prazosin (1 microM). The EC50 values (microM) for NE-induced contraction for the normal and denervated muscles were 10 and 0.6, respectively. The NE-induced muscle contraction was blocked by prazosin (1 microM). The t1/2 values (s) for IP3 accumulation in normal and denervated muscles were 31 and 11, respectively, and for contraction the values were 19 and 9, respectively. Denervation increased significantly (15-18%) the basal labelling of phosphoinositides from myo-[3H]inositol, but not from 32P or [14C]arachidonic acid. Denervation had little effect on the activities of the enzymes involved in phosphoinositide metabolism. However, the activities of protein kinase C and Ca2+-ATPase increased in the denervated muscle. It is concluded that sympathetic denervation of the iris dilator renders the coupling between alpha1 receptors and PIP2 breakdown into IP3 and 1,2-diacylglycerol (DG) more efficient.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Tissue remodeling is an important process in many inflammatory and fibrotic lung disorders. RBC may in these conditions interact with extracellular matrix (ECM). Fibroblasts can produce and secrete matrix components, matrix-degrading enzymes (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Imbalance in matrix synthesis/degradation may result in rearrangement of tissue architecture and lead to diseases such as emphysema or fibrosis. Neutrophil elastase (NE), a protease released by neutrophils, is known to activate MMP. We hypothesized that RBC can stimulate secretion of MMPs from human lung fibroblasts and that NE can augment this effect. Human fetal lung fibroblasts were cultured in floating collagen gels with or without RBC. After 4 days, the culture medium was analyzed with gelatin zymography, Western blot, and ELISA for MMP-1, -2, -3 and TIMP-1, -2. RBC augmented NE-induced fibroblast-mediated collagen gel contraction compared with NE alone (18.4+/-1.6%, 23.7+/-1.4% of initial gel area, respectively). A pan-MMP inhibitor (GM-6001) completely abolished the stimulating effect of NE. Gelatin zymography showed that RBC stimulated MMP-2 activity and that NE enhanced conversion to the active form. Addition of GM-6001 completely inhibited MMP-2 activity in controls, whereas it only partially altered RBC-induced MMP activity. Western blot confirmed the presence of MMP-1 and MMP-3 in fibroblasts stimulated with RBC, and ELISA confirmed increased concentrations of pro-MMP-1. We conclude that stimulation of MMP secretion by fibroblasts may explain the ability of RBC to augment fibroblast-mediated collagen gel contraction. This might be a potential mechanism by which hemorrhage in inflammatory conditions leads to ECM remodeling.  相似文献   

14.
Neutrophil elastase (NE) activity is increased in many diseases. Other families of proteases, including cathepsins and matrix metalloproteases (MMPs), are also present at elevated levels in similar disease conditions. We postulated that NE could induce expression of cathepsins and MMPs in human macrophages. NE exposure resulted in macrophages, producing significantly greater amounts of cathepsin B and latent and active MMP-2. Cathepsin B and MMP-2 activities were decreased in Pseudomonas-infected NE knockout mice compared with wild-type littermates. We also demonstrate that NE can activate NF-kappaB in macrophages, and inhibition of NF-kappaB resulted in a reduction of NE-induced cathepsin B and MMP-2. Also, inhibition of TLR-4 or transfection of macrophages with dominant-negative IL-1R-associated kinase-1 resulted in a reduction of NE-induced cathepsin B and MMP-2. This study describes for the first time a novel hierarchy among proteases whereby a serine protease up-regulates expression of MMPs and cathepsins. This has important implications for therapeutic intervention in protease-mediated diseases.  相似文献   

15.
Because little is known of the intracellular mechanisms involved in the vasoconstrictor effect of melatonin (Mel), we examined the in vitro effects of Mel by using perfused cylindrical segments of the rat tail artery loaded with the intracellular Ca(2+) concentration ([Ca(2+)](i))-sensitive fluorescent dye, fura 2. Mel (10(-14) to 10(-4) M) had no effect on baseline perfusion pressure or [Ca(2+)](i) but increased, at submicromolar concentrations, the vasoconstrictor effect of norepinephrine (NE) (P = 0.0029). Mel did not modify NE-induced [Ca(2+)](i) mobilization, and thus the [Ca(2+)](i) sensitivity of NE-induced contraction increased in the presence of Mel. Mel consistently increased KCl-induced vasoconstriction and [Ca(2+)](i) sensitivity of contraction, but differences were not statistically significant. In conclusion, Mel increases the [Ca(2+)](i) sensitivity of vasoconstriction evoked by NE suggesting that Mel may amplify endogenous vasoconstrictor responses to sympathetic outflow.  相似文献   

