首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To treat hernias, polymer net implants are widely used. We carried out a comparative study of the morphological picture of inflammation, cellular composition of tissues, and dynamics of scar formation in mice in using the implants Esfil and Uniflex under conditions of single and double introduction of cultivated fibroblasts and without fibroblasts in the area of disposition of the endoprostheses. A more expressed inflammatory reaction throughout the entire period of time was observed in implantation of the material Esfil. In using the material Uniflex, there was revealed a higher percent of fibroblasts than in using the Esfil prosthesis. Introduction of cultivated fibroblasts in using both materials modified the curve of dynamics of the inflammatory process by making it smoother. Use of the Uniflex endoprosthesis is preferable.  相似文献   

2.
Human skin fibroblasts were cultivated within the three-dimensional space of polymerized alginate and collagen, respectively. The in vitro synthesis of collagens and proteoglycans was measured during the first 3 days of culture, and the deposition as well as the ultrastructural organization of newly synthesized extracellular matrix components were examined by electron microscopy. The amount of collagens and proteoglycans synthesized by fibroblasts, embedded in calcium alginate gels as well as in collagen lattices, was lowered as compared to monolayer cultures. Furthermore, it was found that collagen synthesis was reduced to a greater extent in alginate gels than in collagen lattices. On the contrary, total proteoglycan biosynthesis was similarly reduced either in alginate gels or in collagen lattices. At the end of a 3-day-culture period, filamentous material as well as cross-striated banded structures were found extracellularly in the alginate gel. According to their periodicity, their banding pattern, their association with polyanionic matrix components and their sensitivity towards glycosaminoglycan-degrading enzymes we could distinguish (1) sheets of amorphous non-banded material consisting of irregularly arranged filaments and containing dermatan sulfate-rich proteoglycans (type I structures), (2) sheets of long-spacing fibrils consisting of parallel orientated filaments and containing chondroitin sulfate-rich proteoglycans (= zebra bodies; type II structures), and (3) fibrillar structures with a complex banding pattern different from that of native collagen fibrils (type III structures). In fibroblasts cultured in collagen lattices, we only sporadically found depositions which are identified as type I structures. Using indirect immunoelectron microscopy and monospecific polyclonal antibodies, we localized type VI collagen in type I structures and type II structures. Type III structures can be identified as type I collagen derived as becomes obvious by comparison with segment long spacing crystallites of type I collagen.  相似文献   

3.
A fluorescence-based method using the cell sorter has been devised to separate rat lung fibroblasts into subpopulations. Type I or type III collagen antiserum was used as the primary antibody to react with parent rat lung fibroblasts. This was followed by a fluorescein-conjugated secondary antibody. Specificity of the primary collagen antibody was determined using a monoclonal beta-actin antibody and purified IgG as the primary antibodies. The fluorescent shift of parent rat lung fibroblasts was optimized for the amount of primary collagen antibody and secondary fluorescein-conjugated antibody. An increase in slot blot intensity was observed for pro-alpha 1(I), pro-alpha 2(I), and pro-alpha 1(III) mRNAs with increasing amounts of cellular RNA. When precipitating with type I collagen antibodies, the total cellular steady-state levels of type I procollagen mRNAs were increased in the high intensity cells as compared with the low intensity cells. Alternately, when the type III collagen antibodies were used to precipitate the rat lung fibroblasts, the low intensity cells had increased type I procollagen mRNAs while the high intensity cells had increased type III procollagen mRNA. The subpopulations of rat lung fibroblasts after isolation using the fluorescent cell sorter were readily propagated for at least four passages.  相似文献   

4.
Cellular growth and collagen biosynthesis were compared in dermal calf fibroblasts cultured on plastic or on a reconstituted basement membrane gel, termed matrigel. This matrix, extracted from Engelbreth-Holm-Swarm tumors, consists mainly of laminin, entactin, type IV collagen, and heparan sulfate proteoglycan. The multiplication rate of fibroblasts grown on matrigel was stimulated compared to that of monolayered cells cultured on plastic, and these cells formed multilayers after 4 days. Protein and collagen biosynthesis was reduced in fibroblasts cultured on matrigel. A higher proportion of the newly synthesized collagen (40%) was incorporated to the extracellular matrix in cultures grown on matrigel than in those grown on plastic (14%). Type III collagen was the preferential collagen type deposited on matrigel, and the ratio of type III:type I collagens secreted in the medium was also slightly higher in cultures grown on matrigel. Partially processed collagen was more abundant in fibroblasts grown on matrigel than in cells cultured on plastic. Finally, cells grown on matrigel exhibited a higher catabolic activity than cells grown on plastic. In this experimental model, the reconstituted basement-membrane matrix seems to influence the activities of fibroblasts significantly.  相似文献   

