首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recruitment of mRNA to the 40S ribosomal subunit requires the coordinated interaction of a large number of translation initiation factors. In mammals, the direct interaction between eukaryotic initiation factor 4G (eIF4G) and eIF3 is thought to act as the molecular bridge between the mRNA cap-binding complex and the 40S subunit. A discrete ∼90 amino acid domain in eIF4G is responsible for binding to eIF3, but the identity of the eIF3 subunit(s) involved is less clear. The eIF3e subunit has been shown to directly bind eIF4G, but the potential role of other eIF3 subunits in stabilizing this interaction has not been investigated. It is also not clear if the eIF4A helicase plays a role in stabilizing the interaction between eIF4G and eIF3. Here, we have used a fluorescence anisotropy assay to demonstrate that eIF4G binds to eIF3 independently of eIF4A binding to the middle region of eIF4G. By using a site-specific cross-linking approach, we unexpectedly show that the eIF4G-binding surface in eIF3 is comprised of the -c, -d and -e subunits. Screening multiple cross-linker positions reveals that eIF4G contains two distinct eIF3-binding subdomains within the previously identified eIF3-binding domain. Finally, by employing an eIF4G-dependent translation assay, we establish that both of these subdomains are required for efficient mRNA recruitment to the ribosome and stimulate translation. Our study reveals unexpected complexity to the eIF3-eIF4G interaction that provides new insight into the regulation of mRNA recruitment to the human ribosome.  相似文献   

2.
M Altmann  N Schmitz  C Berset    H Trachsel 《The EMBO journal》1997,16(5):1114-1121
In the yeast Saccharomyces cerevisiae a small protein named p20 is found associated with translation initiation factor eIF4E, the mRNA cap-binding protein. We demonstrate here that p20 is a repressor of cap-dependent translation initiation. p20 shows amino acid sequence homology to a region of eIF4G, the large subunit of the cap-binding protein complex eIF4F, which carries the binding site for eIF4E. Both, eIF4G and p20 bind to eIF4E and compete with each other for binding to eIF4E. The eIF4E-p20 complex can bind to the cap structure and inhibit cap-dependent but not cap-independent translation initiation: the translation of a mRNA with the 67 nucleotide omega sequence of tobacco mosaic virus in its 5' untranslated region (which was previously shown to render translation cap-independent) is not inhibited by p20. Whereas the translation of the same mRNA lacking the omega sequence is strongly inhibited by p20. Disruption of CAF20, the gene encoding p20, stimulates the growth of yeast cells, overexpression of p20 causes slower growth of yeast cells. These results show that p20 is a regulator of eIF4E activity which represses cap-dependent initiation of translation by interfering with the interaction of eIF4E with eIF4G, e.g. the formation of the eIF4F-complex.  相似文献   

3.
Integration of mouse mammary tumor virus (MMTV) at the common integration site Int6 occurs in the gene encoding eIF3e, the p48 subunit of translation initiation factor eIF3. Integration is at any of several introns of the Eif3e gene and causes the expression of truncated Eif3e mRNAs. Ectopic expression of the truncated eIF3e protein resulting from integration at intron 5 (3e5) induces malignant transformation, but by an unknown mechanism. Because eIF3e makes up at least part of the binding site for eIF4G, we examined the effects of 3e5 expression on protein synthesis. We developed an NIH3T3 cell line that contains a single copy of the 3e5 sequence at a predetermined genomic site. Co-immunoprecipitation indicated diminished binding of eIF3 to eIF4G, signifying a reduction in recruitment of the mRNA-unwinding machinery to the 43 S preinitiation complex. Cell growth and overall protein synthesis were decreased. Translation driven by the eIF4G-independent hepatitis C virus internal ribosome entry sequence (HCV IRES) in a bicistronic mRNA was increased relative to cap-dependent translation. Endogenous mRNAs encoding XIAP, c-Myc, CYR61, and Pim-1, which are translated in a cap-independent manner, were shifted to heavier polysomes whereas mRNAs encoding GAPDH, actin, L32, and L34, which are translated in a cap-dependent manner, were shifted to lighter polysomes. We propose that expression of 3e5 diminishes eIF4G interaction with eIF3 and causes abnormal gene expression at the translational level. The correlation between up-regulation of cap-independent translation and MMTV-induced tumorigenesis contrasts with the well established model for malignant transformation involving up-regulation of highly cap-dependent translation.  相似文献   