16.
The signaling cascades initiated by motilin receptors in gastric and intestinal smooth muscle cells were characterized. Motilin bound with high affinity (IC(50) 0.7 +/- 0.2 nM) to receptors on smooth muscle cells; the receptors were rapidly internalized via G protein-coupled receptor kinase 2 (GRK2). Motilin selectively activated G(q) and G(13), stimulated G alpha(q)-dependent phosphoinositide (PI) hydrolysis and 1,4,5-trisphosphate (IP(3))-dependent Ca(2+) release, and increased cytosolic free Ca(2+). PI hydrolysis was blocked by expression of G alpha(q) minigene and augmented by overexpression of dominant negative RGS4(N88S) or GRK2(K220R). Motilin induced a biphasic, concentration-dependent contraction (EC(50) = 1.0 +/- 0.2 nM), consisting of an initial peak followed by a sustained contraction. The initial Ca(2+)-dependent contraction and myosin light-chain (MLC)(20) phosphorylation were inhibited by the PLC inhibitor U-73122 and the MLC kinase inhibitor ML-9 but were not affected by the Rho kinase inhibitor Y27632 or the PKC inhibitor bisindolylmaleimide. Sustained contraction and MLC(20) phosphorylation were RhoA dependent and mediated by two downstream messengers: PKC and Rho kinase. The latter was partly inhibited by expression of G alpha(q) or G alpha(13) minigene and abolished by coexpression of both minigenes. Sustained contraction and MLC(20) phosphorylation were partly inhibited by Y27632 and bisindolylmaleimide and abolished by a combination of both inhibitors. The inhibition reflected phosphorylation of two MLC phosphatase inhibitors: CPI-17 via PKC and MYPT1 via Rho kinase. We conclude that motilin initiates a G alpha(q)-mediated cascade involving Ca(2+)/calmodulin activation of MLC kinase and transient MLC(20) phosphorylation and contraction as well as a sustained G alpha(q)- and G alpha(13)-mediated, RhoA-dependent cascade involving phosphorylation of CPI-17 by PKC and MYPT1 by Rho kinase, leading to inhibition of MLC phosphatase and sustained MLC(20) phosphorylation and contraction.  相似文献   

17.
The contractile force generated by hepatic stellate cells in response to endothelin-1 contributes to sinusoidal blood flow regulation and hepatic fibrosis. This study's aim was to directly test the widely held view that changes in cytosolic Ca2+ concentration ([Ca2+]i) mediate stellate cell force generation. Contractile force generation by primary cultures of rat hepatic stellate cells grown in three-dimensional collagen gels was directly and quantitatively measured using a force transducer. Stellate cell [Ca2+]i, myosin activation, and migration were quantified using standard techniques. [Ca2+]i was modulated using ionomycin, BAPTA, KCl, and removal of extracellular Ca2+. Removal of extracellular Ca2+ did not alter endothelin-1-stimulated force development or [Ca2+]i. Ionomycin, a Ca2+ ionophore, triggered an increase in [Ca2+]i that was three times greater than that stimulated by endothelin-1, but only induced 16% of the force and 38% of the myosin regulatory light chain (MLC) phosphorylation induced by endothelin-1. Physiological increases in [Ca2+]i induced by hyperkalemia had no effect on contractile force. Loading BAPTA, a Ca2+ chelator, in stellate cells completely blocked endothelin-1-induced increases in [Ca2+]i but had no effect on endothelin-1-stimulated force generation or MLC phosphorylation. In contrast, Y-27632, a selective rho-associated kinase inhibitor, inhibited endothelin-1-stimulated force generation by at least 70% and MLC phosphorylation by at least 80%. Taken together, these observations indicate that changes in [Ca2+]i are neither necessary nor sufficient for contractile force generation by rat stellate cells. Our results challenge the current model of contractile regulation in hepatic stellate cells and have important implications for our understanding of hepatic pathophysiology.  相似文献   

