首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent work in our laboratory has demonstrated that the repeated injections of high doses of recombinant interleukin 2 (IL 2) can dramatically reduce the number of established pulmonary and hepatic metastases and the growth of intradermal tumors in a variety of murine tumor models. We have thus undertaken studies to define the mechanisms underlying these in vivo effects of IL 2. Using an in vivo DNA-labeling technique in which we employed 5-[125I]iodo-2'-deoxyuridine (125IUdR), we examined the in vivo cell proliferation in the tissues of mice treated with IL 2. A proliferation index (PI) was calculated by dividing the raw counts per minute (cpm) of tissues in IL 2-treated mice by the cpm in corresponding tissues of control animals. At an IL 2 dose of 6000 U given i.p. three times a day, the highest 125IUdR incorporation was seen in the lungs, liver, spleen, kidneys, and mesenteric lymph nodes (PI = 6.9, 6.9, 5.1, 7.1, 24.6, respectively, at 5 days). The amount of lymphoid proliferation in these organs was a direct function of the dose of IL 2 administered. Other tissues including thymus, intestines, skin, and hind limb showed no significant increase in 125IUdR uptake even after host treatment with the highest doses of IL 2. Blood and brain demonstrated intermediate incorporation of the radiolabel. Preirradiation of the host largely eliminated the proliferative response to IL 2. Histologic studies of normal and irradiated mice receiving IL 2 corroborated the result of the 125IUdR findings. In normal IL 2-treated mice, large collections of activated lymphoid cells were seen, most prominently in the lungs, liver, and kidneys, whereas markedly decreased lymphoid proliferation was evident histologically in preirradiated mice. A fluorescein-labeled monoclonal antibody directed against the Thy-1.2 surface determinant was used to identify these dividing cells in frozen tissue sections as T lymphoid cells. Activated lymphocytes isolated from the lungs, liver, spleen, and mesenteric lymph nodes of IL 2-treated mice demonstrated significant lysis of a fresh murine sarcoma target in short-term 51Cr-release assays. These studies demonstrate that the systemic administration of recombinant IL 2 causes in vivo activation and proliferation of host lymphoid cells and has important implications for the adoptive immunotherapy of tumors.  相似文献   