5.
Hepatocytes were obtained from rat liver and maintained in primary culture for periods up to 14 days. Collagen synthesis was maximal after 3–5 days and declined thereafter. The rate of collagen production was appox. one-tenth that observed by the rat skin fibroblasts of the same animals after 3–5 passages. Type I procollagen, the major macromolecular collagenous species, was identified as a 450 000 dalton molecule which was converted to 120 000 dalton, denatured, reduced procollagen chains. Prior pepsin digestion of the native procollagen released 95 000 dalton collagen chains identified as α1(I) and α2(I) by co-migration with carrier rat skin type I collagen chains. The production of type III procollagen was also tentatively identified by DEAE-cellulose chromatography. This material was isolated and identified with type-specific antibodies developed against the amino-terminal extension peptide of bovine skin type III procollagen. The relative distribution of type I:type III procollagen was estimated at 7:3 similar to the ratio previously found in whole rat liver. No evidence of type IV or type V procollagen biosynthesis was observed. These results suggest that rat hepatocytes in primary culture are capable of interstitial type I and type III collagen biosynthesis in a ratio similar to that found in their parent hepatic tissue in situ. They also suggest that the less abundant type IV (basement membrane-associated) or type V are nor major collagenous products of these cells.  相似文献   

6.
The distribution of type I, II, III, IV, V and VI collagens in 20 cases of osteosarcoma was demonstrated immunohistochemically using monospecific antibodies to different collagen types. In addition, biochemical analysis was made on collagenous proteins synthesized by tumor cells in short-term cultures obtained from seven representative cases and compared with dermal fibroblasts. In osteoblastic areas, most of the tumor osteoid consisted exclusively of type I collagen. Type V collagen was associated in some of them. Type III and type VI collagens were mainly localized in the perivascular fibrous stroma. Cultured tumor cells from osteoblastic osteosarcomas produced type I collagen exclusively and small amount of type V collagen constantly, while the synthetic activity of type III collagen was extremely low. In contrast, fibroblastic areas were characterized by the codistribution of type I, III, VI collagens and chondroblastic areas by type I, V, VI collagens as well as type II. Furthermore, type IV collagen was demonstrated in the stroma, other than the basement membrane region of blood vessels, in fibroblastic, intramedullary well-differentiated and telangiectatic osteosarcomas. In vitro, the production of variable amounts of type IV collagen, which was not detected in cultured dermal fibroblasts, was also recognized in the osteoblastic, fibroblastic, undifferentiated and intramedullary well-differentiated osteosarcomas examined. These findings suggest that the immunohistochemical approach using monospecific antibodies to different collagen types is useful not only in identifying some specific organoid components, such as tumor osteoid, but also in disclosing the biological properties of osteosarcoma cells with diverse differentiation.  相似文献   

7.
The appearance and distribution of type I, II, and III collagens in the developing chick eye were studied by specific antibodies and indirect immunofluorescence. At stage 19, only type I collagen was detected in the primary corneal stroma, in the vitreous body, and along the lens surface. At later stages, type I collagen was located in the primary and secondary corneal stroma and in the fibrous sclera, but not around the lens. Type II collagen was first observed at stage 20 in the primary corneal stroma, neural retina, and vitreous body. It was particularly prominent at the interface of the neural retina and vitreous body and, from stage 30 on, in the cartilaginous sclera. The primary corneal stroma consisted of a mixture of type I and II collagens between stages 20 and 27. Invasion of the primary corneal stroma by mesenchyme and subsequent deposition of fibroblast-derived collagen corresponded with a pronounced increase of type I collagen, throughout the entire stroma, and of type II collagen, in the subepithelial region. Type II collagen was also found in Bowman's and Descemet's membranes. A transient appearance of type III collagen was observed in the corneal epithelial cells, but not in the stroma (stages 20–30). The fully developed cornea contained both type I and II collagens, but no type III collagen. Type III collagen was prominent in the fibrous sclera, iris, nictitating membrane, and eyelids.  相似文献   

