共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Kim MN Lee KE Hong JY Heo WI Kim KW Kim KE Sohn MH 《Biochemical and biophysical research communications》2012,421(4):790-796
BackgroundExposure to 100% oxygen causes hyperoxic acute lung injury characterized by cell death and injury of alveolar epithelial cells. Recently, the role of chitinase 3-like 1 (CHI3L1), a member of the glycosyl hydrolase 18 family that lacks chitinase activity, in oxidative stress was demonstrated in murine models. High levels of serum CHI3L1 have been associated with various diseases of the lung, such as asthma, chronic obstructive pulmonary disease, and cancer. However, the role of CHI3L1 in human airway epithelial cells undergoing oxidative stress remains unknown. In addition, the signaling pathways associated with CHI3L1 in this process are poorly understood.PurposeIn this study, we demonstrate the role of CHI3L1, along with the MAPK and PI3K signaling pathways, in hyperoxia-exposed airway epithelial cells.MethodThe human airway epithelial cell line, BEAS-2B, was exposed to >95% oxygen (hyperoxia) for up to 72 h. Hyperoxia-induced cell death was determined by assessing cell viability, Annexin-V FITC staining, caspase-3 and -7 expression, and electron microscopy. CHI3L1 knockdown and overexpression studies were conducted in BEAS-2B cells to examine the role of CHI3L1 in hyperoxia-induced apoptosis. Activation of the MAPK and PI3K pathways was also investigated to determine the role of these signaling cascades in this process.ResultsHyperoxia exposure increased CHI3L1 expression and apoptosis in a time-dependent manner. CHI3L1 knockdown protected cells from hyperoxia-induced apoptosis. In contrast, CHI3L1 overexpression promoted cell death after hyperoxia exposure. Finally, phosphorylation of ERK1/2, p38, and Akt were affected by CHI3L1 knockdown.ConclusionThis study indicates that CHI3L1 is involved in hyperoxia-induced cell death, suggesting that CHI3L1 may be one of several cell death regulators influencing the MAPK and PI3K pathways during oxidative stress in human airway epithelial cells. 相似文献
3.
RETRACTION: The following article from Journal of Cellular Biochemistry, Genistein protects genioglossus myocyte against hypoxia-induced injury through PI3K-Akt and ERK MAPK pathways by Wanghui Ding and Yuehua Liu, posted online on May 19, 2011 in Wiley Online Library (onlinelibrary.wiley.com), has been retracted by agreement between the authors, the journal Editor in Chief, Dr. Gary S. Stein and Wiley-Liss, Inc. The retraction has been made as authorization to publish was not granted by one of the funding bodies. 相似文献
4.
Silibinin inhibits cell invasion through inactivation of both PI3K-Akt and MAPK signaling pathways 总被引:5,自引:0,他引:5
Silibinin, isolated from Silybum marianum, has been known for its hepatoprotective properties and recent studies have revealed its antiproliferative and apoptotic effects on several cancer cells. An inhibitory effect of silibinin on tumor invasion and matrix metalloproteinase-2 (MMP-2) and urokinasetype plasminogen activator (u-PA) activities in culture medium has been observed in our previous study and the impacts of silibinin on enzyme activities of MMPs, u-PA, mitogen-activated protein kinase (MAPK) and Akt in A549 cells were continued to explore in this study. Our results showed that silibinin exerted an inhibitory effect on the phosphorylation of Akt, as well as extracellular signal-regulated kinases 1 and 2 (ERK1/2), which are the members of the MAPK family involved in the up-regulation of MMPs or u-PA, while no effects on the activities of p38(MAPK) and stress-activated protein kinase/c-Jun N-terminal kinase were observed. A treatment with silibinin to A549 cells also led to a dose-dependent inhibition on the activation of NF-kappaB, c-Jun and c-Fos. Additionally, the treatment of inhibitors specific for MEK (U0126) or PI3K (LY294002) to A549 cells could result in a reduced expression of MMP-2 and u-PA concomitantly with a marked inhibition on cell invasion. These findings suggested that the inhibition on MMP-2 and u-PA expression by silibinin may be through a suppression on ERK1/2 or Akt phosphorylation, which in turn led to the reduced invasiness of the cancer cells. 相似文献
5.
