首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arf GAP2 is one of four Arf GAPs that function in the Golgi apparatus. We characterized the kinetics of Arf GAP2 and its regulation. Purified Arf GAP2 had little activity compared to purified Arf GAP1. Of the potential regulators we examined, coatomer had the greatest effect, stimulating activity one to two orders of magnitude. The effect was biphasic, with half-maximal activation observed at 50 nM coatomer and activation peaking at ≈ 150 nM coatomer. Activation by coatomer was greater for Arf GAP2 than has been reported for Arf GAP1. The effects of phosphoinositides and changes in vesicle curvature on GAP activity were small compared to coatomer; however, both increased coatomer-dependent activity. Peptides from p24 cargo proteins increased Arf GAP2 activity by an additional 2- to 4-fold. The effect of cargo peptide was dependent on coatomer. Overexpressing the cargo protein p25 decreased cellular Arf1?GTP levels. The differential sensitivity of Arf GAP1 and Arf GAP2 to coatomer could coordinate their activities. Based on the common regulatory features of Arf GAP1 and 2, we propose a mechanism for cargo selection in which GTP hydrolysis triggered by cargo binding to the coat protein is coupled to coat polymerization.  相似文献   

2.
Yu X  Breitman M  Goldberg J 《Cell》2012,148(3):530-542
Budding of COPI-coated vesicles from Golgi membranes requires an Arf family G protein and the coatomer complex recruited from cytosol. Arf is also required with coatomer-related clathrin adaptor complexes to bud vesicles from the trans-Golgi network and endosomal compartments. To understand the structural basis for Arf-dependent recruitment of a vesicular coat to the membrane, we determined the structure of Arf1 bound to the γζ-COP subcomplex of coatomer. Structure-guided biochemical analysis reveals that a second Arf1-GTP molecule binds to βδ-COP at a site common to the γ- and β-COP subunits. The Arf1-binding sites on coatomer are spatially related to PtdIns4,5P(2)-binding sites on the endocytic AP2 complex, providing evidence that the orientation of membrane binding is general for this class of vesicular coat proteins. A bivalent GTP-dependent binding mode has implications for the dynamics of coatomer interaction with the Golgi and for the selection of cargo molecules.  相似文献   

3.
The present review summarizes recent observations on binding of Arf and COPI coat to isolated rat liver peroxisomes. The general structural and functional features of both Arf and coatomer were considered along with the requirements and dependencies of peroxisomal Arf and coatomer recruitment. Studies on the expression of mammalian Pex11 proteins, mainly Pex11alpha and Pex11beta, intimately related to the process of peroxisome proliferation, revealed a sequence of individual steps including organelle elongation/tubulation, formation of membrane and matrix protein patches segregating distinct proteins from each other, development of membrane constrictions and final membrane fission. Based on the similarities of the processes leading to cargo selection and concentration on Golgi membranes on the one hand and to the formation of peroxisomal protein patches on the other hand, an implication of Arf and COPI in distinct processes of peroxisomal proliferation is hypothesized. Alternatively, peroxisomal Arf/COPI might facilitate the formation of COPI-coated peroxisomal vesicles functioning in cargo transport and retrieval from peroxisomes to the ER. Recent observations suggesting transport of Pex3 and Pex19 during early steps of peroxisome biogenesis from the ER to peroxisomes inevitably propose such a retrieval mechanism, provided the ER to peroxisome pathway is based on transporting vesicles.  相似文献   