8.
Synthesis of collagen types I, II, III, and IV in cells from the embryonic chick cornea was studied using specific antibodies and immunofluorescence. Synthesis of radioactively labeled collagen types I and III was followed by fluorographic detection of cyanogen bromide peptides on polyacrylamide slab gels and by carboxymethylcellulose chromatography followed by disc gel electrophoresis. Type III collagen had been detected previously by indirect immunofluorescence in the corneal epithelial cells at Hamburger-Hamilton stages 20--30 but not in the stroma at any age. Intact corneas from embryos older than stage 30 contain and synthesize type I collagen but no detectable type III collagen. However, whole stromata subjected to collagenase treatment and scraping (to remove epithelium and endothelium) and stromal fibroblasts from such corneas inoculated in vitro begin synthesis of type III collagen within a few hours while continuing to synthesize type I collagen. As demonstrated by double-antibody staining, most corneal fibroblasts contain collagen types I and III simultaneously. Collagen type III was identified biochemically in cell layers and media after chromatography on carboxymethylcellulose be detection of disulfide-linked alpha l (III)3 by SDS gel electrophoresis. The conditions under which the corneal fibroblasts gain the ability to synthesize type III collagen are the same as those under which they lose the ability to synthesize the specific proteoglycan of the cornea: the presence of corneal-type keratan sulfate.  相似文献   

9.
Tensile forces attenuate estrogen-stimulated collagen synthesis in the ACL   总被引:2,自引:0,他引:2  
The purpose of this study was to examine whether mechanical tensile forces affect estrogen regulation of collagen synthesis of anterior cruciate ligament fibroblasts at the mRNA level. Estrogen was studied at three physiologic levels, 10(-11), 10(-10), and 10(-9)M. The results revealed that estrogen alone stimulated Type I and III collagen synthesis at the mRNA level, and application of mechanical force decreased the expression of collagen Type I and III genes at all tested estrogen levels. These findings suggest that estrogen may directly regulate ligament structure and function by alteration of Type I and III collagen synthesis. This regulation is dependent on mechanical loading.  相似文献   

10.
When primary corneal endothelial cells were grown in polymorphonuclear leukocyte (PMN)-conditioned medium, a minor population of cells acquired fibroblastic morphology. Such modulated endothelial cells supported by PMN-conditioned medium grew much faster than the major nonresponding polygonal endothelial cell. Upon serial passages, the modulated endothelial cells became the dominant cell type and eventually formed a homogeneous fibroblastic culture. At the same time, phenotypic changes of collagen were observed. The primary endothelial cells grown in PMN-conditioned medium, consisting of responding elongated cells and nonresponding polygonal endothelial cells, produced predominantly type IV collagen with type III collagen as a minor component. As cells were subcultured and fibroblastic cells became dominant, type IV collagen synthesis was dramatically decreased and type I collagen synthesis was increased in parallel. When they reached the fully modulated stage, the cultures synthesized types I and III collagen, with type I accounting for 75-85% of the total. Type I collagen synthesized by the fibroblastic endothelial cells shared common characteristics with known type I collagen, such as migration behavior on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, CNBr peptide profiles, and immunologic identity. Thus, PMNs apparently contribute to the modulation of corneal endothelial cells, causing them to acquire characteristics of fibroblasts, cell multilayering, and deposition of interstitial extracellular matrix composed predominantly of interstitial type I collagen.  相似文献   

11.
We have extended the study of a mild case of type II achondrogenesis-hypochondrogenesis to include biochemical analyses of cartilage, bone, and the collagens produced by dermal fibroblasts. Type I collagen extracted from bone and types I and III collagen produced by dermal fibroblasts were normal, as was the hexosamine ratio of cartilage proteoglycans. Hyaline cartilage, however, contained approximately equal amounts of types I and II collagen and decreased amounts of type XI collagen. Unlike the normal SDS-PAGE mobility. Two-dimensional SDS-PAGE revealed extensive overmodification of all type II cyanogen bromide peptides in a pattern consistent with heterozygosity for an abnormal pro alpha 1(II) chain which impaired the assembly and/or folding of type II collagen. This interpretation implies that dominant mutations of the COL2A1 gene may cause type II achondrogenesis-hypochondrogenesis. More generally, emerging data implicating defects of type II collagen in the type II achondrogenesis-hypochondrogenesis-spondyloepiphyseal dysplasia congenita spectrum and in the Kniest-Stickler syndrome spectrum suggest that diverse mutations of this gene may be associated with widely differing phenotypic outcome.  相似文献   