Jingyuan Li Jianyu Wang Dan Xie Qin Pei Xue Wan H.Rosie Xing Ting Ye 《International journal of biological sciences》2021,17(5):1191
Lung cancer is the leading cause of cancer-related mortality worldwide due to its early asymptomatic and late metastasis. While cancer stem cells (CSCs) may play a vital role in oncogenesis and development of lung cancer, mechanisms underlying CSCs self‐renewal remain less clear. In the present study, we constructed a clinically relevant CSCs enrichment recognition model and evaluated the potential functions of phosphatidylinositol 3-kinase (PI3K)/AKT pathway (PI3K/AKT) and mitogen-activated protein kinases/extracellular signal-regulated kinase (MAPK/ERK) pathways in lung cancer via bioinformatic analysis, providing the basis for in depth mechanistic inquisition. Experimentally, we confirmed that PI3K/AKT pathway predominantly promotes proliferation through anti-apoptosis in lung adenocarcinoma cells, while MAPK/ERK pathway has an overwhelming superiority in regulating the proliferation in lung CSCs. Further, utilizing stemness score model, LLC-Symmetric Division (LLC-SD) cells and mouse orthotopic lung transplantation model, we elucidated an intricate cross-talk between the oncogenic pathway and the stem cell reprograming pathway that impact stem cell characteristics as well as cancer biology features of lung CSCs both in vitro and in vivo. In summary, our findings uncovered a new insight that PI3K/AKT and MAPK/ERK pathways as oncogenic signaling pathway and/or stem cell signaling pathway act distinctively and synergistically to regulate lung CSCs self-renewal. 相似文献
6.
Reactive oxygen species are required for hyperoxia-induced Bax activation and cell death in alveolar epithelial cells 总被引:20,自引:0,他引:20
Buccellato LJ Tso M Akinci OI Chandel NS Budinger GR 《The Journal of biological chemistry》2004,279(8):6753-6760
Exposure of animals to hyperoxia results in respiratory failure and death within 72 h. Histologic evaluation of the lungs of these animals demonstrates epithelial apoptosis and necrosis. Although the generation of reactive oxygen species (ROS) is widely thought to be responsible for the cell death observed following exposure to hyperoxia, it is not clear whether they act upstream of activation of the cell death pathway or whether they are generated as a result of mitochondrial membrane permeabilization and caspase activation. We hypothesized that the generation of ROS was required for hyperoxia-induced cell death upstream of Bax activation. In primary rat alveolar epithelial cells, we found that exposure to hyperoxia resulted in the generation of ROS that was completely prevented by the administration of the combined superoxide dismutase/catalase mimetic EUK-134 (Eukarion, Inc., Bedford, MA). Exposure to hyperoxia resulted in the activation of Bax at the mitochondrial membrane, cytochrome c release, and cell death. The administration of EUK-134 prevented Bax activation, cytochrome c release, and cell death. In a mouse lung epithelial cell line (MLE-12), the overexpression of Bcl-XL protected cells against hyperoxia by preventing the activation of Bax at the mitochondrial membrane. We conclude that exposure to hyperoxia results in Bax activation at the mitochondrial membrane and subsequent cytochrome c release. Bax activation at the mitochondrial membrane requires the generation of ROS and can be prevented by the overexpression of Bcl-XL. 相似文献
7.
