首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Production of cattle lacking prion protein   总被引:14,自引:0,他引:14  
Prion diseases are caused by propagation of misfolded forms of the normal cellular prion protein PrP(C), such as PrP(BSE) in bovine spongiform encephalopathy (BSE) in cattle and PrP(CJD) in Creutzfeldt-Jakob disease (CJD) in humans. Disruption of PrP(C) expression in mice, a species that does not naturally contract prion diseases, results in no apparent developmental abnormalities. However, the impact of ablating PrP(C) function in natural host species of prion diseases is unknown. Here we report the generation and characterization of PrP(C)-deficient cattle produced by a sequential gene-targeting system. At over 20 months of age, the cattle are clinically, physiologically, histopathologically, immunologically and reproductively normal. Brain tissue homogenates are resistant to prion propagation in vitro as assessed by protein misfolding cyclic amplification. PrP(C)-deficient cattle may be a useful model for prion research and could provide industrial bovine products free of prion proteins.  相似文献   

2.
3.
The expression of acetylcholine receptors (AChR) at neuromuscular synapses in skeletal muscle is regulated by innervation. Recent evidence suggests that the neurotrophic factors involved in the expression of AChR subunit genes may be related to the prion protein (PrPc), a protein of unknown function expressed primarily in neurons which, in its modified form, PrPSc, is thought to have a role in the pathogenesis of transmissible spongiform encephalopathies. We have tested for an involvement of PrPc in the neurotrophic regulation of synaptic AChRs in muscle by comparing the contents of AChR epsilon- and gamma-subunit mRNAs by Northern blot analysis and by in situ hybridization in mice with normal and with deleted PrP genes. At the protein level, AChR expression was assessed electrophysiologically. No difference was found between muscles from the two types of animals, suggesting that the neural regulation of AChR subunit expression in skeletal muscle can be mediated by factors that are not derived from the PrP gene.  相似文献   

4.
Cellular retinol-binding protein II (CRBP II) is a member of the cellular retinol-binding protein family, which is expressed primarily in the small intestine. To investigate the physiological role of CRBP II, the gene encoding CRBP II was inactivated. The saturable component of intestinal retinol uptake is impaired in CRBP II(-/-) mice. The knockout mice, while maintained on a vitamin A-enriched diet, have reduced (40%) hepatic vitamin A stores but grow and reproduce normally. However, reducing maternal dietary vitamin A to marginal levels during the latter half of gestation results in 100% mortality/litter within 24 h after birth in the CRBP II(-/-) line but no mortality in the wild type line. The neonatal mortality in heterozygote offspring of CRBP II(-/-) dams (79 +/- 21% deaths/litter) was increased as compared with the neonatal mortality in heterozygote offspring of wild type dams (29 +/- 25% deaths per litter, p < 0.05). Maternal CRBP II was localized by immunostaining in the placenta at 18 days postcoitum as well as in the small intestine. These studies suggest that both fetal as well as maternal CRBP II are required to ensure adequate delivery of vitamin A to the developing fetus when dietary vitamin A is limiting.  相似文献   

5.
ONZIN is a small, cysteine-rich peptide of unique structure that is conserved in all vertebrates examined to date. We show that ONZIN is expressed at high levels in epithelial cells of the intestinal tract, the lung, and in cells of the immune system including macrophages and granulocytes. Because this pattern of expression is suggestive of a role in innate immune function, we have generated mice lacking this protein and examined their ability to respond to challenge with infectious agents. Onzin(-/-) mice show a heightened innate immune response after induction of acute peritonitis with Klebsiella pneumoniae. This increased response is consistent with an increased bacterial burden in the Onzin(-/-) mice. Ex vivo studies show that, whereas phagocytosis is not altered in Onzin(-/-) neutrophils, phagocytes lacking this protein kill bacteria less effectively. This result identifies ONZIN as a novel class of intracellular protein required for optimal function of the neutrophils after uptake of bacteria.  相似文献   

