首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Oxygen availability and ABA metabolism in Fagus sylvatica seeds   总被引:1,自引:0,他引:1  
At harvest, beechnuts have a very deep dormancy whichlies both in the structures surrounding the embryo andwithin the embryo itself. Covering structures preventembryo germination by interfering with water uptakeand gaseous exchange. To understand the role of thecovering structures and oxygen availability on ABAcatabolism, (+)-[3H] ABA metabolism was studied in isolated embryos as well as in intact seeds. ABAdegradation resulted essentially in oxidative products(PA, DPA). These products were more abundant inisolated embryos than in intact seeds. Theyaccumulated mainly as alkali-nonhydrolyzableconjugates of DPA. A small amount of free andesterified forms were oftenobserved. In isolated embryos a decrease in oxidativeproducts was observed either by lowering the oxygenavailability or by feeding embryos with tetcyclasis(an inhibitor of monooxygenase). In the presence of the covering structures, these oxidative products werereduced in the same manner, indicating that coveringstructures were probably responsible for limiting theoxygen supply to the embryo and for the lowgermination percentage observed in the case of intactseeds.  相似文献   

3.
4.
Loss-of-function mutations in angiopoietin-like 3 (ANGPTL3) cause familial hypobetalipoproteinemia type 2 (FHBL2) in humans. ANGPTL3 belongs to the angiopoietin-like family, the vascular endothelial growth factor family that is structurally similar to angiopoietins and is known for a regulator of lipid and glucose metabolism, although it is unclear how mutations in ANGPTL3 lead to defect in liver development in the vertebrates. We report here that angptl3 is primarily expressed in the zebrafish developing liver and that morpholino (MO) knockdown of Angptl3 reduces the size of the developing liver, which is caused by suppression of cell proliferation, but not by enhancement of apoptosis. However, MO knockdown of Angptl3 did not alter angiogenesis in the developing liver. Additionally, disruption of zebrafish Angptl3 elicits the hypocholesterolemia phenotype that is characteristic of FHBL2 in humans. Together, our findings propose a novel role for Angptl3 in liver cell proliferation and maintenance during zebrafish embryogenesis. Finally, angptl3 morphants will serve as a good model for understanding the pathophysiology of FHBL2.  相似文献   

5.
Rat hepatocytes in culture take up [14C]-agmatine by both a high-affinity transport system [KM = 0.03 mM; Vmax = 30 pmol x min x (mg protein)-1] and a low-affinity system. The high-affinity system also transports putrescine, but not cationic amino acids such as arginine, and the polyamines spermidine and spermine. The rate of agmatine uptake is increased in cells deprived of polyamines with difluoromethylornithine. Of the agmatine taken up, 10% is transformed into polyamines and 50% is transformed into 4-guanidinobutyrate, as demonstrated by HPLC and MS. Inhibition by aminoguanidine and pargyline shows that this is due to diamine oxidase and an aldehyde dehydrogenase. 14C-4-aminobutyrate is also accumulated in the presence of an inhibitor of 4-aminobutyrate transaminase.  相似文献   

6.
7.
8.
9.
10.
11.
12.
The different endowment with key enzymes and thus different metabolic capacities of periportal and perivenous cell types led to the model of "metabolic zonation." The periportal and perivenous hepatocytes receive different signals owing to the decrease of substrate concentrations including O2 and hormone levels during passage of blood through the liver sinusoids. These different signal patterns should be important for the short-term regulation of metabolism and also for the long-term induction and maintenance of the different enzyme pathways by control of gene expression. The periportal to perivenous drop in oxygen tension was considered to be a key regulator in the zonated expression of carbohydrate-metabolizing enzymes. In primary hepatocyte cultures, glucagon activated the phosphoenolpyruvate carboxykinase (PCK) gene to higher levels under arterial than under venous oxygen. The insulin-dependent activation of the glucokinase (GK) gene was reciprocally modulated by oxygen. Exogenously added hydrogen peroxide mimicked the effects of arterial oxygen on both the glucagon-dependent PCK gene and the insulin-dependent GK activation. Therefore, the oxygen sensor could be a hydrogen peroxide-producing oxidase which could contain a heme group for "measuring" the O2 tension. This notion was corroborated by the finding that CO mimicked the positive effect of O2 on PCK gene activation. Transfection of PCK promoter-CAT gene constructs into primary hepatocytes showed that the oxygen modulation of the PCK gene activation occurred in the region -281/+69. The modulation by O2 was not mediated by isolated cAMP-responsive elements. Nuclear protein extracts prepared from hepatocytes cultured under venous Po2 as compared to arterial Po2 showed an enhanced binding activity to the promoter fragment -149/-43. Oxidative conditions such as H2O2 reduced the DNA-binding activity, thus supporting the role of H2O2 as a mediator in the O2 response of the PCK and GK genes.  相似文献   