2.
We previously reported that the adoptive transfer of lymphokine-activated killer (LAK) cells plus repetitive injections of recombinant interleukin 2 (IL 2) produced a marked reduction in established pulmonary metastases from a variety of murine sarcomas. The requirement for the exogenous administration of IL 2 prompted a subsequent examination of the role of IL 2 in the in vivo function of transferred LAK cells. The in vivo proliferation and migration patterns of lymphoid cells in C57BL/6 mice were examined after i.v. transfer of LAK cells alone, i.p. injection of IL 2 alone, or the combination of LAK cells and IL 2. A model for in vivo labeling of the DNA of dividing cells was used in which mice were injected with 5-[125I]-iodo-2'-deoxyuridine (125IUdR) and, 20 hr later, their tissues were removed and were counted in a gamma analyzer. A proliferation index (PI) was calculated by dividing the mean cpm of organs of experimentally treated mice by the mean cpm of organs of control mice. In animals given LAK cells alone, the lungs and liver demonstrated little if any uptake of 125IUdR above saline-treated controls (PI = 2.5 and 0.8, respectively, on day 5), whereas the same organs of mice receiving 6000 U of IL 2 alone displayed higher radiolabel incorporation (PI = 7.1 and 5.9, respectively). When mice were given LAK cells plus 6000 U of IL 2, their tissues showed an additional increase in 125IUdR uptake. In the spleen, kidneys, and mesenteric lymph nodes, IL 2 treatment alone (6000 U) produced elevated PI values that were not, however, additionally increased if LAK cells were also administered. To separate the stimulatory effects of IL 2 on host lymphocyte proliferation from similar IL 2 effects on injected LAK cells, these studies were repeated in mice immunosuppressed by 500 rad total body irradiation. Pre-irradiation of the host sufficiently reduced endogenous lymphoid expansion stimulated by IL 2 so as to allow the demonstration that IL 2 also induced the proliferation of the transferred LAK cells. A variety of studies confirmed that the injected LAK cells were actively proliferating in tissues in vivo under the influence of IL 2. Substitution of "normal" LAK cells with fresh and cultured (without IL 2) splenocytes, or irradiated LAK cells did not result in increased 125IUdR uptake in tissues. Histologic studies corroborated the findings of the 125IUdR incorporation assays and revealed extensive lymphoid proliferation in irradiated mice receiving LAK cells plus IL 2.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
At sites of chronic inflammation seen during infections, autoimmunity, graft-vs-host response, and cytokine therapy, endothelial cell injury is known to occur, the exact mechanism of which is unknown. In the current study we used IL-2-induced vascular leak syndrome (VLS) as a model to investigate whether cytotoxic lymphocytes use CD44 in mediating endothelial cell injury. Administration of IL-2 to wild-type mice triggered significant VLS in the lungs and liver. In contrast, in CD44 knockout (KO) mice, IL-2-induced VLS was markedly reduced in the lungs and liver. IL-2-treated wild-type and CD44 KO mice had similar levels of perivascular infiltration with lymphocytes in the lungs and liver. This suggested that the decrease in VLS seen in CD44 KO mice was not due to the inability of lymphocytes to migrate to these organs. Ultrastructural studies demonstrated extensive endothelial cell damage in the lungs and liver of IL-2-treated wild-type, but not CD44 KO, mice. Moreover, CD44-KO mice exhibited a marked decrease in IL-2-induced lymphokine-activated killer cell activity. The induction of VLS was dependent on the expression of CD44 on immune cells rather than endothelial cells because adoptive transfer of CD44+, but not CD44- spleen cells along with IL-2 into CD44 KO mice triggered VLS. The IL-2-induced VLS was blocked by administration of F(ab')2 of Abs against CD44. The current study demonstrates that CD44 plays a key role in endothelial cell injury. Blocking CD44 in vivo may offer a novel therapeutic approach to prevent endothelial cell injury by cytotoxic lymphocytes in a variety of clinical disease models.  相似文献   

4.
The effect of various amounts of dietary iron on the immune response was investigated using BALB/cAnNCr/BR mice infected with Ascaris suum. Changes in numbers of larvae, numbers of eosinophils, and levels of lysophospholipase (LPL) activity in lung or liver tissues were analyzed from nonimmune and immunized mice at 2 and 7 days postinfection (PI). Various iron diets did not influence the numbers of tissue larvae, eosinophils, or the LPL activity in lungs or livers of nonimmunized mice at various times after infection. Lung and liver LPL activity was reduced in immunized mice without significant changes in larval numbers at 2 days PI. At 7 days PI, lung and liver LPL activity, eosinophil numbers, and numbers of larvae were increased in immunized mice receiving low iron diets. Results confirm that low iron diets affect the host response to A. suum.  相似文献   