6.
Prion diseases are transmissible neurodegenerative diseases caused by a conformational isoform of the prion protein (PrP), a host-encoded cell surface sialoglycoprotein. Recent evidence suggests a cytosolic fraction of PrP (cyPrP) functions either as an initiating factor or toxic element of prion disease. When expressed in cultured cells, cyPrP acquires properties of the infectious conformation of PrP (PrP(Sc)), including insolubility, protease resistance, aggregation, and toxicity. Transgenic mice (2D1 and 1D4 lines) that coexpress cyPrP and PrP(C) exhibit focal cerebellar atrophy, scratching behavior, and gait abnormalities suggestive of prion disease, although they lack protease-resistant PrP. To determine if the coexpression of PrP(C) is necessary or inhibitory to the phenotype of these mice, we crossed Tg1D4(Prnp(+/+)) mice with PrP-ablated mice (TgPrnp(o/o)) to generate Tg1D4(Prnp(o/o)) mice and followed the development of disease and pathological phenotype. We found no difference in the onset of symptoms or the clinical or pathological phenotype of disease between Tg1D4(Prnp(+/+)) and Tg1D4(Prnp(o/o)) mice, suggesting that cyPrP and PrP(C) function independently in the disease state. Additionally, Tg1D4(Prnp(o/o)) mice were resistant to challenge with mouse-adapted scrapie (RML), suggesting cyPrP is inaccessible to PrP(Sc). We conclude that disease phenotype and cellular toxicity associated with the expression of cyPrP are independent of PrP(C) and the generation of typical prion disease.  相似文献   

7.
In most human and animal prion diseases the abnormal disease-associated prion protein (PrPSc) is deposited as non-amyloid aggregates in CNS, spleen and lymphoid organs. In contrast, in humans and transgenic mice with PrP mutations which cause expression of PrP lacking a glycosylphosphatidylinositol (GPI)-anchor, most PrPSc is in the amyloid form. In transgenic mice expressing only anchorless PrP (tg anchorless), PrPSc is deposited not only in CNS and lymphoid tissues, but also in extraneural tissues including heart, brown fat, white fat, and colon. In the present paper, we report ultrastructural studies of amyloid PrPSc deposition in extraneural tissues of scrapie-infected tg anchorless mice. Amyloid PrPSc fibrils identified by immunogold-labeling were visible at high magnification in interstitial regions and around blood vessels of heart, brown fat, white fat, colon, and lymphoid tissues. PrPSc amyloid was located on and outside the plasma membranes of adipocytes in brown fat and cardiomyocytes, and appeared to invaginate and disrupt the plasma membranes of these cell types, suggesting cellular damage. In contrast, no cellular damage was apparent near PrPSc associated with macrophages in lymphoid tissues and colon, with enteric neuronal ganglion cells in colon or with adipocytes in white fat. PrPSc localized in macrophage phagolysosomes lacked discernable fibrils and might be undergoing degradation. Furthermore, in contrast to wild-type mice expressing GPI-anchored PrP, in lymphoid tissues of tg anchorless mice, PrPSc was not associated with follicular dendritic cells (FDC), and FDC did not display typical prion-associated pathogenic changes.  相似文献   

8.
In this study, the authors investigated normal cellular prion protein (PrP(C)) expression on murine immune systems using prion protein gene-deficient mouse as negative control. Immunocytes expressing PrP(C) in adult and fetal mice were detected by flow cytometry with the monoclonal antibody against PrP(C), 6H4. Cells from thymus and bone marrow reacted positively with 6H4, while spleen cells, peritoneal cells, peripheral blood leukocytes, and intestinal intraepithelial lymphocytes were nonreactive. In thymus, PrP(C) was observed in CD4(-)CD8(-) double-negative thymocytes. PrP(C+) cells of double-negative thymocytes belonged to the CD3(-) subset, but not to the CD3(+) subset. Triple-negative PrP(C+) thymocytes expressed CD44 or CD25 antigens. Furthermore, PrP(C) was observed in c-kit(+) bone marrow cells. In fetuses, PrP(C+) cells were observed in the liver and thymus at day 16.0 and 15.0 of gestation, respectively. These results demonstrated that PrP(C) is expressed on immature immunocytes.  相似文献   