4.
The small GTPase ADP-ribosylation factor-1 (Arf1) plays a key role in the formation of coat protein I (COP I)-coated vesicles. Upon recruitment to the donor Golgi membrane by interaction with dimeric p24 proteins, Arf1's GDP is exchanged for GTP. Arf1-GTP then dissociates from p24, and together with other Golgi membrane proteins, it recruits coatomer, the heptameric coat protein complex of COP I vesicles, from the cytosol. In this process, Arf1 was shown to specifically interact with the coatomer beta and gamma-COP subunits through its switch I region, and with epsilon-COP. Here, we mapped the interaction of the Arf1-GTP switch I region to the trunk domains of beta and gamma-COP. Site-directed photolabeling at position 167 in the C-terminal helix of Arf1 revealed a novel interaction with coatomer via a putative longin domain of delta-COP. Thus, coatomer is linked to the Golgi through multiple interfaces with membrane-bound Arf1-GTP. These interactions are located within the core, adaptor-like domain of coatomer, indicating an organizational similarity between the COP I coat and clathrin adaptor complexes.  相似文献   

5.
In eukaryotic cells, secretion is achieved by vesicular transport. Fusion of such vesicles with the correct target compartment relies on SNARE proteins on both vesicle (v-SNARE) and the target membranes (t-SNARE). At present it is not clear how v-SNAREs are incorporated into transport vesicles. Here, we show that binding of ADP-ribosylation factor (ARF)-GTPase-activating protein (GAP) to ER-Golgi v-SNAREs is an essential step for recruitment of Arf1p and coatomer, proteins that together form the COPI coat. ARF-GAP acts catalytically to recruit COPI components. Inclusion of v-SNAREs into COPI vesicles could be mediated by direct interaction with the coat. The mechanisms by which v-SNAREs interact with COPI and COPII coat proteins seem to be different and may play a key role in determining specificity in vesicle budding.  相似文献   

6.
Vps74p, a member of the GOLPH3 protein family, binds directly to coatomer and the cytoplasmic tails of a subset of Golgi‐resident glycosyltransferases to mediate their Golgi retention. We identify a cluster of arginine residues at the N‐terminal end of GOLPH3 proteins that are necessary and sufficient to mediate coatomer binding. While loss of coatomer binding renders Vps74p non‐functional for glycosyltransferase retention, the Golgi membrane‐binding capabilities of the mutant protein are not significantly reduced. We establish that the oligomerization status and phosphatidylinositol‐4‐phosphate‐binding properties of Vps74p largely account for the membrane‐binding capacity of the protein and identify an Arf1p–Vps74p interaction as a potential contributing factor in Vps74p Golgi membrane association .  相似文献   

7.
The Golgi serves as a hub for intracellular membrane traffic in the eukaryotic cell. Transport within the early secretory pathway, that is within the Golgi and from the Golgi to the endoplasmic reticulum, is mediated by COPI-coated vesicles. The COPI coat shares structural features with the clathrin coat, but differs in the mechanisms of cargo sorting and vesicle formation. The small GTPase Arf1 initiates coating on activation and recruits en bloc the stable heptameric protein complex coatomer that resembles the inner and the outer shells of clathrin-coated vesicles. Different binding sites exist in coatomer for membrane machinery and for the sorting of various classes of cargo proteins. During the budding of a COPI vesicle, lipids are sorted to give a liquid-disordered phase composition. For the release of a COPI-coated vesicle, coatomer and Arf cooperate to mediate membrane separation.  相似文献   

8.
COPI vesicles serve for transport of proteins and membrane lipids in the early secretory pathway. Their coat protein (coatomer) is a heptameric complex that is recruited to the Golgi by the small GTPase Arf1. Although recruited en bloc, coatomer can be viewed as a stable assembly of an adaptin‐like tetrameric subcomplex (CM4) and a trimeric ‘cage’ subcomplex (CM3). Following recruitment, coatomer stimulates ArfGAP‐dependent GTP hydrolysis on Arf1. Here, we employed recombinant coatomer subcomplexes to study the role of coatomer components in the regulation of ArfGAP2, an ArfGAP whose activity is strictly coatomer‐dependent. Within CM4, we define a novel hydrophobic pocket for ArfGAP2 interaction on the appendage domain of γ1‐COP. The CM4 subcomplex (but not CM3) is recruited to membranes through Arf1 and can subsequently recruit ArfGAP2. Neither CM3 nor CM4 in itself is effective in stimulating ArfGAP2 activity, but stimulation is regained when both subcomplexes are present. Our findings point to a distinct role of each of the two coatomer subcomplexes in the regulation of ArfGAP2‐dependent GTP hydrolysis on Arf1, where the CM4 subcomplex functions in GAP recruitment, while, similarly to the COPII system, the cage‐like CM3 subcomplex stimulates the catalytic reaction.  相似文献   