Mild stretch activates cPLA2 in alveolar type II epithelial cells independently through the MEK/ERK and PI3K pathways 总被引:1,自引:0,他引:1
Alveolar epithelial type II cells (AT II) in which lung surfactant synthesis and secretion take place, are subjected to low magnitude stretch during normal breathing. The aim of the study was to explore the effect of mild stretch on phospholipase A(2) (PLA(2)) activation, an enzyme known to be involved in surfactant secretion. In A549 cells (a model of AT II cells), we showed, using a fluorometric assay, that stretch triggers an increase of total PLA(2) activity. Western blot experiments revealed that the cytosolic isoform cPLA(2) is rapidly phosphorylated under stretch, in addition to a modest increase in cPLA(2) mRNA levels. Treatment of A549 cells with selective inhibitors of the MEK/ERK pathway significantly attenuated the stretch-induced cPLA(2) phosphorylation. A strong interaction of cPLA(2) and pERK enzymes was demonstrated by immunoprecipitation. We also found that inhibition of PI3K pathway attenuated cPLA(2) activation after stretch, without affecting pERK levels. Our results suggest that low magnitude stretch can induce cPLA(2) phosphorylation through the MEK/ERK and PI3K-Akt pathways, independently. 相似文献
8.
《Cell cycle (Georgetown, Tex.)》2013,12(2):398-407
EphB2 is a tyrosine kinase receptor that has been shown to be a tumor suppressor gene in various cancers. However the mechanisms of this function are unknown. We report that EphB2 induces a form of cell death that does not involve the formation of apoptotic bodies or nuclear fragmentation and is instead accompanied by extensive vacuolization. Transmission electron microscopy demonstrates cytoplasmic vacuoles in EphB2-overexpressing cells that resembled autophagosomes. Using an EYFP-LC3 fusion protein and immunoblotting, we detected LC3 aggregation and conversion from form I to form II, both hallmarks of autophagy, in EphB2-transfected cells. Silencing of the autophagy regulating genes ATG5 or ATG7 using shRNAs, strongly prevented EphB2-induced cell death, further confirming its autophagic nature. EphB2 expression results in mitochondrial depolarization and translocation of cytochrome c from the mitochondria to the cytosol. Mapping of signaling pathways revealed novel information about the mechanisms of action of EphB2. We demonstrated that the MAPK pathway is important in the pro-death action of EphB2, through ERK1/2 phosphorylation and inhibition of this pathway using PD98059 counters EphB2-driven cell death. In addition, we found that inhibition of class III PI3K pathway, using the autophagy inhibitor 3MA, but not class I PI3K inhibition using LY294002, also effectively blocks EphB2-induced cell death. Finally, EphB2 expression inactivates Akt, which is a known inhibitor of autophagy. In conclusion, the EphB2 receptor induces an autophagic cell death that is mediated through the ERK1/2 and PI3K/Akt pathways. 相似文献
9.
Kaya Yesim Kucukvardar Seren Yildiz Aysegul 《Molecular and cellular biochemistry》2020,469(1-2):133-142
Molecular and Cellular Biochemistry - Pro-inflammatory cytokines prevent bone regeneration in vivo and activation of nuclear factor-κB (NF-κB) signaling has been proposed to lead to... 相似文献
10.
The crypt-villi axis of intestinal mucosa maintains homeostasis by renewal of epithelia, and also exhibits different properties from undifferentiated to terminally differentiated cells. We investigated differential susceptibility to genotoxin-induced cell death, based on the degree of differentiation of epithelial cells, and its mechanism. Differentiation was induced by post-confluence culture in Caco-2 cells. Methyl methanesulfonate (MMS), a direct-acting DNA alkylating agent, was used for genotoxin-induced cell death. Compared to subconfluent Caco-2 cells, 7 days post-confluent cells showed resistance to MMS-induced cell death. With increasing expression of adherens junction components of E-cadherin and β-catenin, E-cadherin and p-Akt expression increased in 7 days post-confluent Caco-2 cells, and in human intestinal tissue, expression of E-cadherin and p-Akt also increased in the upper portion of villi, compared to the crypt. Inhibition of cell-cell adhesion using EGTA decreased Akt phosphorylation, which was reversed by calcium restoration. Akt phosphorylation by calcium-mediated cell-cell adhesion was more prominent in differentiated cells. In addition, treatment of a PI3K inhibitor, LY294002, inhibited Akt phosphorylation by calcium-mediated cell-cell adhesion. Finally, the differential sensitivity to MMS-induced cell death between subconfluent and 7 days post-confluent Caco-2 cells was eliminated by inhibiting cell-cell adhesion or PI3K. Our data demonstrated that cell adhesion-mediated PI3K/Akt activation could be one of the important mechanisms of resistance to genotoxin-induced cell death in differentiated epithelial cells. 相似文献
11.
Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT 总被引:26,自引:0,他引:26
Baldanzi G Filigheddu N Cutrupi S Catapano F Bonissoni S Fubini A Malan D Baj G Granata R Broglio F Papotti M Surico N Bussolino F Isgaard J Deghenghi R Sinigaglia F Prat M Muccioli G Ghigo E Graziani A 《The Journal of cell biology》2002,159(6):1029-1037
Ghrelin is an acyl-peptide gastric hormone acting on the pituitary and hypothalamus to stimulate growth hormone (GH) release, adiposity, and appetite. Ghrelin endocrine activities are entirely dependent on its acylation and are mediated by GH secretagogue (GHS) receptor (GHSR)-1a, a G protein-coupled receptor mostly expressed in the pituitary and hypothalamus, previously identified as the receptor for a group of synthetic molecules featuring GH secretagogue (GHS) activity. Des-acyl ghrelin, which is far more abundant than ghrelin, does not bind GHSR-1a, is devoid of any endocrine activity, and its function is currently unknown. Ghrelin, which is expressed in heart, albeit at a much lower level than in the stomach, also exerts a cardio protective effect through an unknown mechanism, independent of GH release. Here we show that both ghrelin and des-acyl ghrelin inhibit apoptosis of primary adult and H9c2 cardiomyocytes and endothelial cells in vitro through activation of extracellular signal-regulated kinase-1/2 and Akt serine kinases. In addition, ghrelin and des-acyl ghrelin recognize common high affinity binding sites on H9c2 cardiomyocytes, which do not express GHSR-1a. Finally, both MK-0677 and hexarelin, a nonpeptidyl and a peptidyl synthetic GHS, respectively, recognize the common ghrelin and des-acyl ghrelin binding sites, inhibit cell death, and activate MAPK and Akt.These findings provide the first evidence that, independent of its acylation, ghrelin gene product may act as a survival factor directly on the cardiovascular system through binding to a novel, yet to be identified receptor, which is distinct from GHSR-1a. 相似文献
12.
Lei Yan Heng Luo Xiaolu Tang Haidong Wang 《Journal of biochemical and molecular toxicology》2023,37(2):e23260
Cannabinoids (CBs) are psychoactive compounds, with reported anticancer, anti-inflammatory, and anti-neoplastic properties. The study was aimed at assessing the hepatoprotective effects of CB against ethanol (EtOH)-induced liver toxicity in rats. The animals were divided into seven groups: control (Group I) and Group II were treated with 50% ethanol (EtOH 5 mg/kg). Groups III, IV, and VI were treated with (EtOH + CB 10 mg/kg), (EtOH + CB 20 mg/kg), and (EtOH + CB 30 mg/kg), respectively. Groups V and VII consisted of animals treated with 20 and 30 mg/kg, of CB, respectively. Biochemical analysis revealed that Group IV (EtOH + CB 20 mg/kg) had reduced levels of ALT—alanine transferase, AST—aspartate aminotransferase, ALP—alanine peroxidase, MDA—malondialdehyde and increased levels of GSH-reduced glutathione. Histopathological analysis of liver and kidney tissues showed that EtOH + CB (20 and 30 mg/kg) treated animal groups exhibited normal tissue architecture similar to that of the control group. ELISA revealed that the inflammatory markers were reduced in the animal groups that were treated with EtOH + CB 20 mg/kg, in comparison to the animals treated only with EtOH. The mRNA expression levels of COX-2, CD-14, and MIP-2 showed a remarkable decrease in EtOH + CB treated animal groups to control groups. Western blot analysis revealed that CB downregulated p38/JNK/ERK thereby exhibiting its hepatoprotective property by inhibiting mitogen-activated protein kinase pathways. Thus, our findings suggest that CB is a potential candidate for the treatment of alcohol-induced hepatotoxicity. 相似文献
13.
