首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present an overview of a long-term research programme that is aimed at revealing the relations between individual feeding, growth, reproduction and mortality in Daphnia pulex and the state and dynamics of the population. We analyse a physiologically structured population model, in which individual performance is described using an energy budget model that incorporates a food dependence. The model predictions are shown to be at odds with experimental observations on populations of Daphnia. We argue that these discrepancies are primarily due to insufficient knowledge about the precise size-scaling of the food ingestion rate, which plays a central role in the competitive interaction among individuals. To a lesser extent, the discrepancies arise because details about the energy budget of individual Daphnia are not sufficiently known for the food conditions prevailing in population experiments.  相似文献   

2.
The addition of ciliated protozoa to aquatic microcosms and bench-scale sewage treatment plants increases decomposition rates. This is surprising, inasmuch as protozoa consume bacteria, which are the primary decomposers. One possible mechanism of the increase in decomposition rate is the direct consumption of dissolved organic matter by protozoa that are feeding primarily on bacteria. This possibility was explored experimentally in two-stage continuous cultures, with glucose limitingEscherichia coli in the first stage andE. coli limitingTetrahymena pyriformis in the second. Glycine and histidine were the test nutrients. The results of adding them to the second stages suggested that direct uptake by ciliates does not affect the dynamics of dissolved amino acids in pelagic environments or activated sludge plants. Ciliates might, however, affect the dynamics of amino acid pools in environments high in nutrients and ciliates, perhaps including some microenvironments near decomposing material or in benthic sediments. Direct uptake of dissolved amino acids by ciliates probably does not affect ciliate or bacterial populations substantially.  相似文献   

3.
Ciliates are frequently colonized by other micro-organisms. The large size of ciliate cells offers habitats for hundreds to thousands of bacteria in different compartments, such as cytoplasm, nuclei and even perinuclear spaces. Size, phagocytic feeding habit and other features appear to be favorable pre-adaptations of ciliates for symbiosis with bacteria. Certain intracellular bacteria are permanent symbionts that are not infectious, whereas others are highly infectious. Both types show specific adaptations. With their wide spectrum of phylogenetic positions, intracellular bacteria in ciliates show relationships to different taxa of free-living bacteria and even archaea. Certain symbionts may be deleterious for their host ciliates, whereas others may provide a selective advantage under appropriate conditions or even be essential for the host cells. Depending on the nature of a symbiont, its prevalence in a host population may be low or high. Symbionts that express a killer toxin affecting non-infected ciliates achieve high infection rates in a host population. whereas certain infectious bacteria may only show a low prevalence.  相似文献   

4.
Laboratory studies of the interactions between a bacterial population and a population of bacterivorous ciliates consistently show that the bacteria are able to persist in the presence of viable ciliates. Reproduction of the bacteria, presumably at the expense of substrates produced by death and lysis of the ciliates and/or by their metabolic activity, has been suggested to be a factor involved in the observed bacterial persistence. Rates and extents of growth ofEscherichia coli in broths of mixed cultures of this bacterium and the ciliateTetrahymena pyriformis were determined in order to provide some data necessary to assess the importance of the suggested factor. In addition, an attempt was made to suppress bacterial growth on produced substrates so that feeding of the ciliates could be studied free of this complication. However, the procedure tested—addition of the antibiotic chloramphenicol (CM) at a concentration of 150g/ml—led to other complications that made it impossible to obtain the desired information about feeding.  相似文献   

5.
We studied the dynamics of two populations of anaerobic ciliates, Plagiopyla sp. and Metopus sp., and of their potential prey, heterotrophic and phototrophic purple bacteria, in Lake Cisó throughout a 1-year cycle. The abundance of both ciliates was very low (less than 2 individuals per ml). During mixing, Plagiopyla ciliates exhibited high clearance rates (about 100 nl ciliate h), its integrated abundance increased with a net doubling time of 47 days, and its potential doubling times, as calculated from the number of bacteria consumed, ranged between 5 and 8 days. During stratification, the activity of Plagiopyla ciliates was reduced and the population decreased; this was related to the higher amounts of sulfide present. The impact of predation by the Plagiopyla population on bacterioplankton was found to be insignificant, less than 0.1% of bacterial biomass consumed per day. Thus, anaerobic ciliates cannot control the bacterioplankton in Lake Cisó because of both the low abundance over the period studied and the low feeding rates during certain periods. A review of available field studies suggests that this conclusion can be extrapolated to most other anoxic systems.  相似文献   

