首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Enteropathogenic Escherichia coli (EPEC) have been previously shown to alter sodium hydrogen exchanger 3 (NHE3) activity in human intestinal epithelial cells. To further characterize these observations, PS120 fibroblasts transfected with NHE3 were studied. EPEC E2348/69 infection decreased NHE3 activity in PS120 fibroblasts. The effect on NHE3 was enhanced when PS120 cells were co-transfected with the scaffolding/regulatory proteins NHERF1 or NHERF2 or EBP50 and E3KARP respectively. The decrease in NHE3 activity was dependent on an intact type III secretion system, although intimate attachment mediated by translocated intimin receptor was not required. Despite its ability to bind to NHERF proteins, the EPEC effector Map had no impact on the regulation of NHE activity. Instead, EspF was found to be responsible for decreased NHE3 activity. However, neither EspF-induced apoptosis nor the interaction of EspF with sorting nexin-9, an endocytic protein, were involved.  相似文献   

2.
Enteropathogenic Escherichia coli (EPEC) is an important human intestinal foodborne pathogen associated with diarrhea, especially in infants and young children. Although EPEC produces characteristic attaching and effacing lesions and loss of microvilli, the pathophysiology of EPEC-associated diarrhea, particularly during early infection, remains elusive. The present studies were designed to examine the direct effects of EPEC infection on intestinal absorption via Na(+)/H(+) exchanger (NHE) isoforms. Caco-2 cells were infected with EPEC strain E2348/69 or nonpathogenic E. coli HB101 for a period of 60 to 120 min. Total NHE activity was significantly increased at 60 min, reaching approximately threefold increase after 90 min of EPEC infection. Similar findings were seen in HT-29 cells and T84 cells indicating that the response was not cell-line specific. Most surprising was the differential regulation of NHE2 and NHE3 by EPEC. Marked activation of NHE2 (300%) occurred, whereas significant inhibition ( approximately 50%) of NHE3 activity was induced. The activity of basolateral isoform NHE1 was also significantly increased in response to EPEC infection. Mutations that disrupted the type III secretion system (TTSS) ablated the effect of EPEC on the activity of both NHE2 and NHE3. These results suggest that EPEC, through a TTSS-dependent mechanism, exerts differential effects on NHE isoform activity in intestinal epithelial cells. Additionally, NHEs do not appear to play any role in EPEC-mediated inflammation, because the NHE inhibitors amiloride and 5-(N-ethyl-N-isopropyl)amiloride did not prevent EPEC-mediated IkappaBalpha degradation.  相似文献   

3.
Enteropathogenic E. coli (EPEC) infection of Hep-2 cells proceeds through bacterial attachment to cell surface and internalization of adhered bacteria. EPEC attachment is a prerequisite for cell infection and is mediated by adhesins that recognize carbohydrate-containing receptors on cell membrane. Such endocytosis-inducer adhesins (EIA) also promote EPEC binding to infant enterocytes, suggesting that EIA may have an important role on EPEC gastroenteritis.  相似文献   

4.
A high sodium intake increases the capacity of the medullary thick ascending limb (MTAL) to absorb HCO(3)(-). Here, we examined the role of the apical NHE3 and basolateral NHE1 Na(+)/H(+) exchangers in this adaptation. MTALs from rats drinking H(2)O or 0.28 M NaCl for 5-7 days were perfused in vitro. High sodium intake increased HCO(3)(-) absorption rate by 60%. The increased HCO(3)(-) absorptive capacity was mediated by an increase in apical NHE3 activity. Inhibiting basolateral NHE1 with bath amiloride eliminated 60% of the adaptive increase in HCO(3)(-) absorption. Thus the majority of the increase in NHE3 activity was dependent on NHE1. A high sodium intake increased basolateral Na(+)/H(+) exchange activity by 89% in association with an increase in NHE1 expression. High sodium intake increased apical Na(+)/H(+) exchange activity by 30% under conditions in which basolateral Na(+)/H(+) exchange was inhibited but did not change NHE3 abundance. These results suggest that high sodium intake increases HCO(3)(-) absorptive capacity in the MTAL through 1) an adaptive increase in basolateral NHE1 activity that results secondarily in an increase in apical NHE3 activity; and 2) an adaptive increase in NHE3 activity, independent of NHE1 activity. These studies support a role for NHE1 in the long-term regulation of renal tubule function and suggest that the regulatory interaction whereby NHE1 enhances the activity of NHE3 in the MTAL plays a role in the chronic regulation of HCO(3)(-) absorption. The adaptive increases in Na(+)/H(+) exchange activity and HCO(3)(-) absorption in the MTAL may play a role in enabling the kidneys to regulate acid-base balance during changes in sodium and volume balance.  相似文献   