Jing Wang Li Yuan Haifang Xiao Chunxia Xiao Yutang Wang Xuebo Liu 《Apoptosis : an international journal on programmed cell death》2013,18(6):751-765
Momordin Ic is a natural triterpenoid saponin enriched in various Chinese and Japanese natural medicines such as the fruit of Kochia scoparia (L.) Schrad. So far, there is little scientific evidence for momordin Ic with regard to the anti-tumor activities. The aim of this work was to elucidate the anti-tumor effect of momordin Ic and the signal transduction pathways involved. We found that momordin Ic induced apoptosis in human hepatocellular carcinoma HepG2 cells, which were supported by DNA fragmentation, caspase-3 activation and PARP cleavage. Meanwhile, momordin Ic triggered reactive oxygen species (ROS) production together with collapse of mitochondrial membrane potential, cytochrome c release, down-regulation of Bcl-2 and up-regulation of Bax expression. The activation of p38 and JNK, inactivation of Erk1/2 and Akt were also demonstrated. Although ROS production rather than NO was stimulated, the expression of iNOS and HO-1 were altered after momordin Ic treatment for 4 h. Furthermore, the cytochrome c release, caspase-3 activation, Bax/Bcl-2 expression and PARP cleavage were promoted with LY294002 and U0126 intervention but were blocked by SB203580, SP600125, PI3K activator, NAC and 1,400 W pretreatment, demonstrating the mitochondrial disruption. Furthermore, momordin Ic combination with NAC influenced MAPK, PI3K/Akt and HO-1, iNOS pathways, MAPK and PI3K/Akt pathways also regulated the expression of HO-1 and iNOS. These results indicated that momordin Ic induced apoptosis through oxidative stress-regulated mitochondrial dysfunction involving the MAPK and PI3K-mediated iNOS and HO-1 pathways. Thus, momordin Ic might represent a potential source of anticancer candidate. 相似文献
14.
Chi-Ming Chan Jia-You Fang Chi-Yea Yang 《Biochemical and biophysical research communications》2009,388(1):172-551
Retinal pigment epithelial (RPE) cells play a dominant role in the development of proliferative vitreoretinopathy (PVR), which is the leading cause of failure in retinal reattachment surgery. Several studies have shown that platelet-derived growth factor (PDGF) exhibits chemotaxis and proliferation effects on RPE cells in PVR. In this study, the inhibitory effect of lycopene on PDGF-BB-induced ARPE19 cell migration is examined. In electric cell-substrate impedance sensing (ECIS) and Transwell migration assays, significant suppression of PDGF-BB-induced ARPE19 cell migration by lycopene is observed. Cell viability assays show no cytotoxicity of lycopene on RPE cells. Lycopene shows no effect on ARPE19 cell adhesion and is found to inhibit PDGF-BB-induced tyrosine phosphorylation and the underlying signaling pathways of PI3K, Akt, ERK and p38 activation. However, PDGF-BB and lycopene show no effects on JNK activation. Taken together, our results demonstrate that lycopene inhibits PDGF-BB-induced ARPE19 cell migration through inhibition of PI3K/Akt, ERK and p38 activation. 相似文献
15.