13.
The use of in vitro trout hepatocyte cultures is shown to provide a simple and effective way to screen plant and food products for oestrogenic activity. The relative oestrogenic activities of 0.1 g each of extracts of phytosterol, soy isoflavone, red clover, kudzu and soybean extracts were determined using this assay and found to be equivalent to 212, 1, 3.2, 132 and 1025 nM of 17beta-estradiol, respectively. Controls were performed on soybean and kudzu extracts using specific ELISAs for isoflavones and these confirmed the validity of the cell culture assay. The method described offers an advantage over current methods in that it can detect increased oestrogenic activity that may occur as a result of metabolic activation of pre- or pro-oestrogens liver cells.  相似文献   

14.
Leukotriene B4 was found to be metabolized by rat hepatocyte monolayers at a rate that was linear with increasing substrate concentration from 74 to 740 nM leukotriene B4. The rates of metabolism were dependent on the O2 concentration and were 315, 213, 80, and 36 pmol leukotriene B4 per min per nmol cytochrome P-450 at 20% (212 microM), 4% (42.5 microM), 2% (21.2 microM), and 1% (10.6 microM) O2, respectively. The metabolic rate was not linear with respect to O2 concentration; however, half maximal rate occurred at 4% O2, and O2 concentration found in the pericentral region of normally oxygenated liver. These results suggest that in vivo conditions of hypoxia or ischemia that lead to blood O2 concentrations less than 4% may drastically decrease hepatic clearance of leukotriene B4.  相似文献   

15.
16.
17.
A well-characterized primary rat hepatocyte culture system was used to examine induction patterns of cytochrome 450 gene expression by a series of 4-n -alkyl-methylenedioxybenzene (MDBs) derivatives. Hepatocytes were treated for 24, 48, or 72 hours with 0–500 μ M of the MDB compounds, and total cellular RNA and protein from each treatment was evaluated by hybridization and immunochemical techniques. Exposure to MDB congeners possessing increasing 4-n -alkyl side-chain length (C0–C8) resulted in dose- and structure-dependent activation of CYP2B1, 2B2, 3A1, 1A1, and 1A2 gene expression. At equivalent 100 μ M concentrations, the C6 and C8 MDB congeners were more effective than the prototypical inducer phenobarbital (PB) with respect to induction potency of CYP2B1, CYP2B2, and CYP3A1 gene expression. In contrast to PB, longer side-chain–substituted MDBs effectively induced CYP1A1 and CYP1A2 gene expression, in addition to the CYP2B and CYP3A genes. At equivalent molar concentrations, the catechol derivative of C6-MDB was ineffective in its ability to induce CYP gene expression, indicating the importance of the intact methylenedioxy bridge in the induction mechanism. Levels of MDB-inducible CYP2B1 and CYP2B2 mRNA were highly correlated with CYP2B1/2 apoprotein levels, ascertained by immunoblot analysis of cultured hepatocyte S9 fractions. Compared with results from previous in vivo analysis (12), the current data indicate that pharmacodynamic factors may influence MDB induction profiles and that differences in MDB effects on CYP gene expression result depending on distinct structure-activity relationships. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 253–262, 1998  相似文献   

18.
Cysteine proteases and matrix metalloproteinases (MMPs) are important factors in the degradation of organic matrix components of bone. Osteoprotegerin (OPG) is an osteoblast-secreted decoy receptor that inhibits osteoclast differentiation and activation. This study investigated the direct effects of human OPG on cathepsin K, MMP-9, MMP-2, and tissue inhibitors of metalloproteinases (TIMP1 and TIMP2) expressed by purified rabbit osteoclasts. The expression of two osteoclast markers, namely tartrate-resistant acid phosphatase (TRAP) and cathepsin K, was inhibited by 100 ng/mL hOPG, whereas MMP-9 expression was enhanced. Gelatinase activities were measured using a zymographic assay, and hOPG was shown to enhance both pro-MMP-9 and MMP-2 activities. Concomitantly, TIMP1 expression was greatly stimulated by hOPG, whereas TIMP2 mRNA levels were not modulated. Overall, these results show that hOPG regulates the proteases produced by purified osteoclasts differentially, producing a marked inhibitory effect on the expression of cathepsin K, the main enzyme involved in bone resorption.  相似文献   

19.
20.
Beta-oxidation of carboxylates takes place both in mitochondria and peroxisomes and in each pathway parallel enzymes exist for each conversion step. In order to better define the substrate specificities of these enzymes and in particular the elusive role of peroxisomal MFP-1, hepatocyte cultures from mice with peroxisomal gene knockouts were used to assess the consequences on substrate degradation. Hepatocytes from mice with liver selective elimination of peroxisomes displayed severely impaired oxidation of 2-methylhexadecanoic acid, the bile acid intermediate trihydroxycholestanoic acid (THCA), and tetradecanedioic acid. In contrast, mitochondrial beta-oxidation rates of palmitate were doubled, despite the severely affected inner mitochondrial membrane. As expected, beta-oxidation of the branched chain compounds 2-methylhexadecanoic acid and THCA was reduced in hepatocytes from mice with inactivation of MFP-2. More surprisingly, dicarboxylic fatty acid oxidation was impaired in MFP-1 but not in MFP-2 knockout hepatocytes, indicating that MFP-1 might play more than an obsolete role in peroxisomal beta-oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号