5.
6.
Apical sodium-dependent bile acid transporter (ASBT) is responsible for the absorption of bile acids from the intestine. A decrease in ASBT function and expression has been implicated in diarrhea associated with intestinal inflammation. Whether infection with pathogenic microorganisms such as the enteropathogenic Escherichia coli (EPEC) affect ASBT activity is not known. EPEC is a food-borne enteric pathogen that translocates bacterial effector molecules via type three secretion system (TTSS) into host cells and is a major cause of infantile diarrhea. We investigated the effects of EPEC infection on ileal ASBT function utilizing human intestinal Caco2 cells and HEK-293 cells stably transfected with ASBT-V5 fusion protein (2BT cells). ASBT activity was significantly inhibited following 60 min infection with EPEC but not with nonpathogenic E. coli. Mutations in bacterial escN, espA, espB, and espD, the genes encoding for the elements of bacterial TTSS, ablated EPEC inhibitory effect on ASBT function. Furthermore, mutation in the bacterial BFP gene encoding for bundle-forming pili abrogated the inhibition of ASBT by EPEC, indicating the essential role for bacterial aggregation and the early attachment. The inhibition by EPEC was associated with a significant decrease in the V(max) of the transporter and a reduction in the level of ASBT on the plasma membrane. The inhibition of ASBT by EPEC was blocked in the presence of protein tyrosine phosphatase inhibitors. Our studies provide novel evidence for the alterations in the activity of ASBT by EPEC infection and suggest a possible effect for EPEC in influencing intestinal bile acid homeostasis.  相似文献   

7.
Apical membrane sodium hydrogen exchanger 3 (NHE3), a major pathway for non-nutrient-dependent intestinal Na(+) absorption, is tightly regulated by second messenger systems that affect its functional activity and membrane trafficking. However, the events and components involved in NHE3 regulation are only partially understood. We report that the adaptor protein synaptotagmin I (Syt I) plays a pivotal role in cAMP- and Ca(2+)-induced cargo recognition of NHE3 and initiation of its endocytosis. Both mouse small intestine (jejunum) and Caco-2BBe Syt I coimmunoprecipitated with NHE3, particularly following increases in cellular cAMP or Ca(2+). Following short interfering RNA (siRNA) suppression of Syt I expression, cAMP- and Ca(2+)-induced inhibition of NHE3 activity were still observed but NHE3 endocytosis was blocked, as assessed by (22)Na influx and apical membrane biotin labeling, respectively. Similar effects on NHE3 inhibition and endocytosis were observed by siRNA suppression of either the mu-subunit of the adaptor protein 2 (AP2) complex or the heavy chain of clathrin. Coimmunoprecipitation analyses of NHE3 with these adaptor proteins revealed that cAMP- and Ca(2+)-induced NHE3-Syt I interaction preceded and was required for recruitment of AP2 and the clathrin complex. Confocal microscopy confirmed both the time sequence and protein associations of these events. We conclude that Syt I plays a pivotal role in mediating cAMP- and Ca(2+)-induced endocytosis of NHE3 (but not in inhibition of activity) through cargo recognition of NHE3 and subsequent recruitment of AP2-clathrin assembly required for membrane endocytosis.  相似文献   