9.
Coat protein (COP)-coated vesicles have been shown to mediate protein transport through early steps of the secretory pathway in yeast and mammalian cells. Here, we attempt to elucidate their role in vesicular trafficking of plant cells, using a combined biochemical and ultrastructural approach. Immunogold labeling of cryosections revealed that COPI proteins are localized to microvesicles surrounding or budding from the Golgi apparatus. COPI-coated buds primarily reside on the cis-face of the Golgi stack. In addition, COPI and Arf1p show predominant labeling of the cis-Golgi stack, gradually diminishing toward the trans-Golgi stack. In vitro COPI-coated vesicle induction experiments demonstrated that Arf1p as well as coatomer could be recruited from cauliflower cytosol onto mixed endoplasmic reticulum (ER)/Golgi membranes. Binding of Arf1p and coatomer is inhibited by brefeldin A, underlining the specificity of the recruitment mechanism. In vitro vesicle budding was confirmed by identification of COPI-coated vesicles through immunogold negative staining in a fraction purified from isopycnic sucrose gradient centrifugation. Similar in vitro induction experiments with tobacco ER/Golgi membranes prepared from transgenic plants overproducing barley alpha-amylase-HDEL yielded a COPI-coated vesicle fraction that contained alpha-amylase as well as calreticulin.  相似文献   

10.
ADP-ribosylation factor 1 (Arf1) plays an important role in early and intra-Golgi protein trafficking. During this process, Arf1 interacts with many different proteins and other molecules that regulate its state of activation or are involved in its intracellular function. To determine which of these proteins interact directly with Arf1 during coat protein type I (COPI) vesicle biogenesis, we probed the molecular environment of Arf1 by use of site-specific photocrosslinking. This method was first used successfully in the field of protein trafficking to study the mechanisms involved in protein translocation across the endoplasmic reticulum during protein synthesis. In such a hydrophobic environment, crosslink yields of up to 30% have been observed. We have now applied this method to study the mechanism of vesicle budding from the cytosolic face of the Golgi apparatus, an aqueous environment. Although the crosslink yield is significantly lower under these conditions, due to predominant reaction of the photolabile probes with water, a specific interaction of Arf1 with subunits of coatomer, the major coat protein of COPI vesicles, could readily be identified.  相似文献   

11.
Newly synthesized proteins and lipids are transported in vesicular carriers along the secretory pathway. Arfs (ADP-ribosylation factors), a family of highly conserved GTPases within the Ras superfamily, control recruitment of molecular coats to membranes, the initial step of coated vesicle biogenesis. Arf1 and coatomer constitute the minimal cytosolic machinery leading to COPI vesicle formation from Golgi membranes. Although some functional redundancies have been suggested, other Arf isoforms have been poorly analyzed in this context. In this study, we found that Arf1, Arf4, and Arf5, but not Arf3 and Arf6, associate with COPI vesicles generated in vitro from Golgi membranes and purified cytosol. Using recombinant myristoylated proteins, we show that Arf1, Arf4, and Arf5 each support COPI vesicle formation individually. Unexpectedly, we found that Arf3 could also mediate vesicle biogenesis. However, Arf3 was excluded from the vesicle fraction in the presence of the other isoforms, highlighting a functional competition between the different Arf members.  相似文献   

