首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acute liver failure (ALF) is characterized neuropathologically by cytotoxic brain edema and biochemically by increased brain ammonia and its detoxification product, glutamine. The osmotic actions of increased glutamine synthesis in astrocytes are considered to be causally related to brain edema and its complications (intracranial hypertension, brain herniation) in ALF. However studies using multinuclear (1)H- and (13)C-NMR spectroscopy demonstrate that neither brain glutamine concentrations per se nor brain glutamine synthesis rates correlate with encephalopathy grade or the presence of brain edema in ALF. An alternative mechanism is now proposed whereby the newly synthesized glutamine is trapped within the astrocyte as a consequence of down-regulation of its high affinity glutamine transporter SNAT5 in ALF. Restricted transfer out of the cell rather than increased synthesis within the cell could potentially explain the cell swelling/brain edema in ALF. Moreover, the restricted transfer of glutamine from the astrocyte to the adjacent glutamatergic nerve terminal (where glutamine serves as immediate precursor for the releasable/transmitter pool of glutamate) could result in decreased excitatory transmission and excessive neuroinhibition that is characteristic of encephalopathy in ALF. Paradoxically, in spite of renewed interest in arterial ammonia as a predictor of raised intracranial pressure and brain herniation in ALF, ammonia-lowering agents aimed at reduction of ammonia production in the gut have so far been shown to be of limited value in the prevention of these cerebral consequences. Mild hypothermia, shown to prevent brain edema and intracranial hypertension in both experimental and human ALF, does so independent of effects on brain glutamine synthesis; whether or not hypothermia restores expression levels of SNAT5 in ALF awaits further studies. While inhibitors of brain glutamine synthesis such as methionine sulfoximine, have been proposed for the prevention of brain edema in ALF, potential adverse effects have so far limited their applicability.  相似文献   

2.
A comparative study of glutamate dehydrogenase (GLDH 1.4.1.2) and glutamine synthetase (GS 6.3.1.2.) activity in liver, kidney and spleen homogenates from cattle, sheep, pigs and chickens showed that chicken liver contained on an average 3.5%, pig liver 8.3% and bovine liver 45.6% of the glutamate dehydrogenase activity present in sheep liver. Relatively low trace activity was found in the spleen and kidneys, except for the renal cortex of cattle (32% of activity in the liver). GS activity was the highest in chicken liver; in pigs it amounted to 33.40%, in cattle to 24.2% and in sheep to 19.7% of this activity. No marked interspecies differences were found in the values in the kidneys and spleen. It can be concluded from the results that the relatively high GLDH activity in the liver of ruminants compared with pigs and chicken is associated with the greater ability of ruminants to utilize ammonia. The higher GS activity and lower GLDH activity in chicken liver can be attributed to higher uric acid synthesis from ammonia via glutamine and purine bases and the lower ability of birds to utilize ammonia for protein synthesis. The presence of alanine dehydrogenase was not demonstrated in chicken liver, where the maximum oxidation of NADH after the addition to pyruvate and ammonia substrate was found.  相似文献   

3.
Changes in hepatopancreas, muscle and gill tissue nitrogen metabolic profiles were studied in a penaeid prawn, Penaeus indicus, following its exposure to sublethal concentrations of methylparathion, carbaryl and aldrin. In all the insecticide exposed prawn tissues, Ammonia levels were significantly increased and a shift in the nitrogen metabolism towards the synthesis of urea and glutamine was observed. Inhibition of glutamate oxidation to ammonia and alpha-ketoglutarate by glutamate dehydrogenase suggests a mechanism whereby hyperammonemia is reduced by minimizing the addition of further ammonia to the already existing elevated ammonia pool. Increased alanine and aspartate aminotransferases demonstrates the onset of gluconeogenesis. Mechanisms to detoxify the ammonia by enhancing the synthesis of urea and glutamine at the cellular level was observed in the selected tissues pave way for the survivability of prawns in insecticide polluted environs.  相似文献   

4.
The effects of three factors (ammonia, L-glutamate, and cyclic adenosine 3',5'-monophosphate) on the ammonia assimilatory processes in aerobically grown Rhizobium japonicum colony derivatives were examined. Ammonia repressed glutamine synthetase activity and increased the average state of adenylylation of this enzyme. The addition of L-glutamate drastically decreased growth and strongly repressed glutamate synthase levels. Glutamine synthetase repression and adenylylation state were also increased by L-glutamate. The presence of cyclic AMP led to the repression of all three NH+4 assimilatory enzymes.  相似文献   

5.