8.
Sodium/hydrogen exchanger 8 (NHE8), the newest member of the SLC9 family, is expressed at the apical membrane of the epithelial cells in the intestine and the kidney. Although NHE8 has been shown to be an important player for intestinal sodium absorption early in development, its physiological role in the intestine remains unclear. Here, we successfully created a NHE8 knockout (NHE8(-/-)) mouse model to study the function of this transporter in the intestinal tract. Embryonic stem cells containing interrupted NHE8 gene were injected into mouse blastocyst to produce NHE8(+/-) chimeras. NHE8(-/-) mice showed no lethality during embryonic and fetal development. These mice had normal serum sodium levels and no signs of diarrhea. Apically expressed NHE2 and NHE3 were increased in the small intestine of the NHE8(-/-) mice in compensation. The number of goblet cells and mucin (MUC)-positive cells in the colon was reduced in NHE8(-/-) mice along with mucosal pH, MUC2 expression as well as downregulated in adenoma (DRA) expression. Therefore, the role of NHE8 in the intestine involves both sodium absorption and bicarbonate secretion.  相似文献   

9.
Matrix metalloproteinase 9 (MMP-9) plays a critical role in digesting the extracellular matrix and has a vital function in tumor metastasis and invasion; this protease activity is significantly increased in non-small cell lung cancers. The sodium hydrogen exchanger isoform 1 (NHE1) functions as a focal point for signal coordination and cytoskeletal reorganization. NHE1 is thought to play a central role in establishing signaling components at the leading edge of a migrating cell. Therefore, we studied the relationship between NHE1 and MMP-9 activity in Chinese hamster lung fibroblasts (CCL39) stimulated with phenylephrine (PE). We show that PE increases MMP-9 gelatinolytic activity in CCL39 cells. The inhibition of phospholipase D (PLD) signaling abrogated PE-induced MMP-9 activity. The role of PLD as an essential signaling intermediate was confirmed when the addition of permeable phosphatidic acid increased MMP-9 activity in the same cells. PE-induced invasion was increased 1.9-fold over controls and the PE response was lost when 1-butanol was used to block PLD signaling. Cells pre-treated with the NHE1 inhibitor, 5-(N-ethyl-N-isopropyl) amiloride (EIPA) prior to PE addition resulted in a notable decrease in MMP-9 activation and cell invasion as compared to untreated PE-stimulated cells. CCL39 NHE1 null cells demonstrated no increase in MMP-9 protease activity or cell invasion in response to PE treatment. Reconstitution of NHE1 expression recovered the PE-induced activation of protease activity and cell invasion. MMP-9 processing was altered in cells expressing a proton transport defective NHE1 but retained the ability to respond to PE. Conversely, cells expressing an ezrin, radixin, moesin (ERM)-binding deficient NHE1 had a lower MMP-9 activity and the protease did not respond to PE addition. Parallel studies on NCI-H358 non-small cell lung cancer (NSCL) cells showed that PE stimulated both MMP-9 activity and cell invasion in an NHE1 dependent manner. This work describes for the first time a PE-induced relationship between NHE1 and MMP-9 and a new potential mechanism by which NHE1 could promote tumor formation and metastasis.  相似文献   

10.
11.
Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] are phosphoinositides (PIs) present in small amounts in the inner leaflet of the plasma membrane (PM) lipid bilayer of host target cells. They are thought to modulate the activity of proteins involved in enteropathogenic Escherichia coli (EPEC) infection. However, the role of PI(4,5)P2 and PI(3,4,5)P3 in EPEC pathogenesis remains obscure. Here we show that EPEC induces a transient PI(4,5)P2 accumulation at bacterial infection sites. Simultaneous actin accumulation, likely involved in the construction of the actin-rich pedestal, is also observed at these sites. Acute PI(4,5)P2 depletion partially diminishes EPEC adherence to the cell surface and actin pedestal formation. These findings are consistent with a bimodal role, whereby PI(4,5)P2 contributes to EPEC association with the cell surface and to the maximal induction of actin pedestals. Finally, we show that EPEC induces PI(3,4,5)P3 clustering at bacterial infection sites, in a translocated intimin receptor (Tir)-dependent manner. Tir phosphorylated on tyrosine 454, but not on tyrosine 474, forms complexes with an active phosphatidylinositol 3-kinase (PI3K), suggesting that PI3K recruited by Tir prompts the production of PI(3,4,5)P3 beneath EPEC attachment sites. The functional significance of this event may be related to the ability of EPEC to modulate cell death and innate immunity.  相似文献   