12.
Arf GAPs are a family of enzymes that catalyze the hydrolysis of GTP bound to Arf. Arf GAP1 is one member of the family that has a critical role in membrane traffic at the Golgi apparatus. Two distinct models for the regulation of Arf GAP1 in membrane traffic have been proposed. In one model, Arf GAP1 functions in a ternary complex with coat proteins and is inhibited by cargo proteins. In another model, Arf GAP1 is recruited to a membrane surface that has defects created by the increased membrane curvature that accompanies transport vesicle formation. Here we have used kinetic and mutational analysis to test predictions of models of regulation of Arf GAP1. We found that Arf GAP1 has a similar affinity for Arf1.GTP as another Arf GAP, ASAP1, but the catalytic rate is approximately 0.5% that of ASAP1. Coatomer stimulated Arf GAP1 activity; however, different from that predicted from the current model, coatomer affected the K(m) and not the k(cat) values. Effects of most mutations in Arf GAP1 paralleled those in ASAP1. Mutation of an arginine that aligned with an arginine presumed to be catalytic in ASAP1 abrogated activity. Peptide from the cytoplasmic tail of cargo proteins inhibited Arf GAP1; however, the unrelated Arf GAP ASAP1 was also inhibited. The curvature of the lipid bilayer had a small effect on activity of Arf GAP1 under the conditions of our experiments. We conclude that coatomer is an allosteric regulator of Arf GAP1. The relevance of the results to the two models of Arf GAP1-mediated regulation of Arf1 is discussed.  相似文献   

13.
Isolation and identification of phosphatidic acid targets from plants   总被引:2,自引:0,他引:2  
Phosphatidic acid (PA) is emerging as an important lipid signalling molecule. In plants, it is implicated in various stress-signalling pathways and is formed in response to wounding, osmotic stress, cold stress, pathogen elicitors, Nod factors, ethylene and abscisic acid. How PA exerts its effects is still unknown, mainly because of the lack of characterized PA targets. In an approach to isolate such targets we have used PA-affinity chromatography. Several PA-binding proteins were present in the soluble fraction of tomato and Arabidopsis cells. Using mass spectrometric analysis, several of these proteins, including Hsp90, 14-3-3 proteins, an SnRK2 serine/threonine protein kinase and the PP2A regulatory subunit RCN1 could be identified. As an example, the binding of one major PA-binding protein, phosphoenolpyruvate carboxylase (PEPC), was characterized further. Competition experiments with different phospholipids confirmed specificity for PA. Hypo-osmotic treatment of the cells increased the amount of PEPC that bound the PA beads without increasing the absolute amount of PEPC. This suggests that PEPC's affinity for PA had increased. The work shows that PA-affinity chromatography/mass spectrometry is an effective way to isolate and identify PA-binding proteins from plants.  相似文献   

14.
The ADP-ribosylation factor (Arf) GTPases are important regulators of vesicular transport in eukaryotic cells. Like other GTPases, the Arfs require guanine nucleotide exchange factors to facilitate GTP loading and GTPase-activating proteins (GAPs) to promote GTP hydrolysis. Whereas there are only six mammalian Arfs, the human genome encodes over 20 proteins containing Arf GAP domains. A subset of these, referred to as AZAPs (Randazzo PA, Hirsch DS. Cell Signal 16: 401-413, 2004), are characterized by the presence of at least one NH(2)-terminal pleckstrin homology domain and two or more ankyrin repeats following the GAP domain. The substrate specificities of these proteins have been previously characterized by using in vitro assay systems. However, a limitation of such assays is that they may not accurately represent intracellular conditions, including posttranslational modifications, or subcellular compartmentalization. Here we present a systematic analysis of the GAP activity of seven AZAPs in vivo, using an assay for measurement of cellular Arf-GTP (Santy LC, Casanova JE. J Cell Biol 154: 599-610, 2001). In agreement with previous in vitro results, we found that ACAP1 and ACAP2 have robust, constitutive Arf6 GAP activity in vivo, with little activity toward Arf1. In contrast, although ARAP1 was initially reported to be an Arf1 GAP, we found that it acts primarily on Arf6 in vivo. Moreover, this activity appears to be regulated through a mechanism involving the NH(2)-terminal sterile-alpha motif. AGAP1 is unique among the AZAPs in its specificity for Arf1, and this activity is dependent on its NH(2)-terminal GTPase-like domain. Finally, we found that expression of AGAP1 induces a surprising reciprocal activation of Arf6, which suggests that regulatory cross talk exists among Arf isoforms.  相似文献   