12.
Human recombinant-gamma-interferon was tested on human dental pulp fibroblast activity in vitro. Fibroblast proliferation was estimated by a colorimetric test. Type I and type III collagens and fibronectin were quantified by radioimmunoassay in culture supernatant from confluent fibroblasts. A dose dependent stimulation of the proliferation was observed when fibroblasts were treated with recombinant-gamma-interferon. In contrast, an inhibition of the synthesis of soluble types I and III collagen and fibronectin by confluent cell cultures treated with recombinant-gamma-interferon occurred without apparent modification of the insoluble collagen level in the cell layer. Quantimetric analysis of type I collagen immunoperoxidase labelling have demonstrated that there was no intracellular storage of type I collagen in these cultured fibroblasts. These data support the view that human recombinant-gamma-interferon can affect human dental pulp fibroblast functions and thus may play an important part in the regulation of fibrosis.  相似文献   

13.
Cultured lung fibroblasts produced and secreted interstitial collagen types I and III. The relative proportion of type III collagen increased as a linear function of cell density, with confluent cultures producing 8.6% type III collagen. When human lung fibroblasts were cultured in the presence of newly harvested lung macrophages, the proportion of type III collagen secreted rose to 15.5%. This high level of type III collagen synthesis was greater than could be induced by withdrawal of serum, a perturbation known to alter the proportion of types I and III collagen synthesized by fibroblasts. This effect on fibroblast phenotype was independent of cell density, as both low and high density cultures of fibroblasts responded similarly when cultured with macrophages. There was no evidence that fibroblasts synthesize new or different collagen types (such as type I trimer) in response to macrophages. Optimal conditions for eliciting an effect on fibroblast connective tissue metabolism required interaction of the two cell types for 5–8 days. These in vitro changes are analogous to the sequence of interactions and changes in connective tissue metabolism seen during recovery from tissue injury.  相似文献   

14.
15.
Type I collagen, a heterotrimer of two alpha 1(I) chains and one alpha 2(I) chain, is the major structural protein of bone, skin, and tendon. The collagen of patients with bone diseases has been studied in skin fibroblasts instead of osteoblasts because the genes for type I collagen are single-copy genes. While these studies should detect structural changes in the gene, they might fail to detect defects in processes which are dependent on tissue-specific expression. The studies reported here sought to determine whether the expression of type I collagen in skin and bone was characterized by the use of alternate promoters or alternative splicing in the N-propeptide region. Primer extension and nuclease S1 protection experiments were used to analyze the structure of the alpha 2(I) mRNA from the 5' end of the gene through the N-telopeptide coding region (exons 1-6) in human and chick osteoblasts and fibroblasts. The protection and primer extension experiments using human and chick mRNA demonstrated identical routes of splicing in skin and bone at the first five splice junctions. These studies provide reassurance that information obtained from the study of type I collagen in fibroblasts may be extrapolated to bone.  相似文献   

16.
The degradation rates of type I, II, and III collagens by tadpole collagenase were studied by measuring the viscosity of the solution and the contents of alpha chains and alpha A chains of collagen, using SDS-polyacrylamide gel electrophoresis followed by densitometric analysis of the separated peptide bands. An empirical parameter was derived from the viscosity, and was shown to change in parallel with the content of alpha chains upon incubation with tadpole collagenase almost to the stage of complete digestion of collagen. Linear plots of parameters reflecting the concentration of intact collagen molecules against time were obtained, indicating the degradation to be pseudo-first order. The first-order rate constants for the degradation of Type I, II, and III collagens with tadpole collagenase at 30, 25, and 20 degrees C gave activation energies of 60 kcal/mol for Type III collagen and 40 kcal/mol for Type I and II collagens. There appeared to be a dependency of the degradation rates on the conformation of the collagen molecules (which is affected by temperature).  相似文献   