18.
Norepinephrine (NE) is an inhibitor of insulin secretion that acts, in part, by decreasing intracellular free calcium ([Ca2+]i). We examined the effects of NE on [Ca2+]i in individual HIT-T15 cells loaded with indo 1. Cells were categorized as oscillators or non-oscillators on the basis of the pattern of the calcium response to glucose and the effect of NE on [Ca2+]i was subsequently measured in each cell. NE caused a simple decrease in [Ca2+]i in nonoscillators. In oscillators, NE decreased the amplitude and frequency of the oscillations. Furthermore, the duration of the NE effect in oscillators was longer than in non-oscillators. NE did not affect the rise in [Ca2+]i elicited by depolarizing concentrations of 20 mM or 35 mM KCl alone, or in the presence of 20 mM KCl, 100 microM diazoxide, and 10 mM glucose. In other experiments, NE had no effect on [Ca2+]i when the KATP channels were fully clamped with diazoxide or tolbutamide. We conclude that the action of NE to decrease [Ca2+]i in both oscillators and non-oscillators is mediated via activation of the KATP channel. Despite this common mechanism, NE exerts different effects on oscillating and non-oscillating cells.  相似文献   

19.
Receptor-mediated increases in the concentration of intracellular free calcium ([Ca2+]i) are responsible for controlling a plethora of physiological processes including gene expression, secretion, contraction, proliferation, neural signalling, and learning. Increases in [Ca2+]i often occur as repetitive Ca2+ spikes or oscillations. Induced by electrical or receptor stimuli, these repetitive Ca2+ spikes increase their frequency with the amplitude of the receptor stimuli, a phenomenon that appears critical for the induction of selective cellular functions. Here we report the characterisation of RASAL, a Ras GTPase-activating protein that senses the frequency of repetitive Ca2+ spikes by undergoing synchronous oscillatory associations with the plasma membrane. Importantly, we show that only during periods of plasma membrane association does RASAL inactivate Ras signalling. Thus, RASAL senses the frequency of complex Ca2+ signals, decoding them through a regulation of the activation state of Ras. Our data provide a hitherto unrecognised link between complex Ca2+ signals and the regulation of Ras.  相似文献   

20.
The dorsal motor nucleus of the vagus (DMV) receives more noradrenergic terminals than any other medullary nucleus; few studies, however, have examined the effects of norepinephrine (NE) on DMV neurons. Using whole cell recordings in thin slices, we determined the effects of NE on identified gastric-projecting DMV neurons. Twenty-five percent of DMV neurons were unresponsive to NE, whereas the remaining 75% responded to NE with either an excitation (49%), an inhibition (26%), or an inhibition followed by an excitation (4%). Antrum/pylorus- and corpus-projecting neurons responded to NE with a similar percentage of excitatory (49 and 59%, respectively) and inhibitory (20% for both groups) responses. A lower percentage of excitatory (37%) and a higher percentage of inhibitory (36%) responses were, however, observed in fundus-projecting neurons. In all groups, pretreatment with prazosin or phenylephrine antagonized or mimicked the NE-induced excitation, respectively. Pretreatment with yohimbine or UK-14304 antagonized or mimicked the NE-induced inhibition, respectively. These data suggest that NE depolarization is mediated by alpha(1)-adrenoceptors, whereas NE hyperpolarization is mediated by alpha(2)-adrenoceptors. In 16 neurons depolarized by NE, amplitude of the action potential afterhyperpolarization (AHP) and its kinetics of decay (tau) were significantly reduced vs. control. No differences were found on the amplitude and tau of AHP in neurons hyperpolarized by NE. Using immunohistochemical techniques, we found that the distribution of tyrosine hydroxylase fibers within the DMV was significantly different within the mediolateral extent of DMV; however, distribution of cells responding to NE did not show a specific pattern of localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号