4.
Ling J  Morley SJ  Traugh JA 《The EMBO journal》2005,24(23):4094-4105
Translation is downregulated in response to a variety of moderate stresses, including serum deprivation, hyperosmolarity and ionizing radiation. The cytostatic p21-activated protein kinase 2 (Pak2)/gamma-PAK is activated under the same stress conditions. Expression of wild-type Pak2 in cells and addition of Pak2 to reticulocyte lysate inhibit translation, while kinase-inactive mutants have no effect. Pak2 binds to and phosphorylates initiation factor (eIF)4G, which inhibits association of eIF4E with m(7)GTP, reducing initiation. The Pak2-binding site maps to the region on eIF4G that contains the eIF4E-binding site; Pak2 and eIF4E compete for binding to this site. Using an eIF4G-depleted reticulocyte lysate, reconstitution with mock-phosphorylated eIF4G fully restores translation, while phosphorylated eIF4G reduces translation to 37%. RNA interference releases Pak2-induced inhibition of translation in contact-inhibited cells by 2.7-fold. eIF4G mutants of the Pak2 site show that S896D inhibits translation, while S896A has no effect. Activation of Pak2 in response to hyperosmotic stress inhibits cap-dependent, but not IRES-driven, initiation. Thus, a novel pathway for mammalian cell stress signaling is identified, wherein activation of Pak2 leads to inhibition of cap-dependent translation through phosphorylation of eIF4G.  相似文献   

5.
Recruitment of the eukaryotic translation initiation factor 2 (eIF2)-GTP-Met-tRNAiMet ternary complex to the 40S ribosome is stimulated by multiple initiation factors in vitro, including eIF3, eIF1, eIF5, and eIF1A. Recruitment of mRNA is thought to require the functions of eIF4F and eIF3, with the latter serving as an adaptor between the ribosome and the 4G subunit of eIF4F. To define the factor requirements for these reactions in vivo, we examined the effects of depleting eIF2, eIF3, eIF5, or eIF4G in Saccharomyces cerevisiae cells on binding of the ternary complex, other initiation factors, and RPL41A mRNA to native 43S and 48S preinitiation complexes. Depleting eIF2, eIF3, or eIF5 reduced 40S binding of all constituents of the multifactor complex (MFC), comprised of these three factors and eIF1, supporting a mechanism of coupled 40S binding by MFC components. 40S-bound mRNA strongly accumulated in eIF5-depleted cells, even though MFC binding to 40S subunits was reduced by eIF5 depletion. Hence, stimulation of the GTPase activity of the ternary complex, a prerequisite for 60S subunit joining in vitro, is likely the rate-limiting function of eIF5 in vivo. Depleting eIF2 or eIF3 impaired mRNA binding to free 40S subunits, but depleting eIF4G led unexpectedly to accumulation of mRNA on 40S subunits. Thus, it appears that eIF3 and eIF2 are more critically required than eIF4G for stable binding of at least some mRNAs to native preinitiation complexes and that eIF4G has a rate-limiting function at a step downstream of 48S complex assembly in vivo.  相似文献   

6.
The protein encoded by the fission yeast gene, moe1(+) is the homologue of the p66/eIF3d subunit of mammalian translation initiation factor eIF3. In this study, we show that in fission yeast, Moe1 physically associates with eIF3 core subunits as well as with 40 S ribosomal particles as a constituent of the eIF3 protein complex that is similar in size to multisubunit mammalian eIF3. However, strains lacking moe1(+) (Deltamoe1) are viable and show no gross defects in translation initiation, although the rate of translation in the Deltamoe1 cells is about 30-40% slower than wild-type cells. Mutant Deltamoe1 cells are hypersensitive to caffeine and defective in spore formation. These phenotypes of Deltamoe1 cells are similar to those reported previously for deletion of the fission yeast int6(+) gene that encodes the fission yeast homologue of the p48/Int6/eIF3e subunit of mammalian eIF3. Further analysis of eIF3 subunits in Deltamoe1 or Deltaint6 cells shows that in these deletion strains, while all the eIF3 subunits are bound to 40 S particles, dissociation of ribosome-bound eIF3 results in the loss of stable association between the eIF3 subunits. In contrast, eIF3 isolated from ribosomes of wild-type cells are associated with one another in a protein complex. These observations suggest that Moe1 and spInt6 are each required for stable association of eIF3 subunits in fission yeast.  相似文献   