15.
The formation of coat protein complex I (COPI)–coated vesicles is regulated by the small guanosine triphosphatase (GTPase) adenosine diphosphate ribosylation factor 1 (Arf1), which in its GTP-bound form recruits coatomer to the Golgi membrane. Arf GTPase-activating protein (GAP) catalyzed GTP hydrolysis in Arf1 triggers uncoating and is required for uptake of cargo molecules into vesicles. Three mammalian ArfGAPs are involved in COPI vesicle trafficking; however, their individual functions remain obscure. ArfGAP1 binds to membranes depending on their curvature. In this study, we show that ArfGAP2 and ArfGAP3 do not bind directly to membranes but are recruited via interactions with coatomer. In the presence of coatomer, ArfGAP2 and ArfGAP3 activities are comparable with or even higher than ArfGAP1 activity. Although previously speculated, our results now demonstrate a function for coatomer in ArfGAP-catalyzed GTP hydrolysis by Arf1. We suggest that ArfGAP2 and ArfGAP3 are coat protein–dependent ArfGAPs, whereas ArfGAP1 has a more general function.  相似文献   

16.
The effectors of monomeric GTP-binding proteins can influence interactions with GTPase-activating proteins (GAPs) in two ways. In one case, effector and GAP binding to the GTP-binding protein is mutually exclusive. In another case, the GTP-binding protein bound to an effector is the substrate for the GTPase-activating protein. Here predictions for these two mechanisms were tested for the Arf1 effector GGA and ASAP family Arf GAPs. GGA inhibited Arf GAP activity of ASAP1, AGAP1, ARAP1, and Arf GAP1 and inhibited binding of Arf1.GTPgammaS to AGAP1 with K(i) values correlating with the K(d) for the GGA.Arf1 complex. ASAP1 blocked Arf1.GTPgammaS binding to GGA with a K(i) similar to the K(d) for the ASAP.Arf1.GTPgammaS complex. No interaction of GGA with ASAP1 was detected. Consistent with GGA sequestering Arf from GAPs, overexpression of GGA slowed the rate of Arf dissociation from the Golgi apparatus following treatment with brefeldin A. Mutational analysis revealed the amino-terminal alpha-helix and switch I of Arf1 contributed to interaction with both GGA and GAPs. These data exclude the mechanism previously documented for Arf GAP1/coatomer in which Arf1 is inactivated in a tripartite complex. Instead, termination of Arf1 signals mediated through GGA require that Arf1.GTP dissociates from GGA prior to interaction with GAP and consequent hydrolysis of GTP.  相似文献   

17.
From yeast to mammals, two types of GTPase-activating proteins, ArfGAP1 and ArfGAP2/3, control guanosine triphosphate (GTP) hydrolysis on the small G protein ADP-ribosylation factor (Arf) 1 at the Golgi apparatus. Although functionally interchangeable, they display little similarity outside the catalytic GTPase-activating protein (GAP) domain, suggesting differential regulation. ArfGAP1 is controlled by membrane curvature through its amphipathic lipid packing sensor motifs, whereas Golgi targeting of ArfGAP2 depends on coatomer, the building block of the COPI coat. Using a reporter fusion approach and in vitro assays, we identified several functional elements in ArfGAP2/3. We show that the Golgi localization of ArfGAP3 depends on both a central basic stretch and a carboxy-amphipathic motif. The basic stretch interacts directly with coatomer, which we found essential for the catalytic activity of ArfGAP3 on Arf1-GTP, whereas the carboxy-amphipathic motif interacts directly with lipid membranes but has minor role in the regulation of ArfGAP3 activity. Our findings indicate that the two types of ArfGAP proteins that reside at the Golgi use a different combination of protein–protein and protein–lipid interactions to promote GTP hydrolysis in Arf1-GTP.  相似文献   