12.
Phosphatidylinositol 3-kinase (PI 3-kinase) is a cytoplasmic signaling molecule that is recruited to activated growth factor receptors and has been shown to be involved in regulation of stimulated exocytosis and endocytosis. One of the downstream signaling molecules activated by PI 3-kinase is the protein kinase Akt. Previous studies have indicated that PI 3-kinase is necessary for basal Na(+)/H(+) exchanger 3 (NHE3) transport and for fibroblast growth factor-stimulated NHE3 activity in PS120 fibroblasts. However, it is not known whether activation of PI 3-kinase is sufficient to stimulate NHE3 activity or whether Akt is involved in this PI 3-kinase effect. We used an adenoviral infection system to test the possibility that activation of PI 3-kinase or Akt alone is sufficient to stimulate NHE3 activity. This hypothesis was investigated in PS120 fibroblasts stably expressing NHE3 after somatic gene transfer using a replication-deficient recombinant adenovirus containing constitutively active catalytic subunit of PI 3-kinase or constitutively active Akt. The adenovirus construct used was engineered with an upstream ecdysone promoter to allow time-regulated expression. Adenoviral infection was nearly 100% at 48 h after infection. Forty-eight hours after infection (24 h after activation of the ecdysone promoter), PI 3-kinase and Akt amount and activity were increased. Increases in both PI 3-kinase activity and Akt activity stimulated NHE3 transport. In addition, a membrane-permeant synthetic 10-mer peptide that binds polyphosphoinositides and increases PI 3-kinase activity similarly enhanced NHE3 transport activity and also increased the percentage of NHE3 on the plasma membrane. The magnitudes of stimulation of NHE3 by constitutively active PI 3-kinase, PI 3-kinase peptide, and constitutively active Akt were similar to each other. These results demonstrate that activation of PI 3-kinase or Akt is sufficient to stimulate NHE3 transport activity in PS120/NHE3 cells.  相似文献   

13.
Reperfusion injury results from pathologies of cardiac myocyte physiology that develop when previously ischemic myocardium experiences a restoration of normal perfusion. Events in the development of reperfusion injury begin with the restoration of a proton gradient upon reperfusion, which then allows the sodium-proton exchanger (NHE) to increase flux, removing protons from the intracellular space while importing sodium. The resulting sodium overload drives increased reverse-mode sodium-calcium exchanger (NCX) activity, creating a secondary calcium overload that has pathologic consequences. One of the attempts to reduce reperfusion-related damage, NHE inhibition, has shown little clinical benefit, and only when NHE inhibitors are given prior to reperfusion. In an effort to further understand why NHE inhibitors have been largely unsuccessful, we employed a new mathematical cardiomyocyte model that we developed for the study of ischemia and reperfusion. Using this model, we simulated 20 minutes of ischemia and 10 minutes of reperfusion, while also simulating NHE inhibition by reducing NHE flux in our model by varying amounts and at different time points. In our simulations, when NHE inhibition is applied at the onset of reperfusion, increasing the degree of inhibition increases the peak sodium and calcium concentrations, as well as reducing intracellular pH recovery. When inhibition was instituted at earlier time points, some modest improvements were seen, largely due to reduced sodium concentrations prior to reperfusion. Analysis of all sodium flux pathways suggests that the sodium-potassium pump (NaK) plays the largest role in exacerbated sodium overload during reperfusion, and that reduced NaK flux is largely the result of impaired pH recovery. While NHE inhibition does indeed reduce sodium influx through that exchanger, the resulting prolongation of intracellular acidosis paradoxically increases sodium overload, largely mediated by impaired NaK function.  相似文献   