17.
Total RNA extracted from developing calvarial bones of 15- to 18-week human fetuses was studied by Northern hybridization: in addition to high levels of type I collagen mRNAs, the presence of mRNAs for type III and type IV collagen, TGF-beta and c-fos was observed. In situ hybridization of sections containing calvarial bone, overlying connective tissues, and skin was employed to identify the cells containing these mRNAs. Considerable variation was observed in the distribution of pro alpha 1(I) collagen mRNA in osteoblasts: the amount of the mRNA in cells at or near the upper surface of calvarial bone was distinctly greater than that in cells at the lower surface, indicating the direction of bone growth. High levels of type I collagen mRNAs were also detected in fibroblasts of periosteum, dura mater, and skin. Type III collagen mRNA revealed a considerably different distribution: the highest levels were detected in upper dermis, lower levels were seen in fibroblasts of the periosteum and the fibrous mesenchyme between bone spiculas, and none was seen in osteoblasts. Type IV collagen mRNAs were only observed in the endothelial cells of blood capillaries. Immunohistochemical localization of type III and IV collagens agreed well with these observations. The distribution of TGF-beta mRNA resembled that of type I collagen mRNA. In addition, high levels of TGF-beta mRNA were observed in osteoclasts of the calvarial bone. These cells, responsible for bone resorption, were also found to contain high levels of c-fos mRNA. Production of TGF-beta by osteoclasts and its activation by the acidic environment could form a link between bone resorption and new matrix formation.  相似文献   

18.
Calf skin collagen was solubilized by incubating acid-extracted calf skin with pepsin at pH 2.0 and 25 degrees C, conditions that did not cause degradation of the triple helical region of collagen. Type III collagen was separated from type I collagen by differential salt precipitation at pH 7.5. The isolated type III collagen contained mainly gamma and higher molecular weight components cross-linked by reducible and/or non-reducible bonds. The isolated alpha1 (III) chains had an amino acid composition characteristic of type III collagen. Denatured but unreduced type III collagen, chromatographed on carboxymethyl-cellulose, eluted in the alpha 2 region, while after reduction and alkylation the alpha1 (III) chains eluted between the positions of alpha1 (I) and alpha2. The mid-point melting temperature temperature (tm) of type III collagen (35.1 degrees C) in a citrate buffer at pH 3.7 was somewhat lower than that of type I collagen (35.9 degrees C). Renaturation experiments at 25 degrees C showed that denatured type III collagen molecules with intact intramolecular disulfide bridges (gamma components) reform the triple helical structure of collagen much faster than reduced and carboxymethylated alpha1 (III) chains.  相似文献   

19.
Smooth muscle cells were grown from explants of the tunica media of fetal and adult human aorta. Collagen was isolated after incubation with [14C]glycine and was characterized by ion-exchange chromatography. All cells investigated synthesized two types of collagen: Type I (chain composition [alpha1(I)]2alpha2) and type III (chain composition [alpha1(III)]3). The collagen made by cells from adult donors contained approximately 70% type I and 30% type III collagen. This corresponds to the collagen composition in teh original tissue. No age-relate change in the type I/type III ratio was found with cells from donors between 9 and 67 years of age. On the other hand, the type III portion of the collagen made by fetal cells was markedly less (about 15-20% of total collagen).  相似文献   

20.
Histologic and immunofluorescence methods were used to analyse the presence of fibronectin, chondroitin-4-sulphate and chondroitin-6-sulphate, type III and IV collagens, laminin, and keratins to assess the maturation level of cultured dermal and skin equivalents. In a first phase, fibroblasts in monolayer culture were compared with dermal equivalents in which fibroblasts are embedded in a type I collagen gel. Different fluorescent patterns were observed depending on the culture system used. A sequential appearance of macromolecules was noticed in dermal equivalents. Fibronectin was first detected after 4 days of culture, whereas chondroitin-4-sulphate and chondroitin-6-sulphate and type III collagen were present after 7 days. In contrast, all three macromolecules were detected at 24 h of culture in fibroblastic monolayer cultures. In a second phase, the quality of our skin equivalents was evaluated according to the seeding time of epidermal cells upon dermal equivalents (1, 4, or 7 days). A satisfactory stratification was obtained when keratinocytes were seeded after 4 and 7 days of dermal equivalent culture. Laminin and fibronectin were detected at the dermo-epidermal junction, but type IV collagen was absent. Various keratins, as detected by the AE1, AE2, and AE3 antibodies, were present in the epidermal layer. Following keratinocyte confluence, a change in the organization pattern of type III collagen in the dermal fraction of the skin equivalent was also noticed. Our comparative results show that seeding of epidermal cells on a more mature dermal equivalent leads to improved differentiation status of the epidermal layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号