Background and Purpose

Liver dysfunction led hyperammonemia (HA) causes a nervous system disorder; hepatic encephalopathy (HE). In the brain, ammonia induced glutamate-excitotoxicity and oxidative stress are considered to play important roles in the pathogenesis of HE. The brain ammonia metabolism and antioxidant enzymes constitute the main components of this mechanism; however, need to be defined in a suitable animal model. This study was aimed to examine this aspect in the rats with acute liver failure (ALF).

Methods

ALF in the rats was induced by intraperitoneal administration of 300 mg thioacetamide/Kg. b.w up to 2 days. Glutamine synthetase (GS) and glutaminase (GA), the two brain ammonia metabolizing enzymes vis a vis ammonia and glutamate levels and profiles of all the antioxidant enzymes vis a vis oxidative stress markers were measured in the cerebral cortex and cerebellum of the control and the ALF rats.

Results

The ALF rats showed significantly increased levels of ammonia in the blood (HA) but little changes in the cortex and cerebellum. This was consistent with the activation of the GS-GA cycle and static levels of glutamate in these brain regions. However, significantly increased levels of lipid peroxidation and protein carbonyl contents were consistent with the reduced levels of all the antioxidant enzymes in both the brain regions of these ALF rats.

Conclusion

ALF activates the GS-GA cycle to metabolize excess ammonia and thereby, maintains static levels of ammonia and glutamate in the cerebral cortex and cerebellum. Moreover, ALF induces oxidative stress by reducing the levels of all the antioxidant enzymes which is likely to play important role, independent of glutamate levels, in the pathogenesis of acute HE.  相似文献   

6.
To test the significance of the purine nucleotide cycle in renal ammoniagenesis, studies were conducted with rat kidney cortical slices using glutamate or glutamine labelled in the alpha-amino group with 15N. Glucose production by normal kidney slices with 2 mM-glutamine was equal to that with 3 mM-glutamate. With L-[15N]glutamate as sole substrate, one-third of the total ammonia produced by kidney slices was labelled, indicating significant deamination of glutamate or other amino acids from the cellular pool. Ammonia produced from the amino group of L-[alpha-15N]glutamine was 4-fold higher than from glutamate at similar glucose production rates. Glucose and ammonia formation from glutamine by kidney slices obtained from rats with chronic metabolic acidosis was found to be 70% higher than by normal kidney slices. The contribution of the amino group of glutamine to total ammonia production was similar in both types of kidneys. No 15N was found in the amino group of adenine nucleotides after incubation of kidney slices from normal or chronically acidotic rats with labelled glutamine. Addition of Pi, a strong inhibitor of AMP deaminase, had no effect on ammonia formation from glutamine. Likewise, fructose, which may induce a decrease in endogenous Pi, had no effect on ammonia formation. The data obtained suggest that the contribution of the purine nucleotide cycle to ammonia formation from glutamine in rat renal tissue is insignificant.  相似文献   

7.
Ammonia production from glutamine was studied in slices from non-acidotic and acidotic rat kidneys. Slices from non-acidotic kidneys made 53% as much ammonia from D-glutamine as from L-glutamine during the initial 15 min of incubation. Thereafter the production rate from the L-isomer accelerated while that from the D-isomer remained constant. The accelerated rate of ammonia production from L-glutamine was dependent upon tissue swelling since prevention of swelling reduced the production rate. Swelling activates the mitochondrial glutaminase I pathway as evidenced by the rise in ammonia produced per glutamine utilized ratio as well as by the accelerated rate of CO2 production derived from the oxidative disposal of glutamin's carbon skeleton. Cortical slice swelling activates the mitochondrial pathway in a manner not unlike that seen in vivo during chronic acidosis and may reflect increased permeability to glutamine. Acidotic rat kidneys are not swollen in vivo while cortical slices initially produce 4-fold more ammonia than do non-acidotic slices. After 15 min, this 4-fold difference in total ammonia production drops to only a 2-fold difference due to the swelling-induced activation of the mitochondrial pathway. Consequently, slice swelling obliterates the important fact that ammonia production by the mitochondrial pathway is 15-fold greater in acidotic than in non-acidotic kidneys.  相似文献   