Hepatocyte growth factor (HGF), also known as scatter factor (SF), and its receptor, the c-Met tyrosine kinase, play roles in cancer invasion and metastasis in a wide variety of tumor cells. Clinical observations suggest that HGF can promote metastasis of hepatoma cells while stimulating tumor invasiveness. We use HGF as an invasive inducer of human hepatoma HepG2 cells to investigate the effect of flavonoids on anti-invasion. In our preliminary study, we investigated the effect of flavonoids including luteolin, quercetin, baicalein, genistein, taxifolin and catechin on HGF-mediated migration and invasion of HepG2 cells. We found that luteolin presented the most potent potential on anti-migration and anti-invasion by Boyden chamber assay. Furthermore, luteolin inhibited HGF-induced cell scattering and cytoskeleton change such as filopodia and lamellipodia was determined by both phase-contrast and fluorescence microscopy studies. In addition, Western blotting and immunoprecipitation were performed to confirm luteolin suppressed the phosphorylation of c-Met, the membrane receptor of HGF, as well as ERK1/2 and Akt, but not JNK1/2, which is activated by HGF. Our investigation demonstrated that luteolin similar to PD98059, which acts as a specific inhibitor of MEK, an up stream kinase regulating ERK1/2, and wortmannin, a PI3K inhibitor, inhibited the invasiveness induced by HGF. In conclusion, the luteolin inhibited HGF-induced HepG2 cell invasion involving both MAPK/ERKs and PI3K-Akt pathways. 相似文献
16.
17.
Kwon DS Kwon CH Kim JH Woo JS Jung JS Kim YK 《European journal of cell biology》2006,85(11):1189-1199
The extracellular signal-regulated kinase (ERK) and Akt have been reported to be activated by ischemia/reperfusion in vivo. However, the signaling pathways involved in activation of these kinases and their potential roles were not fully understood in the postischemic kidney. In the present study, we observed that these kinases are activated by hypoxia/reoxygenation (H/R), an in vitro model of ischemia/reperfusion, in opossum kidney (OK) cells and elucidated the signaling pathways of these kinases. ERK and Akt were transiently activated during the early phase of reoxygenation following 4-12h of hypoxia. The ERK activation was inhibited by U0126, a specific inhibitor of ERK upstream MAPK/ERK kinase (MEK), but not by LY294002, a specific inhibitor of phosphoinositide 3-kinase (PI3K), whereas Akt activation was blocked by LY294002, but not by U0126. Inhibitors of epidermal growth factor receptor (EGFR) (AG 1478), Ras and Raf, as well as antioxidants inhibited activation of ERK and Akt, while the Src inhibitor PP2 had no effect. PI3K/Akt activation was shown to be associated with up-regulation of X chromosome-linked inhibitor of apoptosis (XIAP), but not survivin. Reoxygenation following 4-h hypoxia-stimulated cell proliferation, which was dependent on ERK and Akt activation and was also inhibited by antioxidants and AG 1478. Taken together, these results suggest that H/R induces activation of MEK/ERK and PI3K/Akt/XIAP survival signaling pathways through the reactive oxygen species-dependent EGFR/Ras/Raf cascade. Activation of these kinases may be involved in the repair process during ischemia/reperfusion. 相似文献
18.
Tanaka Y Sekiguchi F Hong H Kawabata A 《Biochemical and biophysical research communications》2008,377(2):622-626
Proteinase-activated receptor-2 (PAR2) plays pro-inflammatory roles in many organs including the gastrointestinal (GI) tract. To clarify the downstream pro-inflammatory signaling of PAR2 in the GI tract, we examined interleukin-8 (IL-8) release and the underlying cellular signaling following PAR2 stimulation in human colorectal cancer-derived HCT-15 cells and human gastric adenocarcinoma-derived MKN-45 cells. A PAR2-activating peptide, but not a PAR2-inactive scrambled peptide or a PAR1- activating peptide, caused IL-8 release in these GI epithelial cells. The PAR2-triggered IL-8 release was suppressed by inhibitors of MEK (U0126) or PI3-kinase (LY294002), and PAR2 stimulation indeed activated the downstream kinases, ERK and Akt. U0126 blocked the phosphorylation of ERK, but not Akt, and LY294002 blocked the phosphorylation of Akt, but not ERK. Together, PAR2 triggers IL-8 release via two independent signaling pathways, MEK/ERK and PI3-kinase/Akt, suggesting a role of PAR2 as a pro-inflammatory receptor in the GI tract. 相似文献
19.