6.
Single-species populations of ciliates (Colpidium and Paramecium) experienced constant temperature or white or reddened temperature fluctuations in aquatic microcosms in order to test three hypotheses about how environmental colour influences population dynamics. (i) Models predict that the colour of population dynamics is tinged by the colour of the environmental variability. However, environmental colour had no effect on the colour of population dynamics. All population dynamics in this experiment were reddened, regardless of environmental colour. (ii) Models predict that populations will track reddened environmental variability more closely than white environmental variability and that populations with a higher intrinsic growth rate (r) will track environmental variability more closely than populations with a low r. The experimental populations behaved as predicted. (iii) Models predict that population variability is determined by interaction between r and the environmental variability. The experimental populations behaved as predicted. These results show that (i) reddened population dynamics may need no special explanation, such as reddened environments, spatial subdivision or interspecific interactions, and (ii) and (iii) that population dynamics are sensitive to environmental colour, in agreement with population models. Correct specification of the colour of the environmental variability in models is required for accurate predictions. Further work is needed to study the effects of environmental colour on communities and ecosystems.  相似文献   

7.
Continuous-culture population dynamics of recombinant bacteria are predicted with a structured kinetic model. The instantaneous specific growth rates of the plasmid-bearing and plasmidfree cells are explicitly calculated from their metabolic activities. The resultant growth-rate differential (between plasmid-bearing and plasmid-free cells) is dynamic and changes over the course of a fermentation. Further, the growth-rate differential is a function of dilution rate. We present the experimental determination of model constants governing plasmid replication and foreign protein expression for a host/vector systemE. coli RR1 [pBR329]. For a different experimental system, we estimate the increased polypeptide expression from a DNA insert solely from the instability population dynamics. Stability predictions agree quite well with experimental observations from the literature and our lab.  相似文献   

8.
Accumulation of selenium in a model freshwater microbial food web.   总被引:2,自引:0,他引:2       下载免费PDF全文
The transfer of selenium between bacteria and the ciliated protozoan, Paramecium putrinum, was examined in laboratory cultures. The population growth of the ciliate was not inhibited in the presence of the highest concentrations of dissolved selenite or selenate tested (10(3) micrograms liter-1). Experiments with radioactive 75selenite or 75selenate indicated that accumulation of selenium by ciliates through time was low when feeding and metabolism were reduced by incubating at 0 degrees C. However, selenium accumulated in ciliate biomass during incubation with dissolved 75Se and bacteria at 24 degrees C and also when bacteria prelabeled with 75Se were offered as food in the absence of dissolved selenium. When 75Se-labeled bacterial food was diluted by the addition of nonradioactive bacteria, the amount of selenite and selenate in ciliates decreased over time, indicating depuration by the ciliates. In longer-term (> 5-day) fed-batch incubations with 75selenite-labeled bacteria, the selenium concentration in ciliates equilibrated at approximately 1.4 micrograms of Se g (dry weight)-1. The selenium content of ciliates was similar to that of their bacterial food on a dry-weight basis. These data indicate that selenium uptake by this ciliate occurred primarily during feeding and that biomagnification of selenium did not occur in this simple food chain.  相似文献   

9.
1. This paper addresses the errors that are associated with the long-term prediction of weed densities, and the effect of these errors on the performance of weed management decisions based on those long-term predictions.
2. A model of weed population dynamics was constructed and its parameters were estimated from experimental observations of population dynamics of the weed species Stellaria media in a crop rotation.
3. The observations showed that estimates of weed population growth rate differed between two locations.
4. The model was used to analyse error propagation for predicted weed densities in an enlarged prediction interval. It is concluded that errors due to an uncertain population growth rate increase linearly with the length of the prediction interval, and thus pose an upper limit to the horizon for long-term predictions.
5. It is shown that a limited ability to predict weed densities does not necessarily impair the practical use of weed population dynamic models in planning for long-term weed control programmes.  相似文献   