8.
The effects of three factors (ammonia, L-glutamate, and cyclic adenosine 3′,5′-monophosphate) on the ammonia assimilatory processes in aerobically grown Rhizobium japonicum colony derivatives were examined. Ammonia repressed glutamine synthetase activity and increased the average state of adenylylation of this enzyme. The addition of L-glutamate drastically decreased growth and strongly repressed glutamate synthase levels. Glutamine synthetase repression and adenylylation state were also increased by L-glutamate. The presence of cyclic AMP led to the repression of all three NH4+ assimilatory enzymes.  相似文献   

9.
Ammonia production from glutamine was studied in slices from non-acidotic and acidotic rat kidneys. Slices from non-acidotic kidneys made 53% as much ammonia from d-glutamine as from l-glutamine during the initial 15 min of incubation. Thereafter the production rate from the l-isomers accelerated while that from the d-isomers remained constant. The accelerated rate of ammonia production from l-glutamine was dependent upon tissue swelling since prevention of swelling reduced the production rate. Swelling activates the mitochondrial glutaminase I pathway as evidenced by the rise in ammonia produced per glutamine utilized ratio as well as by the accelerated rate of CO2 production derived from the oxidative disposal of glutamine's carbon skeleton. Cortical slice swelling activates the mitochondrial pathway in a manner not unlike that seen in vivo during chronic acidosis and may reflect increased permeability to glutamine.Acidotic rat kidneys are not swollen in vivo while cortical slices initially produce 4-fold more ammonia than do non-acidotic slices. After 15 min, this 4-fold difference in total ammonia production drops to only a 2-fold difference due to the swelling-induced activation of the mitochondrial pathway. Consequently, slice swelling obliterates the important fact that ammonia production by the mitochondrial pathway is 15-fold greater in acidotic than in non-acidotic kidneys.  相似文献   

10.
Ammonia can easily be assimilated into amino acids and used for silk-protein synthesis in the silkworm, Bombyx mori. To determine the metabolic pathway of ammonia assimilation, silkworm larvae were injected with methionine sulfoximine (MS), a specific inhibitor of glutamine synthetase (GS). Activity of GS in the fat body 2h after treatment with 400&mgr;g MS decreased to less than 10% of the control activity, whereas MS had no effect on the activity of glutamate dehydrogenase (GDH), another enzyme which could possibly be responsible for ammonia assimilation. Glutamine concentration in the hemolymph rapidly decreased after MS treatment, while the ammonia level in the hemolymph sharply increased. Glutamine concentration in the hemolymph 4h after injection decreased with increasing doses of MS, whereas ammonia concentration increased in proportion to the MS dose. MS strongly blocked the incorporation of (15)N label into silk-protein in larvae injected with (15)N ammonia acetate, while it slightly inhibited the incorporation of (15)N-amide glutamine into silk-protein. These results suggest that ammonia is mainly assimilated into glutamine via the action of GS and then converted into other amino acids for silk-protein synthesis and that GDH does not play a major role in ammonia assimilation in B. mori.  相似文献   

11.
1. When isolated kidneys from fed rats were perfused with glutamine the rate of ammonia release at pH7.4 (110–360μmol/h per g dry wt.) was one to two times that of glutamine removal. Glucose formation from 5mm-glutamine was 16μmol/h per g. If kidneys were perfused with glutamine at pH7.1 (10–13mm-sodium bicarbonate) there was no increase in glutamine removal or in the formation of ammonia or glucose. 2. When isolated kidneys from fed rats were perfused with glutamate at pH7.4, glucose formation was 59μmol/h per g, glutamine formation was 182μmol/h per g and ammonia release was negligible. At pH7.1 glutamine synthesis was inhibited and formation of ammonia and glucose were increased. 3. In perfused kidneys from acidotic rats, which had received 1.5% (w/v) NH4Cl to drink for 7–10 days, gluconeogenesis from glutamine was enhanced (101μmol/h per g). Glutamine removal and ammonia formation were also increased, compared with the rates in perfused kidney from normal rats. The extra glutamine consumed was equivalent to the extra glucose formed. 4. When the kidney from the 7–10-day-acidotic rat was perfused with glutamate gluconeogenesis was increased (113μmol/h per g). Synthesis of glutamine was decreased, and ammonia release was approximately equal to the rate of glutamate removal. 5. The time-course of these metabolic alterations was investigated after the rapid induction of acidosis by infusion of 0.25m-HCl into the right side of the heart. The increase in gluconeogenesis from glutamine developed gradually over several hours. When kidneys from 6h-acidotic rats were perfused with glutamate, formation of glucose and glutamine were both rapid. 6. In acidotic rat kidneys perfused with glutamine, tissue concentrations of glutamate and glucose 6-phosphate were increased compared with those in control perfused kidneys from non-acidotic rats. 7. The results are discussed in terms of control of the renal metabolism of glutamine. In particular, it is suggested that in acidotic rats glucose formation is the major fate of the carbon of the extra glutamine utilized by the kidney, and that inhibition of glutamine synthetase could contribute to the increase in intracellular ammonia concentration in the kidney.  相似文献   