7.
Eukaryotic initiation factor (eIF) 4G is an integral member of the translation initiation machinery. The molecule serves as a scaffold for several other initiation factors, including eIF4E, eIF4AI, the eIF3 complex, and poly(A)-binding protein (PABP). Previous work indicates that complexes between these proteins exhibit enhanced mRNA cap-binding and RNA helicase activities relative to the respective individual proteins, eIF4E and eIF4A. The eIF4G-PABP interaction has been implicated in enhancing the formation of 48 S and 80 S initiation complexes and ribosome recycling through mRNA circularization. The eIF3-eIF4GI interaction is believed to forge the link between the 40 S subunit and the mRNA. Here we have investigated the behavior in vitro and in intact cells of eIF4GIf molecules lacking either the PABP-binding site, the eIF3-binding site, the middle domain eIF4A-binding site, or the C-terminal segment that includes the second eIF4A-binding site. Although in some cases the mutant forms were recruited more slowly, all of these eIF4G variants could form complexes with eIF4E, enter 48 S complexes and polysomes in vivo and in vitro, and partially rescue translation in cells targeted with eIF4GI short interfering RNA. In the reticulocyte lysate, eIF4G unable to interact directly with PABP showed little impairment in its ability to support translation, whereas loss of either of the eIF4A-binding sites or the eIF3-binding site resulted in a marked decrease in activity. We conclude that there is considerable redundancy in the mechanisms forming initiation complexes in mammalian cells, such that many individual interactions have regulatory rather than essential roles.  相似文献   

8.
Reconstitution reveals the functional core of mammalian eIF3   总被引:6,自引:0,他引:6  
Eukaryotic translation initiation factor (eIF)3 is the largest eIF ( approximately 650 kDa), consisting of 10-13 different polypeptide subunits in mammalian cells. To understand the role of each subunit, we successfully reconstituted a human eIF3 complex consisting of 11 subunits that promoted the recruitment of the 40S ribosomal subunit to mRNA. Strikingly, the eIF3g and eIF3i subunits, which are evolutionarily conserved between human and the yeast Saccharomyces cerevisiae are dispensable for active mammalian eIF3 complex formation. Extensive deletion analyses suggest that three evolutionarily conserved subunits (eIF3a, eIF3b, and eIF3c) and three non-conserved subunits (eIF3e, eIF3f, and eIF3h) comprise the functional core of mammalian eIF3.  相似文献   

9.
Eukaryotic translation initiation factor 3 (eIF3) is a large multisubunit protein complex that plays an essential role in the binding of the initiator methionyl-tRNA and mRNA to the 40S ribosomal subunit to form the 40S initiation complex. cDNAs encoding all the subunits of mammalian eIF3 except the p42 subunit have been cloned in several laboratories. Here we report the cloning and characterization of a human cDNA encoding the p42 subunit of mammalian eIF3. The open reading frame of the cDNA, which encodes a protein of 320 amino acids (calculated Mr35 614) has been expressed in Escherichia coli and the recombinant protein has been purified to homogeneity. The purified protein binds RNA in agreement with the presence of a putative RNA binding motif in the deduced amino acid sequence. The protein shows 33% identity and 53% similarity with the Tif35p subunit (YDR 429C) of yeast eIF3. Transfection experiments demonstrated that polyhistidine-tagged p42 protein, transiently expressed in human U20S cells, was incorporated into endogenous eIF3. Furthermore, eIF3 isolated from transfected cell lysates contains bound eIF5 indicating that a specific physical interaction between eIF5 and eIF3 may play an important role in the function of eIF5 during translation initiation in eukaryotic cells.  相似文献   