10.
Soil protozoa are characterized by their ability to produce cysts, which allows them to survive unfavorable conditions (e.g., desiccation) for extended periods. Under favorable conditions, they may rapidly excyst and begin feeding, but even under optimal conditions, a large proportion of the population may be encysted. The factors governing the dynamics of active and encysted cells in the soil are not well understood. Our objective was to determine the dynamics of active and encysted populations of ciliates during the decomposition of freshly added organic material. We monitored, in soil microcosms, the active and total populations of ciliates, their potential prey (bacteria and small protozoa), their potential competitors (amoebae, flagellates, and nematodes), and their potential predators (nematodes). We sampled with short time intervals (2 to 6 days) and generated a data set, suitable for mathematical modeling. Following the addition of fresh organic material, bacterial numbers increased more than 1,400-fold. There was a temporary increase in the number of active ciliates, followed by a rapid decline, although the size of the bacterial prey populations remained high. During this initial burst of ciliate growth, the population of cystic ciliates increased 100-fold. We suggest that internal population regulation is the major factor governing ciliate encystment and that the rate of encystment depends on ciliate density. This model provides a quantitative explanation of ciliatostasis and can explain why protozoan growth in soil is less than that in aquatic systems. Internally governed encystment may be an essential adaptation to an unpredictable environment in which individual protozoa cannot predict when the soil will dry out and will survive desiccation only if they have encysted in time.  相似文献   

11.
Soil protozoa are characterized by their ability to produce cysts, which allows them to survive unfavorable conditions (e.g., desiccation) for extended periods. Under favorable conditions, they may rapidly excyst and begin feeding, but even under optimal conditions, a large proportion of the population may be encysted. The factors governing the dynamics of active and encysted cells in the soil are not well understood. Our objective was to determine the dynamics of active and encysted populations of ciliates during the decomposition of freshly added organic material. We monitored, in soil microcosms, the active and total populations of ciliates, their potential prey (bacteria and small protozoa), their potential competitors (amoebae, flagellates, and nematodes), and their potential predators (nematodes). We sampled with short time intervals (2 to 6 days) and generated a data set, suitable for mathematical modeling. Following the addition of fresh organic material, bacterial numbers increased more than 1,400-fold. There was a temporary increase in the number of active ciliates, followed by a rapid decline, although the size of the bacterial prey populations remained high. During this initial burst of ciliate growth, the population of cystic ciliates increased 100-fold. We suggest that internal population regulation is the major factor governing ciliate encystment and that the rate of encystment depends on ciliate density. This model provides a quantitative explanation of ciliatostasis and can explain why protozoan growth in soil is less than that in aquatic systems. Internally governed encystment may be an essential adaptation to an unpredictable environment in which individual protozoa cannot predict when the soil will dry out and will survive desiccation only if they have encysted in time.  相似文献   

12.
In this paper a deterministic differential equation system is proposed to model the population dynamics of a biological community in which two species on the same trophic level compete for a common food, taken to be in limited supply. Food limitation is assumed to be the only inhibition of the growth of the populations and food quantity is assumed to be only affected by consumption. The model is thus designed to mimic a closed experimental situation rather than a natural community.Analytical properties of the solution of the differential equation system are developed and corresponding biological interpretations suggested.Cited laboratory data on the experimental batch community consisting of the marine ciliates Euplotes vannus and Uronema marinum feeding on bacteria motivated the model and supported its analytic properties.  相似文献   