12.
AMINO ACID METABOLISM AND AMMONIA FORMATION IN BRAIN SLICES   总被引:2,自引:2,他引:0  
The formation of ammonia and changes in the contents of free amino acids have been investigated in slices of guinea pig cerebral cortex incubated under the following conditions: (1) aerobically in glucose-free saline; (2) aerobically in glucose-free saline containing 10 mM-bromofuroic acid, an inhibitor of glutamate dehydrogenase (EC 1.4.1.2); (3) aerobically in saline containing 11-1 mM-glucose and (4) anaerobically in glucose-free saline. Ammonia was formed at a steady rate aerobically in glucose-free medium. The formation of ammonia was largely suppressed in the absence of oxygen or in the presence of glucose whereas the inhibitor of glutamate dehydrogenase produced about 50 per cent inhibition. Other inhibitors of glutamate dehydrogenase exerted a similar effect. Ammonia formation was also inhibited by some inhibitors of aminotransferases but not by others. Inhibition was generally more pronounced during the second and third hour of incubation. With the exception of glutamine which decreased slightly, the contents of all amino acids increased markedly during the anaerobic incubation. During aerobic incubation in a glucose-free medium, there was an almost complete disappearance of glutamic acid and GABA. Glutamine also decreased, but to a relatively smaller extent. The content of all other amino acids increased during aerobic incubation in glucose-free medium, although to a lesser extent than under anaerobic conditions. The greater increase of amino acids appearing anaerobically in comparison to the increase or decrease occurring under aerobic conditions corresponded closely to the greater amount of ammonia formed aerobically over that formed anaerobically. This finding is interpreted as indicating a similar degree of proteolysis under anaerobic and aerobic conditions; aerobically, the amino acids are partly metabolized with the concomitant liberation of ammonia. In glucose-supplemented medium, the content of glutamine was markedly increased. The content of glutamate and aspartate remained unchanged, whereas that of some other amino acids increased but to a lesser extent than in the absence of glucose. Proteolysis in the presence of glucose was estimated at about 65 per cent of that in its absence. In the presence of bromofuroate the rate of disappearance of glutamate was unchanged, but there was a larger increase in the content of aspartate and a smaller decrease of GABA and glutamine. Other changes did not differ significantly from those observed in the absence of bromofuroate. We conclude that the metabolism of amino acids in general and of glutamic acid in particular differs according to whether they are already present within the brain slice or are added to the incubation medium. Only the endogenous amino acids appear to be able to serve as precursors of ammonia and as substrates for energy production.  相似文献   

13.
In the post-absorptive state, ammonia is produced in equal amounts in the small and large bowel. Small intestinal synthesis of ammonia is related to amino acid breakdown, whereas large bowel ammonia production is caused by bacterial breakdown of amino acids and urea. The contribution of the gut to the hyperammonemic state observed during liver failure is mainly due to portacaval shunting and not the result of changes in the metabolism of ammonia in the gut. Patients with liver disease have reduced urea synthesis capacity and reduced peri-venous glutamine synthesis capacity, resulting in reduced capacity to detoxify ammonia in the liver.The kidneys produce ammonia but adapt to liver failure in experimental portacaval shunting by reducing ammonia release into the systemic circulation. The kidneys have the ability to switch from net ammonia production to net ammonia excretion, which is beneficial for the hyperammonemic patient. Data in experimental animals suggest that the kidneys could have a major role in post-feeding and post-haemorrhagic hyperammonemia.During hyperammonemia, muscle takes up ammonia and plays a major role in (temporarily) detoxifying ammonia to glutamine. Net uptake of ammonia by the brain occurs in patients and experimental animals with acute and chronic liver failure. Concomitant release of glutamine has been demonstrated in experimental animals, together with large increases of the cerebral cortex ammonia and glutamine concentrations. In this review we will discuss interorgan trafficking of ammonia during acute and chronic liver failure. Interorgan glutamine metabolism is also briefly discussed, since glutamine synthesis from glutamate and ammonia is an important alternative pathway of ammonia detoxification. The main ammonia producing organs are the intestines and the kidneys, whereas the major ammonia consuming organs are the liver and the muscle.  相似文献   