10.
The eukaryotic initiation factor 4G (eIF4G) is the core of a multicomponent switch controlling gene expression at the level of translation initiation. It interacts with the small ribosomal subunit interacting protein, eIF3, and the eIF4E/cap-mRNA complex in order to load the ribosome onto mRNA during cap-dependent translation. We describe the solution structure of the complex between yeast eIF4E/cap and eIF4G (393-490). Binding triggers a coupled folding transition of eIF4G (393-490) and the eIF4E N terminus resulting in a molecular bracelet whereby eIF4G (393-490) forms a right-handed helical ring that wraps around the N terminus of eIF4E. Cofolding allosterically enhances association of eIF4E with the cap and is required for maintenance of optimal growth and polysome distributions in vivo. Our data explain how mRNA, eIF4E, and eIF4G exists as a stable mRNP that may facilitate multiple rounds of ribosomal loading during translation initiation, a key determinant in the overall rate of protein synthesis.  相似文献   

11.
Eukaryotic translation initiation factor 4G (eIF4G), which has two homologs known as eIF4GI and eIF4GII, functions in a complex (eIF4F) which binds to the 5' cap structure of cellular mRNAs and facilitates binding of capped mRNA to 40S ribosomal subunits. Disruption of this complex in enterovirus-infected cells through eIF4G cleavage is known to block this step of translation initiation, thus leading to a drastic inhibition of cap-dependent translation. Here, we show that like eIF4GI, the newly identified homolog eIF4GII is cleaved during apoptosis in HeLa cells and can serve as a substrate for caspase 3. Proteolysis of both eIF4GI and eIF4GII occurs with similar kinetics and coincides with the profound translation inhibition observed in cisplatin-treated HeLa cells. Both eIF4GI and eIF4GII can be cleaved by caspase 3 with similar efficiency in vitro, however, eIF4GII is processed into additional fragments which destroy its core central domain and likely contributes to the shutoff of translation observed in apoptosis. Cell Death and Differentiation (2000) 7, 1234 - 1243.  相似文献   

12.
Poly(A)-binding protein (PABP) stimulates translation initiation by binding simultaneously to the mRNA poly(A) tail and eukaryotic translation initiation factor 4G (eIF4G). PABP activity is regulated by PABP-interacting (Paip) proteins. Paip1 binds PABP and stimulates translation by an unknown mechanism. Here, we describe the interaction between Paip1 and eIF3, which is direct, RNA independent, and mediated via the eIF3g (p44) subunit. Stimulation of translation by Paip1 in vivo was decreased upon deletion of the N-terminal sequence containing the eIF3-binding domain and upon silencing of PABP or several eIF3 subunits. We also show the formation of ternary complexes composed of Paip1-PABP-eIF4G and Paip1-eIF3-eIF4G. Taken together, these data demonstrate that the eIF3-Paip1 interaction promotes translation. We propose that eIF3-Paip1 stabilizes the interaction between PABP and eIF4G, which brings about the circularization of the mRNA.  相似文献   

13.
Viral stress-inducible protein p56 is produced in response to viral stress-inducing agents such as double-stranded RNA and interferon, as well as other poorly understood mechanisms of viral infection. It has been shown previously that p56 is able to bind the eukaryotic initiation factor 3e(eIF3e) (p48/Int-6) subunit of the eukaryotic translation initiation factor eIF3 and function as an inhibitor of translation in vitro and in vivo. The exact mechanism by which p56 is able to interfere with protein synthesis is not understood. Based on the known roles of eIF3 in the initiation pathway, we employed assays designed to individually look at specific functions of eIF3 and the effect of p56 on these eIF3-mediated functions. These assays examined the effect of p56 on ribosome dissociation, the eIF3.eIF4F interaction, and enhancement of the ternary complex eIF2.GTP.Met-tRNAi formation. Here we report that p56 is able to inhibit translation initiation specifically at the level of eIF3.ternary complex formation. The effect of p56-mediated inhibition was also examined in two different contexts, cap-mediated and encephalomyocarditis virus internal ribosomal entry site-mediated translation. Whereas cap-dependent initiation was severely inhibited by p56, internal ribosomal entry site-mediated translation appeared to be insensitive to p56.  相似文献   