13.
The trophic role of ciliates in anaerobic food webs has not been assessed experimentally. In order to obtain basic information necessary to interpret field situations, we studied the effects of temperature, sulfide concentration, and food abundance on the growth and feeding activities of two anaerobic ciliates, Plagiopyla nasuta and Metopus es. The growth rate of P. nasuta increased with temperature from 8 to 18 degrees C (Q(10) = 2.0) and remained constant in the range between 18 and 24 degrees C (0.22 day). Sulfide concentrations of between 0 and 1 mM did not affect the feeding activities, but concentrations greater than 2 mM were inhibitory. The functional response of P. nasuta feeding on fluorescently labeled heterotrophic and phototrophic bacteria was investigated. In both cases, the parameters of the functional response were almost identical when expressed in terms of biovolume: the maximal uptake rate (U(m)) was 1,800 mum ciliate h and the half-saturation constant for ingestion (k) was 1.5 x 10 mum ml. The functional response of M. es feeding on heterotrophic bacteria was found to be similar to that of P. nasuta. These ciliates needed high bacterial abundances in order to maintain their growth (k of about 4 x 10 bacteria ml), implying that they will frequently be food limited in planktonic environments. Both the maximal uptake rates and the maximal clearance rates were comparable to those of aerobic ciliates. By combining the growth and feeding data, we estimated gross growth efficiencies of 12 and 13% for P. nasuta and M. es, respectively. These results indicate that the feeding rates of anaerobic ciliates are similar to those of aerobic ciliates. Their slower growth must, therefore, be due to the lower gross growth efficiency (likely due to anaerobic metabolism).  相似文献   

14.
Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model) was coupled to an individual based model of zebrafish population dynamics (IBM model). Next, we fitted the DEB model to new experimental data on zebrafish growth and reproduction thus improving existing models. We further analysed the DEB-model and DEB-IBM using a sensitivity analysis. Finally, the predictions of the DEB-IBM were compared to existing observations on natural zebrafish populations and the predicted population dynamics are realistic. While our zebrafish DEB-IBM model can still be improved by acquiring new experimental data on the most uncertain processes (e.g. survival or feeding), it can already serve to predict the impact of compounds at the population level.  相似文献   

15.
ABSTRACT. Ciliates are often important members of aquatic communities in terms of their biomass, productivity, trophic roles, or numerical abundance. The interaction of metazoan predators with ciliates will be mediated by a number of biotic factors, including the potential of ciliate populations for growth, the relative size of ciliates and metazooplankton, the species structure of the metazooplankton, and the defenses of ciliates. This paper reviews some of the recent laboratory an field data pertaining to these particular factor. Studies have generally shown that metazoans can reduce ciliate population growth rates, but this impact varies greatly with the ciliate and metazoans involved. Smaller ciliates are generally more vulnerable to metazoan predators than larger species, although this relationship will be affected by the defenses a ciliate may possess. The structure of the metazooplankton community itself will also affect ciliatemetazoan interactions. The suppression of ciliate populations by metazoans has important ecological consequences, and more study is needed to understand the interaction of these groups in aquatic systems.  相似文献   

16.
Drift-feeding models are essential components of broader models that link stream habitat to salmonid populations and community dynamics. But is an additional feeding mode needed for understanding and predicting salmonid population responses to streamflow and other environmental factors? We addressed this question by applying two versions of the individual-based model inSTREAM to a field experiment in which streamflow was varied in experimental units that each contained a stream pool and the adjacent upstream riffle. The two model versions differed only in the feeding options available to fish. Both versions of inSTREAM included drift feeding; one also included a search feeding mode to represent feeding in which food availability is largely independent of streamflow, such as feeding from the benthos, or feeding from the water column or the water’s surface in low water velocities. We compared the abilities of the two model versions to fit the observed distributions of growth by individual rainbow trout (Oncorhynchus mykiss) in the field experiment. The version giving fish the daily choice between drift or search feeding better fit observations than the version in which fish fed only on drift. Values for drift and search food availability from calibration to the individual mass changes of fish in experimental units with unaltered streamflow yielded realistic distributions of individual growth when applied to experimental units in which streamflow was reduced by 80 %. These results correspond with empirical studies that show search feeding can be an important alternative to drift feeding for salmonids in some settings, and indicate that relatively simple formulations of both processes in individual-based population models can be useful in predicting the effects of environmental alterations on fish populations.  相似文献   