14.
Neurochemical consequences of repeated ethanol treatment on energy and ammonia metabolism were studied in different regions of rat brain. Energy production was decreased as indicated by lowered lactate dehydrogenase and succinate dehydrogenase activities with possible lacticacidimia. Transamination of alanine and aspartate increased while the deamination of glutamate decreased in all the regions of brain. The deamination of AMP was slightly elevated in cerebral cortex and brain stem while it was inhibited in cerebellum. Ammonia levels were persistently high, despite stepped up glutamine synthesis and ureogenesis. The synergistic action of ammonia during ethanol intoxication is envisaged.  相似文献   

15.
The highest ammonia concentration in the body is found in the colon lumen and although there is evidence that this metabolite can be absorbed through the colonic epithelium, there is little information on the capacity of the colonic mucosa to transfer and metabolize this compound. In the present study, we used a model of conscious pig with a canula implanted into the proximal colon to inject endoluminally increasing amounts of ammonium chloride and to measure during 5 h the kinetics of ammonia and amino acid concentration changes in the portal and arterial blood. By injecting as a single dose from 1 to 5 g ammonia into the colonic lumen, a dose-related increase in ammonia concentration in the portal blood was recorded. Ammonia concentration remained unchanged in the arterial blood except for the highest dose tested, i.e. 5 g which thus apparently exceeds the hepatic ureagenesis capacity. By calculating the apparent net ammonia absorption, it was determined that the pig colonic epithelium has the capacity to absorb 4 g ammonia. Ammonia absorption through the colonic epithelium was concomitant with increase of l-glutamine and l-arginine concentrations in the portal blood. This coincided with the expression of both glutamate dehydrogenase and glutamine synthetase in isolated colonic epithelial cells. Since l-glutamine and l-arginine are known to represent activators for liver ureagenesis, we propose that increased portal concentrations of these amino acids following increased ammonia colonic luminal concentration represent a metabolic link between colon mucosa and liver urea biosynthesis.  相似文献   

16.
A bioartificial liver (BAL) will bridge patients with acute liver failure (ALF) to either spontaneous regeneration or liver transplantation. The nitrogen metabolism is important in ALF, and the metabolism of nonparenchymal liver cells (NPCs) is poorly understood. The scope of this study was to investigate whether cocultivation of hepatocytes with NPCs would augment the functions of a BAL (HN-BAL) compared with a BAL equipped with only hepatocytes (H-BAL). In addition, NPCs were similarly cultivated alone. The cells were cultivated for 8 days in simulated microgravity with serum-free growth medium. With NPCs, initial ammonia and lactate production were fivefold and over twofold higher compared with later time periods despite sufficient oxygen supply. Initial lactate production and glutamine consumption were threefold higher in HN-BAL than in H-BAL. With NPCs, initial glutamine consumption was two- to threefold higher compared with later time periods, whereas initial ornithine production and arginine consumption were over four- and eightfold higher compared with later time periods. In NPCs, the conversion of glutamine to glutamate and ammonia can be explained by the presence of glutaminase, as revealed by PCR analysis. Drug metabolism and clearance of aggregated gamma globulin, probes administered to test functions of hepatocytes and NPCs, respectively, were higher in HN-BAL than in H-BAL. In conclusion, NPCs produce ammonia by hydrolysis of amino acids and may contribute to the pathogenesis of ALF. High amounts of lactate are produced by NPCs under nonhypoxic conditions. Cocultivation augments differentiated functions such as drug metabolism and clearance of aggregated gamma-globulin.  相似文献   