9.
Cellular prion protein (PrP(C)) is an ubiquitously expressed glycoprotein whose roles are still widely discussed, particularly in the field of immunology. Using TgA20- and Tg33-transgenic mice overexpressing PrP(C), we investigated the consequences of this overexpression on T cell development. In both models, overexpression of PrP(C) induces strong alterations at different steps of T cell maturation. On TgA20 mice, we observed that these alterations are cell autonomous and lead to a decrease of alphabeta T cells and a concomitant increase of gammadelta T cell numbers. PrP(C) has been shown to bind and chelate copper and, interestingly, under a copper supplementation diet, TgA20 mice presented a partial restoration of the alphabeta T cell development, suggesting that PrP(C) overexpression, by chelating copper, generates an antioxidant context differentially impacting on alphabeta and gammadelta T cell lineage.  相似文献   

10.
Currently, no treatment can prevent the cognitive and motor decline associated with widespread neurodegeneration in prion disease. However, we previously showed that targeting endogenous neuronal prion protein (PrP(C)) (the precursor of its disease-associated isoform, PrP(Sc)) in mice with early prion infection reversed spongiform change and prevented clinical symptoms and neuronal loss. We now show that cognitive and behavioral deficits and impaired neurophysiological function accompany early hippocampal spongiform pathology. Remarkably, these behavioral and synaptic impairments recover when neuronal PrP(C) is depleted, in parallel with reversal of spongiosis. Thus, early functional impairments precede neuronal loss in prion disease and can be rescued. Further, they occur before extensive PrP(Sc) deposits accumulate and recover rapidly after PrP(C) depletion, supporting the concept that they are caused by a transient neurotoxic species, distinct from aggregated PrP(Sc). These data suggest that early intervention in human prion disease may lead to recovery of cognitive and behavioral symptoms.  相似文献   

11.
The biology of the cellular prion protein   总被引:5,自引:0,他引:5  
Prions are the etiological agents for infectious degenerative encephalopaties acting by inducing conformational changes in the cellular prion protein (PrPc), which is a cell membrane GPI anchored glycoprotein. Besides its conservation among species and expression in most tissues, and in particular, in high levels in the nervous system, the role for cellular prion protein remained obscure for some time. Initial skepticism about such a role was mainly due to the absence of a gross phenotype alteration in cellular prion protein null mice. In the last few years, some possible biological functions for cellular prion protein have been described. Copper binds to the molecule and the resulting complex may be responsible for cell protection against oxidative stress. Cellular prion protein is also a high-affinity ligand for laminin, and induces neuronal cell adhesion, neurite extension and maintenance. The binding site resides in a carboxy-terminal peptide of the gamma-1 chain, which is very conserved among all laminin types, indicating that this interaction may be relevant in other tissues besides the brain. Moreover, cellular prion protein association with a peptide that mimics a putative ligand at the cell surface, p66, triggers neuroprotective signals through a cAMP/PKA-dependent pathway. Since PrPc recycles from membrane to an intracellular compartment, which is induced by copper binding, it is also possible that the internalization mechanism allows switching off elicited signals.  相似文献   

12.
The cellular prion protein (PrP(C)) is a glycosylphosphatidylinositol (GPI)-anchored protein. We investigated whether PrP(C) can move from one cell to another cell in a cell model. Little PrP(C) transfer was detected when a PrP(C) expressing human neuroblastoma cell line was cultured with the human erythroleukemia cells IA lacking PrP(C). Efficient transfer of PrP(C) was detected with the presence of phorbol 12-myristate 13-acetate, an activator of protein kinase C. Maximum PrP(C) transfer was observed when both donor and recipient cells were activated. Furthermore, PrP(C) transfer required the GPI anchor and direct cell to cell contact. However, intercellular protein transfer is not limited to PrP(C), another GPI-anchored protein, CD90, also transfers from the donor cells to acceptor cells after cellular activation. Therefore, this transfer process is GPI-anchor and cellular activation dependent. These findings suggest that the intercellular transfer of GPI-anchored proteins is a regulated process, and may have implications for the pathogenesis of prion disease.  相似文献   