14.
Eukaryotic initiation factor (eIF) 4G plays an important role in assembling the initiation complex required for ribosome binding to an mRNA. Plants, animals, and yeast each express two eIF4G homologs, which share only 30, 46, and 53% identity, respectively. We have examined the functional differences between plant eIF4G proteins, referred to as eIF4G and eIFiso4G, when present as subunits of eIF4F and eIFiso4F, respectively. The degree to which a 5'-cap stimulated translation was inversely correlated with the concentration of eIF4F or eIFiso4F and required the poly(A)-binding protein for optimal function. Although eIF4F and eIFiso4F directed translation of unstructured mRNAs, eIF4F supported translation of an mRNA containing 5'-proximal secondary structure substantially better than did eIFiso4F. Moreover, eIF4F stimulated translation from uncapped monocistronic or dicistronic mRNAs to a greater extent than did eIFiso4F. These data suggest that at least some functions of plant eIFiso4F and eIF4F have diverged in that eIFiso4F promotes translation preferentially from unstructured mRNAs, whereas eIF4F can promote translation also from mRNAs that contain a structured 5'-leader and that are uncapped or contain multiple cistrons. This ability may also enable eIF4F to promote translation from standard mRNAs under cellular conditions in which cap-dependent translation is inhibited.  相似文献   

15.
Many viral mRNAs contain a 5′-UTR RNA element called internal ribosome-entry site (IRES), which bypasses the requirement of some canonical initiation factors allowing cap-independent translation. The IRES of hepatitis-C virus drives translation by directly recruiting 40S ribosomal subunits and binds to eIF3 which plays a critical role in both cap-dependent and cap-independent translation. However, the molecular basis for eIF3 activity in either case remains enigmatic. Here we report that subunit b of the eIF3 complex directly binds to HCV IRES domain III via its N-terminal-RRM. Because eIF3b was previously shown to be involved in eIF3j binding, biological implications are discussed.  相似文献   

16.
The poly(A) tail at the 3' end of mRNAs enhances 5' cap-dependent translation initiation. We show that it also enhances IRES-directed translation of two cellular mRNAs in vitro and in vivo. The underlying mechanisms, however, differ fundamentally. In contrast to cap-dependent translation, IRES-driven translation continues to be enhanced by the poly(A) tail following proteolytic cleavage of eIF4G. Moreover, the poly(A) tail stimulates IRES-mediated translation even in the presence of PAIP2 or following effective depletion of the poly(A) binding protein (PABP) from HeLa cell extracts. The PABP-eIF4G bridging complex that is critical for cap-dependent translation is thus dispensable for the enhancement of the IRESs by the poly(A) tail. The polyadenylated mRNA translation from cellular IRESs is also profoundly sensitive to eIF4A activity in vitro. These mechanistic and molecular distinctions implicate the potential for a new layer of translational control mechanisms.  相似文献   

17.
Eukaryotic translation initiation factor 4G-1 (eIF4G) plays a critical role in the recruitment of mRNA to the 43 S preinitiation complex. The central region of eIF4G binds the ATP-dependent RNA helicase eIF4A, the 40 S binding factor eIF3, and RNA. In the present work, we have further characterized the binding properties of the central region of human eIF4G. Both titration and competition experiments were consistent with a 1:1 stoichiometry for eIF3 binding. Surface plasmon resonance studies showed that three recombinant eIF4G fragments corresponding to amino acids 642-1560, 613-1078, and 975-1078 bound eIF3 with similar kinetics. A dissociation equilibrium constant of approximately 42 nm was derived from an association rate constant of 3.9 x 10(4) m(-1) s(-1) and dissociation rate constant of 1.5 x 10(-3) s(-1). Thus, the eIF3-binding region is included within amino acid residues 975-1078. This region does not overlap with the RNA-binding site, which suggests that eIF3 binds eIF4G directly and not through an RNA bridge, or the central eIF4A-binding site. Surprisingly, the binding of eIF3 and eIF4A to the central region was mutually cooperative; eIF3 binding to eIF4G increased 4-fold in the presence of eIF4A, and conversely, eIF4A binding to the central (but not COOH-terminal) region of eIF4G increased 2.4-fold in the presence of eIF3.  相似文献   