18.
Chemical proteomics is an emerging technique for drug target deconvolution and profiling the toxicity of known drugs. With the use of this technique, the specificity of a small molecule inhibitor toward its potential targets can be characterized and information thus obtained can be used in optimizing lead compounds. Most commonly, small molecules are immobilized on solid supports and used as affinity chromatography resins to bind targets. However, it is difficult to evaluate the effect of immobilization on the affinity of the compounds to their targets. Here, we describe the development and application of a soluble probe where a small molecule was coupled with a peptide epitope which was used to affinity isolate binding proteins from cell lysate. The soluble probe allowed direct verification that the compound after coupling with peptide epitope retained its binding characteristics. The PKC-alpha inhibitor Bisindolylmaleimide-III was coupled with a peptide containing the FLAG epitope. Following incubation with cellular lysates, the compound and associated proteins were affinity isolated using anti-FLAG antibody beads. Using this approach, we identified the known Bisindolylmaleimide-III targets, PKC-alpha, GSK3-beta, CaMKII, adenosine kinase, CDK2, and quinine reductase type 2, as well as previously unidentified targets PKAC-alpha, prohibitin, VDAC and heme binding proteins. This method was directly compared to the solid-phase method (small molecule was immobilized to a solid support) providing an orthogonal strategy to aid in target deconvolution and help to eliminate false positives originating from nonspecific binding of the proteins to the matrix.  相似文献   

19.
N-Ethylmaleimide-sensitive factor (NSF), soluble NSF attachment proteins (SNAPs), and SNAP receptor (neuronal SNARE) complexes form 20 S particles with a mass of 788 +/- 122 kDa as judged by scanning transmission electron microscopy. A single NSF hexamer and three alpha SNAP monomers reside within a 20 S particle as determined by quantitative amino acid analysis. In order to study the binding of alpha SNAP and NSF in solution, to define their binding domains, and to specify the role of oligomerization in their interaction, we fused domains of alpha SNAP and NSF to oligomerization modules derived from thrombospondin-1, a trimer, and cartilage oligomeric matrix protein, a pentamer, respectively. Binding studies with these fusion proteins reproduced the interaction of alpha SNAP and NSF N domains in the absence of the hexamerization domain of NSF (D2). Trimeric alpha SNAP (or its C-terminal half) is sufficient to recruit NSF even in the absence of SNARE complexes. Furthermore, pentameric NSF N domains are able to bind alpha SNAP in complex with SNAREs, whereas monomeric N domains do not. Our results demonstrate that the oligomerization of both NSF N domains and alpha SNAP provides a critical driving force for their interaction and the assembly of 20 S particles.  相似文献   

20.
Golgi-derived coat protein I (COPI) vesicles mediate transport in the early secretory pathway. The minimal machinery required for COPI vesicle formation from Golgi membranes in vitro consists of (i) the hetero-heptameric protein complex coatomer, (ii) the small guanosine triphosphatase ADP-ribosylation factor 1 (Arf1) and (iii) transmembrane proteins that function as coat receptors, such as p24 proteins. Various and opposing reports exist on a role of ArfGAP1 in COPI vesicle biogenesis. In this study, we show that, in contrast to data in the literature, ArfGAP1 is not required for COPI vesicle formation. To investigate roles of ArfGAP1 in vesicle formation, we titrated the enzyme into a defined reconstitution assay to form and purify COPI vesicles. We find that catalytic amounts of Arf1GAP1 significantly reduce the yield of purified COPI vesicles and that Arf1 rather than ArfGAP1 constitutes a stoichiometric component of the COPI coat. Combining the controversial reports with the results presented in this study, we suggest a novel role for ArfGAP1 in membrane trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号