17.
The anaerobic ciliate Trimyema compressum was cultivated on various food bacteria. Significant growth was observed when Lactobacillus sp., Escherichia coli, Enterobacter aerogenes, Desulfovibrio vulgaris, Methanoculleus bourgense, or Pelobacter propionicus cells were fed to the ciliates. The highest cell yield which we obtained was ca. 9,000 cells/ml when feeding D. vulgaris. However, no growth of the ciliates was observed on the culture with Clostridium novyi, Propionibacterium sp., Desulfobulbus propionicus, Methanobrevibacter arboriphilicus, Methanobacterium sp., Methanosarcina barkeri, or Methanothrix soehngenii cells. The ciliates produced acetate and methane as major end products in any cultures and small amounts of propionate, butyrate and hydrogen were also detected in some cultures. Physiological studies on the food bacteria which we tested indicated that the growth of T. compressum depended on the bacterial species, but there was no apparent correlation between the digestibility and the basic properties of those bacteria (i.e. size of the bacteria, gram-staining properties, susceptibility to the known lytic enzymes, Archaea or Bacteria).  相似文献   

18.
Origins of individual swimming behavior in bacteria.   总被引:8,自引:0,他引:8       下载免费PDF全文
Cells in a cloned population of coliform bacteria exhibit a wide range of swimming behaviors--a form of non-genetic individuality. We used computer models to examine the proposition that these variations are due to differences in the number of chemotaxis signaling molecules from one cell to the next. Simulations were run in which the concentrations of seven gene products in the chemotaxis pathway were changed either deterministically or stochastically, with the changes derived from independent normal distributions. Computer models with two adaptation mechanisms were compared with experimental results from observations on individuals drawn from genetically identical populations. The range of swimming behavior predicted for cells with a standard deviation of protein copy number per cell of 10% of the mean was found to match closely the experimental range of the wild-type population. We also make predictions for the swimming behaviors of mutant strains lacking the adaptational mechanism that can be tested experimentally.  相似文献   

19.
Abstract: A deterministic one-dimensional reaction diffusion model was constructed to simulate benthic stratification patterns and population dynamics of cyanobacteria, purple and colorless sulfur bacteria as found in marine microbial mats. The model involves the major biogeochemical processes of the sulfur cycle and includes growth metabolism and their kinetic parameters as described from laboratory experimentation. Hence, the metabolic production and consumption processes are coupled to population growth. The model is used to calculate benthic oxygen, sulfide and light profiles and to infer spatial relationships and interactions among the different populations. Furthermore, the model is used to explore the effect of different abiotic and biotic environmental parameters on the community structure. A strikingly clear pattern emerged of the interaction between purple and colorless sulfur bacteria: either colorless sulfur bacteria dominate or a coexistence is found of colorless and purple sulfur bacteria. The model predicts that purple sulfur bacteria only proliferate when the studied environmental parameters surpass well-defined threshold levels. However, once the appropriate conditions do occur, the purple sulfur bacteria are extremely successful as their biomass outweighs that of colorless sulfur bacteria by a factor of up to 17. The typical stratification pattern predicted closely resembles the often described bilayer communities which comprise a layer of purple sulfur bacteria below a cyanobacterial top-layer; colorless sulfur bacteria are predicted to sandwich in between both layers. The profiles of oxygen and sulfide shift on a diel basis similarly as observed in real systems.  相似文献   

20.
A mathematical model for an ideal chemostat in which one microbial population feeds on another and where Monod's model is used for the specific growth rates of both populations predicts a less stable behavior for the system than the one observed experimentally. Various factors have been proposed as being the reason for the increased stability of such systems. In this work, the effect of spatial heterogeneity on the dynamics of the microbial feeding interaction is studied. It is concluded that spatial heterogeneity has a stabilizing effect on the system. This effect combined with other factors could be the reason for the increased stability observed in systems where a microbial feeding interaction occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号