5.
The systemic administration of high-dose recombinant IL 2 mediated significant reductions of established 3-day pulmonary micrometastases from both weakly immunogenic and nonimmunogenic sarcomas. However, when treatment with IL 2 was delayed for 10 days after the injection of tumor cells in an attempt to treat grossly visible pulmonary macrometastases, only those established from weakly immunogenic sarcomas remained susceptible. Established 10-day pulmonary nodules from the nonimmunogenic sarcomas became refractory to IL 2 therapy. We utilized selective depletion of lymphocyte subsets in vivo by the systemic administration of specific monoclonal antibodies to cells bearing either the L3T4 or Lyt-2 marker or a heteroantiserum to cells bearing the ASGM-1 glycosphingolipid to identify lymphocytes involved in IL 2-induced tumor regression. Cells with potent lymphokine-activated killer (LAK) activity against fresh tumor targets in vitro were identified in the lungs of IL 2-treated mice. By flow cytometry analysis, the majority of these effector cells were Thy-1+, L3T4-, Lyt-2-, ASGM-1+. Depletion in vivo of ASGM-1+ cells before the onset of IL 2 administration eliminated the successful therapy of 3-day pulmonary metastases from nonimmunogenic sarcomas, with concurrent elimination of LAK cell activity in the lungs. In mice with 3-day pulmonary metastases from weakly immunogenic sarcomas, both Lyt-2+ cells and ASGM-1+ cells were involved in IL 2-mediated tumor regression, but Lyt-2+ cells appeared to be the more potent mediator in the response. Lyt-2+ cells were also involved in the elimination of grossly visible 10-day macrometastases from these weakly immunogenic tumors. Depletion of L3T4+ cells had no effect on tumor regression. Thus, although LAK effectors derived from ASGM-1+ precursors can eliminate pulmonary micrometastases regardless of tumor immunogenicity, Lyt-2+ cells are predominant effectors in the elimination of both pulmonary micro- and macrometastases from weakly immunogenic sarcomas.  相似文献   

6.
To determine the influence of experimental model and strain differences on the relationship of vascular permeability to inflammatory cytokine production after high peak inflation pressure (PIP) ventilation, we used isolated perfused mouse lung and intact mouse preparations of Balb/c and B6/129 mice ventilated at high and low PIP. Filtration coefficients in isolated lungs and bronchoalveolar lavage (BAL) albumin in intact mice increased within 20-30 min after initiation of high PIP in isolated Balb/c lungs and intact Balb/c, B6/129 wild-type, and p55 and p75 tumor necrosis factor (TNF) dual-receptor null mice. In contrast, the cytokine response was delayed and variable compared with the permeability response. In isolated Balb/c lungs ventilated with 25-27 cmH(2)O PIP, TNF-alpha, interleukin (IL)-1 beta, IL-1 alpha, macrophage inflammatory protein (MIP)-2, and IL-6 concentrations in perfusate were markedly increased in perfusate at 2 and 4 h, but only MIP-2 was detectable in intact Balb/c mice using the same PIP. In intact wild-type and TNF dual-receptor null mice with ventilation at 45 cmH(2)O PIP, the MIP-2 and IL-6 levels in BAL were significantly increased after 2 h in both groups, but there were no differences between groups in the BAL albumin and cytokine concentrations or in lung wet-to-dry weight ratios. TNF-alpha was not be detected in BAL fluids in any group of intact mice. These results suggest that the alveolar hyperpermeability induced by high PIP ventilation occurs very rapidly and is initially independent of TNF-alpha participation and unlikely to depend on MIP-2 or IL-6.  相似文献   

7.
Deer mice (Peromyscus maniculatus) were inoculated with a sublethal dose of a field strain of Modoc virus to determine patterns of viral persistence, shedding, and transmission. Blood, serum, urine, fecal, and oral swab samples were collected at selected intervals until 63 days postinoculation (PI) after which lung, liver, spleen, kidney, and salivary glands were explanted. Viral assays were conducted by intracranial inoculations of suckling mice and antibody titers were determined by the micro-complement-fixation test. Viremias lasted for up to 4 days PI. Antibody titers were present by day 8 PI, peaked at day 13-20 PI, and persisted until day 63 PI. There was no evidence of viral shedding in urine, fecal, or oral swab samples. Virus was detected in explanted lungs only. In a separate experiment, deer mice were inoculated with virus and lungs were removed from five mice per wk for 10 wk. Indirect fluorescent antibody (IFA) techniques were used to determine the location of virus in lung tissue and to examine fixed tissue for lesions. IFA showed virus in lung parenchymal cells beginning 42 days PI and persisting at least 70 days PI. No histopathologic changes were seen. Horizontal transmission of the virus was studied by placing uninoculated mice with inoculated mice for 42 days and determining if the test animals developed antibodies or had virus in their lungs. Fifty-percent of the uninoculated mice developed antibody. One of these animals had virus in its lungs. Therefore, Modoc virus may be transmitted by direct contact.  相似文献   