17.
 The liver plays a central role in nitrogen metabolism. Nitrogen enters the liver as free ammonia and as amino acids of which glutamine and alanine are the most important precursors. Detoxification of ammonia to urea involves deamination and transamination. By applying quantitative in situ hybridization, we found that mRNA levels of the enzymes involved are mainly expressed in periportal zones of liver lobules. Free ammonia, that is not converted periportally, is efficiently detoxified in the small rim of hepatocytes around the central veins by glutamine synthetase preventing it from entering the systemic circulation. Detoxification of ammonia by glutamine synthetase may be limited due to a shortage of glutamate when the nitrogen load is high. Adaptations in metabolism that prevent release of toxic ammonia from the liver were studied in rats that were fed diets with different amounts of protein, thereby varying the nitrogen load of the liver. We observed that mRNA levels of periportal deaminating and transaminating enzymes increased with the protein content in the diet. Similarly, mRNA levels of pericentral glutamate dehydrogenase and ornithine aminotransferase, the main producers of glutamate in this zone, and pericentral glutamine synthetase all increased with increasing protein levels in the diet. On the basis of these changes in mRNA levels, we conclude that: (a) glutamate is produced pericentrally in sufficient amounts to allow ammonia detoxification by glutamine synthetase and (b) in addition to the catalytic role of ornithine in the periportally localized ornithine cycle, pericentral ornithine degradation provides glutamate for ammonia detoxification. Accepted: 16 March 1999  相似文献   

18.
Experiments were designed to examine the early events in the initiation of glutamate deamination in kidney. Perfused kidneys from methionine sulfoximine-treated rats formed ammonia from [15N]glutamate via the purine nucleotide cycle. The turnover of the 6-amino group of adenine nucleotides to yield ammonia occurred at the rate of 0.30 mumol/g of kidney/min. This rate is 3-4 times larger than in liver and is in agreement with published rates of the purine nucleotide cycle in kidney. The addition of 0.1 mM fluorocitrate to glutamate perfusions stimulated ammonia formation 3 1/2-fold. The turnover of the 6-amino group of adenine nucleotides increased during the first 5 min after adding fluorocitrate to form ammonia predominately from tissue glutamate and aspartate. This turnover correlates with a 3 1/2-fold increase in kidney tissue IMP levels. As the ATP/ADP ratio fell the purine nucleotide cycle was inhibited and glutamate dehydrogenase was stimulated to form ammonia stoichiometric with glutamate taken up from the perfusate. Ammonia formation via glutamate dehydrogenase occurred at a rate of 1.0 mumol/g of kidney/min. Fluorocitrate completely blocked ammonia formation from aspartate in perfusions. The perfused kidney formed ammonia from aspartate via the purine nucleotide cycle at a rate of 1.0 mumol/g of kidney/min. The results indicate a discrete role for aspartate in renal metabolism. Ammonia formation via the purine nucleotide cycle can occur at significant rates and equal to the rate of ammonia formation from glutamate via glutamate dehydrogenase.  相似文献   

19.
Ammonia is implicated as a neurotoxin in brain metabolic disorders associated with hyperammonemia. Acute ammonia toxicity can be mediated by an excitotoxic mechanism, oxidative stress and nitric oxide (NO) production. Astrocytes interact with neurons, providing metabolic support and protecting against oxidative stress and excitotoxicity. Astrocytes also convert excess ammonia and glutamate into glutamine via glutamine synthetase (GS). Resveratrol, a polyphenol found in grapes and red wines, exhibits antioxidant and anti-inflammatory properties and modulates glial functions, such as glutamate metabolism. We investigated the effect of resveratrol on the production of reactive oxygen species (ROS), GS activity, S100B secretion, TNF-α, IL-1β and IL-6 levels in astroglial cells exposed to ammonia. Ammonia induced oxidative stress, decreased GS activity and increased cytokines release, probably by a mechanism dependent on protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) pathways. Resveratrol prevented ammonia toxicity by modulating oxidative stress, glial and inflammatory responses. The ERK and nuclear factor-κB (NF-κB) are involved in the protective effect of resveratrol on cytokines proinflammatory release. In contrast, other antioxidants (e.g., ascorbic acid and trolox) were not effective against hyperammonemia. Thus, resveratrol could be used to protect against ammonia-induced neurotoxicity.  相似文献   

20.
Unilateral frontal cortex ablations were performed in rats so that the glutamate terminals in the ipsilateral rostral neostriatum were removed. At 1 or 7 days later, intraperitoneal injections of ammonium acetate induced different changes in amino acid concentrations in the intact and deafferentated neostriatum. After 1 day, the level of glutamate decreased only in the intact side, whereas that of glutamine increased and that of aspartate decreased to the same extent on both sides following ammonia injection. After 7 days, the glutamate level decreased more in the intact than the decorticated side in both nonconvulsing and convulsing rats. The concentration of alanine increased most in the intact neostriatum, whereas glutamine levels increased and aspartate levels decreased to the same extent on both sides in nonconvulsing and convulsing rats. The results indicate that ammonia has a more pronounced effect on neuronal than glial glutamate pools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号