13.
The N-terminal region of the prion protein PrP(C) contains a series of octapeptide repeats. This region has been implicated in the binding of divalent metal ions, particularly copper. PrP(C) has been suggested to be involved in copper transport and metabolism and in cell defense mechanisms against oxidative insult, possibly through the regulation of the intracellular CuZn superoxide dismutase activity (CuZn-SOD) or a SOD-like activity of PrP(C) itself. However, up to now the link between PrP(C) expression and copper metabolism or SOD activity has still to be formally established; particularly because conflicting results have been obtained in vivo. In this study, we report a link between PrP(C), copper binding, and resistance to oxidative stress. Radioactive copper ((64)Cu) was used at a physiological concentration to demonstrate that binding of copper to the outer plasma cell membrane is related to the level of PrP(C) expression in a cell line expressing a doxycycline-inducible murine PrP(C) gene. Cellular PIPLC pretreatment indicated that PrP(C) was not involved in copper delivery at physiological concentrations. We also demonstrated that murine PrP(C) expression increases several antioxidant enzyme activities and glutathione levels. Prion protein may be a stress sensor sensitive to copper and able to initiate, following copper binding, a signal transduction process acting on the antioxidant systems to improve cell defenses.  相似文献   

14.
Prion protein is a glycosyl-phosphatidyl-inositol anchored glycoprotein localized on the surface and within a variety of cells. Its conformation change is thought to be essential for the proliferation of prion neurodegenerative diseases. Using the yeast two-hybrid assay we identified an interaction between prion protein and clusterin, a chaperone glycoprotein. This interaction was confirmed in a mammalian system by in vivo co-immunoprecipitation and in vitro by circular dichroism analysis. Through deletion mapping analysis we demonstrated that the alpha subunit, but not the beta subunit, of clusterin binds to prion and that the C-terminal 62 amino acid segment of the putative alpha helix region of clusterin is essential for the binding interaction. The full prion protein as well as the N-terminal section (aa 23-95) and C-terminal (aa 96-231) were shown to interact with clusterin. These findings provide new insights into the molecular mechanisms of interaction between prion and clusterin protein and contribute to the understanding of prion protein's physiological function.  相似文献   

15.
Prions are infectious proteins and over the past few decades, some prions have become renowned for their causative role in several neurodegenerative diseases in animals and humans. Since their discovery, the mechanisms and mode of transmission and molecular structure of prions have begun to be established. There is, however, still much to be elucidated about prion diseases, including the development of potential therapeutic strategies for treatment. The significance of prion disease is discussed here, including the categories of human and animal prion diseases, disease transmission, disease progression and the development of symptoms and potential future strategies for treatment. Furthermore, the structure and function of the normal cellular prion protein (PrPC) and its importance in not only in prion disease development, but also in diseases such as cancer and Alzheimer's disease will also be discussed.  相似文献   

16.
Ubiquinone (UQ) reductase responsible for reduction of non-mitochondrial UQ was investigated in rats toward demonstrating an antioxidant role of UQ. In the liver, most of cellular UQ-10 reductase activity was attributable to a novel NADPH-UQ reductase in cytosol. The enzyme was not inhibited by dicumarol and rotenone, and had a Km of 19 microM for NADPH and 307 microM for NADH at the optimum pH 7.4. The enzyme was purified 300-fold to apparent homogeneity from the liver cytosol by an affinity chromatographic method. The purified enzyme reduced UQ-10 in lecithin liposomes, and protected the liposomes from lipid peroxidation. Furthermore, supplementation of rats with UQ-10 was observed to increase the enzyme level in their livers without affecting levels of other antioxidant factors. The observations suggested that cytosolic NADPH-UQ reductase is responsible for cellular UQ redox cycle as an endogenous antioxidant.  相似文献   

17.
The eight amino acid sequence, Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys, representing the FLAG peptide, was inserted after codons 22 or 88 of the mouse (Mo) prion protein (PrP) gene. Inclusion of the FLAG sequence at these locations interfered neither with the cellular processing of PrPC nor its conversion into PrPSc. Inclusion of the FLAG epitope at residue 22 but not at residue 88 facilitated immunodetection of tagged PrP by anti-FLAG monoclonal antibodies (mAbs). Inoculation of transgenic (Tg) mice expressing N-terminally tagged MoPrP with Mo prions resulted in abbreviated incubation times, indicating that the FLAG sequence was not deleterious to prion propagation. Immunopurification of FLAG-tagged MoPrPC in the brains of Tg mice was achieved using the calcium-dependent anti-FLAG M1 mAb and non-denaturing procedures. Although the function of PrPC remains unknown, our studies demonstrate that some modifications of PrPC do not inhibit the one biological activity that can be measured, i.e., conversion into PrPSc. Tagged PrP molecules may prove useful in the development of improved assays for prions as well as structural studies of the PrP isoforms.  相似文献   