14.
We recently reported that NHE3 exists in multimeric complexes with dipeptidyl peptidase IV (DPPIV) in renal brush-border membranes. To examine the possible role of DPPIV in modulating NHE3 activity, we evaluated whether specific competitive inhibitors that bind to the active site of DPPIV affect NHE3 activity in the OKP line of opossum kidney proximal tubule cells. The DPPIV inhibitors diprotin A and P32/98 significantly reduced NHE3 activity, whereas the inactive isomer P34/98 had no effect. DPPIV inhibitors did not reduce the activity of another brush-border transport process, Na-phosphate cotransport. Effects of DPPIV inhibitors on NHE3 activity were not associated with detectable changes in amount or apparent molecular weight of NHE3 or in NHE3 surface expression. To investigate the signaling mechanisms involved in modulation of NHE3 activity by DPPIV, we used inhibitors of protein kinase pathways known to regulate NHE3. Whereas the PKA inhibitor H-89 failed to block the effect of DPPIV inhibitors, the tyrosine kinase inhibitor genistein alone caused a decrement in NHE3 activity very similar in magnitude to that caused by P32/98. We also found that the effects of genistein and P32/98 on NHE3 activity were not additive. In contrast, forskolin/IBMX and P32/98 had additive inhibitory effects on NHE3 activity. These findings suggested that the effect of DPPIV inhibitors to reduce NHE3 activity results from inhibition of a tyrosine kinase signaling pathway rather than by activation of PKA. We conclude that DPPIV plays an unexpected role in modulating Na+/H+ exchange mediated by NHE3 in proximal tubule cells. sodium/hydrogen exchange; diprotin A; P32/98; tyrosine kinase  相似文献   

15.
Enteropathogenic Escherichia coli (EPEC) virulence requires a type III secretion system (TTSS) to deliver effector molecules in host cells. Although the TTSS is crucial to EPEC pathogenesis, its function in EPEC-induced inflammation is not known. The aim of this study was to investigate the role of the TTSS in EPEC-induced inflammation. HT-29 intestinal epithelial cells were infected with wild-type (WT) EPEC or select mutant strains or exposed to corresponding filter-sterilized supernatants (SN), and interleukin-8 (IL-8) secretion was determined by ELISA. EPEC SN stimulated significantly greater IL-8 production than EPEC organisms. Flagellin, as well as a TTSS-independent >50-kDa nonflagellin protein, was found to significantly contribute to this response. Dose-response studies showed that increasing concentrations of WT SN proportionally increased IL-8, whereas increasing multiplicity of infection of EPEC inversely correlated with IL-8 secretion, suggesting that EPEC dampens this host response. Infection with DeltaescN (nonfunctional TTSS) markedly increased IL-8 compared with WT, indicating that a functional TTSS is required for this anti-inflammatory property; complementation of escN restored the attenuated response. Mutation of espB also enhanced the IL-8 response, and complementation returned IL-8 to near WT levels, suggesting involvement of this effector. The anti-inflammatory effect extends to both bacterial and host-derived proinflammatory stimuli, since prior infection with EPEC suppressed the IL-8 response to tumor necrosis factor-alpha, IL-1beta, and enterohemorrhagic E. coli flagellin. These findings indicate that EPEC-induced inflammation is a balance between pro- and anti-inflammatory proteins; extracellular factors, including flagellin and an unidentified TTSS-independent, >50-kDa protein, trigger inflammation while intracellular TTSS-dependent factors, including EspB, attenuate this response.  相似文献   

16.
Na+/H+ exchanger 3 (NHE3) plays a pivotal role in transepithelial Na+ and HCO3(-) absorption across a wide range of epithelia in the digestive and renal-genitourinary systems. Accumulating evidence suggests that PDZ-based adaptor proteins play an important role in regulating the trafficking and activity of NHE3. A search for NHE3-binding modular proteins using yeast two-hybrid assays led us to the PDZ-based adaptor Shank2. The interaction between Shank2 and NHE3 was further confirmed by immunoprecipitation and surface plasmon resonance studies. When expressed in PS120/NHE3 cells, Shank2 increased the membrane expression and basal activity of NHE3 and attenuated the cAMP-dependent inhibition of NHE3 activity. Furthermore, knock-down of native Shank2 expression in Caco-2 epithelial cells by RNA interference decreased NHE3 protein expression as well as activity but amplified the inhibitory effect of cAMP on NHE3. These results indicate that Shank2 is a novel NHE3 interacting protein that is involved in the fine regulation of transepithelial salt and water transport through affecting NHE3 expression and activity.  相似文献   