8.
We recently demonstrated that 17beta-estradiol (E2) enhances killing of Leishmania mexicana in macrophages from both male and female DBA/2 mouse by increasing nitric oxide (NO) production. Here, we analyzed the effect of E2 on leishmanicidal activity and cytokine production by bone marrow-derived macrophages (BMDMs) from male and female C57BL/6 mice in vitro, specifically examining the role of phosphatidylinositol-3-kinase-gamma (PI3Kgamma) in E2-induced parasite killing. Unlike its effect on macrophages from both male and female DBA/2 mice, E2 only increased leishmanicidal activity in macrophages from female C57BL/6 mice, which was evident by a significant reduction in both infection rates and infection levels compared to sham controls. E2-treated BMDMs from female C57BL/6 mice expressed higher levels of interferon-gammaRalpha, and also produced more interleukin (IL)-12, IL-6 and NO than both the sham controls and E2-treated male-derived macrophages. Sham-treated BMDMs from female PI3Kgamma-/- C57BL/6 mice displayed lower infection rates and infection levels compared to sham-treated wild-type (WT) macrophages. However E2, unlike its effect on macrophages from female WT C57BL/6 mice, failed to reduce infection rates and infection levels in BMDMs from female PI3Kgamma-/- mice. Interestingly, E2-treated BMDMs from female C57BL/6 mice produced significant amounts of inflammatory cytokines and NO in levels comparable to those observed in sham-treated PI3Kgamma-deficient macrophages as well as E2-treated macrophages from WT mice. These findings show that E2 exerts a distinct effect on leishmanicidal activity of macrophages from male versus female C57BL/6 mice. In addition, they suggest that PI3Kgamma is not required for E2-induced cytokine and NO production in L. mexicana-infected macrophages from female C57BL/6 mice but it may be involved in parasite clearance from these cells.  相似文献   

9.
To determine the role of phosphoinositide 3-OH kinase (PI3K) pathways in the acute vascular permeability increase associated with ventilator-induced lung injury, we ventilated isolated perfused lungs and intact C57BL/6 mice with low and high peak inflation pressures (PIP). In isolated lungs, filtration coefficients (K(f)) increased significantly after ventilation at 30 cmH(2)O (high PIP) for successive periods of 15, 30 (4.1-fold), and 50 (5.4-fold) min. Pretreatment with 50 microM of the PI3K inhibitor, LY-294002, or 20 microM PP2, a Src kinase inhibitor, significantly attenuated the increase in K(f), whereas 10 microM Akt inhibitor IV significantly augmented the increased K(f). There were no significant differences in K(f) or lung wet-to-dry weight (W/D) ratios between groups ventilated with 9 cmH(2)O PIP (low PIP), with or without inhibitor treatment. Total lung beta-catenin was unchanged in any low PIP isolated lung group, but Akt inhibition during high PIP ventilation significantly decreased total beta-catenin by 86%. Ventilation of intact mice with 55 cmH(2)O PIP for up to 60 min also increased lung vascular permeability, indicated by increases in lung lavage albumin concentration and lung W/D ratios. In these lungs, tyrosine phosphorylation of beta-catenin and serine/threonine phosphorylation of Akt, glycogen synthase kinase 3beta (GSK3beta), and ERK1/2 increased significantly with peak effects at 60 min. Thus mechanical stress activation of PI3K and Src may increase lung vascular permeability through tyrosine phosphorylation, but simultaneous activation of the PI3K-Akt-GSK3beta pathway tends to limit this permeability response, possibly by preserving cellular beta-catenin.  相似文献   