Sonic hedgehog promotes proliferation and differentiation of adult muscle cells: Involvement of MAPK/ERK and PI3K/Akt pathways 总被引:2,自引:0,他引:2
Sonic hedgehog (Shh) has been reported to act as a mitogen and survival factor for muscle satellite cells. However, its role in their differentiation remains ambiguous. Here, we provide evidence that Shh promotes the proliferation and differentiation of primary cultures of chicken adult myoblasts (also termed satellite cells) and mouse myogenic C2 cells. These effects are reversed by cyclopamine, a specific chemical inhibitor of the Shh pathway. In addition, we show that Shh and its downstream molecules are expressed in adult myoblast cultures and localize adjacent to Pax7 in muscle sections. These gene expressions are regulated during postnatal muscle growth in chicks. Most importantly, we report that Shh induces MAPK/ERK and phosphoinositide 3-kinase (PI3K)-dependent Akt phosphorylation and that activation of both signaling pathways is essential for Shh's signaling in muscle cells. However, the effect of Shh on Akt phosphorylation is more robust than that on MAPK/ERK, and data suggest that Shh influences these pathways in a manner similar to IGF-I. By exploiting specific chemical inhibitors of the MAPK/ERK and PI3K/Akt signaling pathways, UO126 and Ly294002, respectively, we demonstrate that Shh-induced Akt phosphorylation, but not that of MAPK/ERK, is required for its promotive effects on muscle cell proliferation and differentiation. Taken together, we suggest that Shh acts in an autocrinic manner in adult myoblasts, and provide first evidence of a role for PI3K/Akt in Shh signaling during myoblast differentiation. 相似文献
20.
Dan Wu Mulin Liang Hongxing Dang Fang Fang Feng Xu Chengjun Liu 《Biochemical and biophysical research communications》2018,495(2):1620-1627
Oxidative stress is regarded as a key regulator in the pathogenesis of prolonged hyperoxia-induced lung injury, which causes injury to alveolar epithelial cells and eventually leads to development of bronchopulmonary dysplasia (BPD). Many studies have shown that hydrogen has a protective effect in a variety of cells. However, the mechanisms by which hydrogen rescues cells from damage due to oxidative stress in BPD remains to be fully elucidated. This study sought to evaluate the effects of hydrogen on hyperoxia-induced lung injury and to investigate the underlying mechanism. Primary type II alveolar epithelial cells (AECIIs) were divided into four groups: control (21% oxygen), hyperoxia (95% oxygen), hyperoxia + hydrogen, and hyperoxia + hydrogen + LY294002 (a PI3K/Akt inhibitor). Proliferation and apoptosis of AECIIs were assessed using MTS assay and flow cytometry (FCM), respectively. Gene and protein expression were detected by quantitative polymerase chain reaction (q-PCR) and western blot analysis. Stimulation with hyperoxia decreased the expression of P-Akt, P- FoxO3a, cyclinD1 and Bcl-2. Hyperoxic conditions increased levels of Bim, Bax, and Foxo3a, which induced proliferation restriction and apoptosis of AECIIs. These effects of hyperoxia were reversed with hydrogen pretreatment. Furthermore, the protective effects of hydrogen were abrogated by PI3K/Akt inhibitor LY294002. The results indicate that hydrogen protects AECIIs from hyperoxia-induced apoptosis by inhibiting apoptosis factors and promoting the expression of anti-apoptosis factors. These effects were associated with activation of the PI3K/Akt/FoxO3a pathway. 相似文献