18.
The initiation of translation in eukaryotes requires a suite of eIFs that include the cap-binding complex, eIF4F. eIF4F is comprised of the subunits eIF4G and eIF4E and often the helicase, eIF4A. The eIF4G subunit serves as an assembly point for other initiation factors, whereas eIF4E binds to the 7-methyl guanosine cap of mRNA. Plants have an isozyme form of eIF4F (eIFiso4F) with comparable subunits, eIFiso4E and eIFiso4G. Plant eIF4A is very loosely associated with the plant cap-binding complexes. The specificity of interaction of the individual subunits of the two complexes was previously unknown. To address this issue, mixed complexes (eIF4E-eIFiso4G or eIFiso4E-eIF4G) were expressed and purified from Escherichia coli for biochemical analysis. The activity of the mixed complexes in in vitro translation assays correlated with the large subunit of the respective correct complex. These results suggest that the eIF4G or eIFiso4G subunits influence translational efficiency more than the cap-binding subunits. The translation assays also showed varying responses of the mRNA templates to eIF4F or eIFiso4F, suggesting that some level of mRNA discrimination is possible. The dissociation constants for the correct complexes have K(D) values in the subnanomolar range, whereas the mixed complexes were found to have K(D) values in the ~10 nm range. Displacement assays showed that the correct binding partner readily displaces the incorrect binding partner in a manner consistent with the difference in K(D) values. These results show molecular specificity for the formation of plant eIF4F and eIFiso4F complexes and suggest a role in mRNA discrimination during initiation of translation.  相似文献   

19.
Specific interactions of the classical swine fever virus internal ribosomal entry site (IRES) with 40S ribosomal subunits and eukaryotic translation initiation factor (eIF)3 enable 43S preinitiation complexes containing eIF3 and eIF2-GTP-Met-tRNA(iMet) to bind directly to the initiation codon, yielding 48S initiation complexes. We report that eIF5B or eIF5B/eIF3 also promote Met-tRNA(iMet) binding to IRES-40S complexes, forming 48S complexes that can assemble elongation-competent ribosomes. Although 48S complexes assembled both by eIF2/eIF3- and eIF5B/eIF3-mediated Met-tRNA(iMet) recruitment were destabilized by eIF1, dissociation of 48S complexes formed with eIF2 could be out-competed by efficient subunit joining. Deletion of IRES domain II, which is responsible for conformational changes induced in 40S subunits by IRES binding, eliminated the sensitivity of 48S complexes assembled by eIF2/eIF3- and eIF5B/eIF3-mediated mechanisms to eIF1-induced destabilization. However, 48S complexes formed by the eIF5B/eIF3-mediated mechanism on the truncated IRES could not undergo efficient subunit joining, as reported previously for analogous complexes assembled with eIF2, indicating that domain II is essential for general conformational changes in 48S complexes, irrespective of how they were assembled, that are required for eIF5-induced hydrolysis of eIF2-bound GTP and/or subunit joining.  相似文献   

20.
Members of the p56 family of mammalian proteins are strongly induced in virus-infected cells and in cells treated with interferons or double-stranded RNA. Previously, we have reported that human p56 inhibits initiation of translation by binding to the "e" subunit of eukaryotic initiation factor 3 (eIF3) and subsequently interfering with the eIF3/eIF2.GTP.Met-tRNAi (ternary complex) interaction. Here we report that mouse p56 also interferes with eIF3 functions and inhibits translation. However, the murine protein binds to the "c" subunit, not the "e" subunit, of eIF3. Consequently, it has only a marginal effect on eIF3.ternary complex interaction. Instead, the major inhibitory effect of mouse p56 is manifested at a different step of translation initiation, namely the binding of eIF4F to the 40 S ribosomal subunit.eIF3.ternary complex. Thus, mouse and human p56 proteins block different functions of eIF3 by binding to its different subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号