18.
Aberrant metabolism and conformational alterations of the cellular prion protein (PrP(c)) are the underlying causes of transmissible spongiform encephalopathies in humans and animals. In cells, PrP(c) is modified post-translationally and transported along the secretory pathway to the plasma membrane, where it is attached to the cell surface by a glycosylphosphatidylinositol anchor. In surface biotinylation assays we observed that deletions within the unstructured N terminus of murine PrP(c) led to a significant reduction of internalization of PrP after transfection of murine neuroblastoma cells. Truncation of the entire N terminus most significantly inhibited internalization of PrP(c). The same deletions caused a significant prolongation of cellular half-life of PrP(c) and a delay in the transport through the secretory pathway to the cell surface. There was no difference in the glycosylation kinetics, indicating that all PrP constructs equally passed endoplasmic reticulum-based cellular quality control. Addition of the N terminus of the Xenopus laevis PrP, which does not encode a copper-binding repeat element, to N-terminally truncated mouse PrP restored the wild type phenotype. These results provide deeper insight into the life cycle of the PrP(c), raising the novel possibility of a targeting function of its N-proximal part by interacting with the secretory and the endocytic machinery. They also indicate the conservation of this targeting property in evolution.  相似文献   

19.
The soluble cellular prion protein (PrPC) is best known for its association with prion disease (PrD) through its conversion to a pathogenic insoluble isoform (PrPSc). However, its deleterious effects independent of PrPSc have recently been observed not only in PrD but also in Alzheimer disease (AD), two diseases which mainly affect cognition. At the same time, PrPC itself seems to have broad physiologic functions including involvement in cognitive processes. The PrPC that is believed to be soluble and monomeric has so far been the only PrP conformer observed in the uninfected brain. In 2006, we identified an insoluble PrPC conformer (termed iPrPC) in uninfected human and animal brains. Remarkably, the PrPSc-like iPrPC shares the immunoreactivity behavior and fragmentation with a newly-identified PrPSc species in a novel human PrD termed variably protease-sensitive prionopathy. Moreover, iPrPC has been observed as the major PrP species that interacts with amyloid β (Aβ) in AD. This article highlights evidence of PrP involvement in two putatively beneficial and deleterious PrP-implicated pathways in cognition and hypothesizes first, that beneficial and deleterious effects of PrPC are attributable to the chameleon-like conformation of the protein and second, that the iPrPC conformer is associated with PrD and AD.Key words: prion protein, prion disease, cognition, cognitive deficit, insoluble prion protein, Alzheimer disease, variably protease-sensitive prionopathy, dementia, memory  相似文献   

20.
《朊病毒》2013,7(3):172-178
The soluble cellular prion protein (PrPC) is best known for its association with prion disease (PrD) through its conversion to a pathogenic insoluble isoform (PrPSc). However, its deleterious effects independent of PrPSc have recently been observed not only in PrD but also in Alzheimer disease (AD), two diseases which mainly affect cognition. At the same time, PrPC itself seems to have broad physiologic functions including involvement in cognitive processes. The PrPC that is believed to be soluble and monomeric has so far been the only PrP conformer observed in the uninfected brain. In 2006, we identified an insoluble PrPC conformer (termed iPrPC) in uninfected human and animal brains. Remarkably, the PrPSc-like iPrPC shares the immunoreactivity behavior and fragmentation with a newly-identified PrPSc species in a novel human PrD termed variably protease-sensitive prionopathy. Moreover, iPrPC has been observed as the major PrP species that interacts with amyloid β (Aβ) in AD. This article highlights evidence of PrP involvement in two putatively beneficial and deleterious PrP-implicated pathways in cognition, and hypothesizes first, that beneficial and deleterious effects of PrPC are attributable to the chameleon-like conformation of the protein and second, that the iPrPC conformer is associated with PrD and AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号