17.
Na+/H+ exchanger 3 (NHE3) plays an important role in neutral Na+ transport in mammalian epithelial cells. The Rho family of small GTPases and the PDZ (PSD-95/discs large/ZO-1) domain-based adaptor Shank2 are known to regulate the membrane expression and activity of NHE3. In this study we examined the role of βPix, a guanine nucleotide exchange factor for the Rho GTPase and a strong binding partner to Shank2, in NHE3 regulation using integrated molecular and physiological approaches. Immunoprecipitation and pulldown assays revealed that NHE3, Shank2, and βPix form a macromolecular complex when expressed heterologously in mammalian cells as well as endogenously in rat colon, kidney, and pancreas. In addition, these proteins co-segregated at the apical surface of rat colonic epithelial cells, as detected by immunofluorescence staining. When expressed in PS120/NHE3 cells, βPix increased membrane expression and basal activity of NHE3. Interestingly, the effects of βPix on NHE3 were abolished by cotransfection with dominant-negative Shank2 mutants and by treatment with Clostridium difficile toxin B, a Rho GTPase inhibitor, indicating that Shank2 and Rho GTPases are involved in βPix-mediated NHE3 regulation. Knockdown of endogenous βPix by RNA interference decreased Shank2-induced increase of NHE3 membrane expression in HEK 293T cells. These results indicate that βPix up-regulates NHE3 membrane expression and activity by Shank2-mediated protein-protein interaction and by activating Rho GTPases in the apical regions of epithelial cells.  相似文献   

18.
19.
NHE8, the newest member of the sodium/hydrogen exchanger family, is expressed in the epithelial cells of the intestine and the kidney. Intestinal expression of NHE8 is significantly higher than that of NHE2 and NHE3 at a young age, suggesting that NHE8 is an important player for intestinal sodium absorption during early development. The current study was designed to explore if NHE8 plays a compensatory role for the loss of NHE2 and NHE3 function in NHE2X3 double-knockout (NHE2X3 DKO) mice. We further explored the regulatory mechanism(s) responsible for the change in NHE8 expression in NHE2X3 DKO mice. We found that >95% of NHE2X3 DKO mice survived through weanling. However, only 60% of male NHE2X3 DKO mice and 88% of female NHE2X3 DKO mice survived to 6 wk of life. We also found that the expression of NHE8 in wild-type female mice was higher compared with wild-type male mice after puberty. In NHE2X3 KDO mice, NHE8 expression was increased in females but not in males. Using Caco-2 cells as a model of the small intestine, we showed that testosterone inhibited endogenous NHE8 expression by reducing NHE8 mRNA synthesis, whereas estrogen had no effect on NHE8 expression. Thus our data show for the first time that intestinal NHE8 has a compensatory role in NHE2X3 DKO mice and this regulation is gender-dependent.  相似文献   

20.
The function and regulation of Na(+)/H(+) exchanger isoform 1 (NHE1) following cerebral ischemia are not well understood. In this study, we demonstrate that extracellular signal-related kinases (ERK1/2) play a role in stimulation of neuronal NHE1 following in vitro ischemia. NHE1 activity was significantly increased during 10-60 min reoxygenation (REOX) after 2-h oxygen and glucose deprivation (OGD). OGD/REOX not only increased the V(max) for NHE1 but also shifted the K(m) toward decreased [H(+)](i). These changes in NHE1 kinetics were absent when MAPK/ERK kinase (MEK) was inhibited by the MEK inhibitor U0126. There were no changes in the levels of phosphorylated ERK1/2 (p-ERK1/2) after 2 h OGD. The p-ERK1/2 level was significantly increased during 10-60 min REOX, which was accompanied by nuclear translocation. U0126 abolished REOX-induced elevation and translocation of p-ERK1/2. We further examined the ERK/90-kDa ribosomal S6 kinase (p90(RSK)) signaling pathways. At 10 min REOX, phosphorylated NHE1 was increased with a concurrent elevation of phosphorylation of p90(RSK), a known NHE1 kinase. Inhibition of MEK activity with U0126 abolished phosphorylation of both NHE1 and p90(RSK). Moreover, neuroprotection was observed with U0126 or genetic ablation or pharmacological inhibition of NHE1 following OGD/REOX. Taken together, these results suggest that activation of ERK1/2-p90(RSK) pathways following in vitro ischemia phosphorylates NHE1 and increases its activity, which subsequently contributes to neuronal damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号