10.
High peak inspiratory pressures (PIP) during mechanical ventilation can induce lung injury. In the present study we compare the respective roles of high tidal volume with high PIP in intact immature rabbits to determine whether the increase in capillary permeability is the result of overdistension of the lung or direct pressure effects. New Zealand White rabbits were assigned to one of three protocols, which produced different degrees of inspiratory volume limitation: intact closed-chest animals (CC), closed-chest animals with a full-body plaster cast (C), and isolated excised lungs (IL). The intact animals were ventilated at 15, 30, or 45 cmH2O PIP for 1 h, and the lungs of the CC and C groups were placed in an isolated lung perfusion system. Microvascular permeability was evaluated using the capillary filtration coefficient (Kfc). Base-line Kfc for isolated lungs before ventilation was 0.33 +/- 0.31 ml.min-1.cmH2O-1.100g-1 and was not different from the Kfc in the CC group ventilated with 15 cmH2O PIP. Kfc increased by 850% after ventilation with only 15 cmH2O PIP in the unrestricted IL group, and in the CC group Kfc increased by 31% after 30 cmH2O PIP and 430% after 45 cmH2O PIP. Inspiratory volume limitation by the plaster cast in the C group prevented any significant increase in Kfc at the PIP values used. These data indicate that volume distension of the lung rather than high PIP per se produces microvascular damage in the immature rabbit lung.  相似文献   

11.
The lungs of male LAF1/J mice were locally irradiated with graded doses of radiation ranging from 5 to 13 Gy. The animals were sacrificed at 1 hr, 1 day, 1 week, 4 weeks, and 12 weeks postirradiation (PI), fixed with Ruthenium Red/Triton X-100 for demonstration of basal laminar anionic sites, and processed for electron microscopy. Sham-irradiated (0 Gy, 0 time) and untreated control groups were also processed. Sections of lungs were examined ultrastructurally and changes in both alveolar and capillary basal laminar anionic sites quantitated. A marked decrease in the number of basal laminar anionic sites was noted 1 hr PI in both alveolar and capillary basal laminae at all dose levels. The decline continued to 1 week for doses of 13 Gy and more gradually to 4 weeks following doses of 5 and 9 Gy, when the number of sites began to increase. By 12 weeks animals receiving 13 Gy were approaching normal levels while those receiving 5 or 9 Gy remained subnormal. The potential effects of the loss of proteoglycans with radiation on lung basal laminar permeability and cell-extracellular matrix interactions are discussed.  相似文献   

12.
Suppressor of cytokine signaling-1 (SOCS-1) is a member of the suppressor of cytokine signaling family of proteins and an inhibitor of interleukin-6 (IL-6) signaling. SOCS-1 has been shown to protect cells from cellular damage and apoptosis induced by tumor necrosis factor (TNF), lipopolysaccharide (LPS), and interferon gamma (IL-γ). However, it is not known whether increased SOCS-1 is protective during pulmonary oxidative stress. Therefore, we hypothesized that increased SOCS-1 in the lungs of mice would be protective in the setting of hyperoxic lung injury. We administered SOCS-1 adenovirus (Ad-SOCS-1) intratracheally into the lungs and exposed the mice to 100% O2. Mice infected with GFP adenovirus (Ad-GFP) were used as controls. Mice treated with Ad-SOCS-1 had enhanced survival in 100% oxygen compared to Ad-GFP-administered mice. After 3 days of hyperoxia, Ad-GFP mice were ill and tachypnic and died after 4 days. In contrast, all Ad-SOCS-1-treated mice survived for at least 6 days in hyperoxia and 80% survived beyond 7 days. Ad-SOCS-1 transfection protected mouse lungs from injury as indicated by lower lung wet/dry weight, alveolar–capillary protein leakage, reduced infiltration of inflammatory cells, and lower content of thiobarbituric acid-reactive substances in lung homogenate. Our results also indicated that Ad-SOCS-1 significantly inhibits hyperoxia-induced ASK-1 (apoptosis signal-regulating kinase 1) expression. Taken together, these findings show that increased expression of adenovirus-mediated SOCS-1 in the lungs of mice significantly protects against hyperoxic lung injury.  相似文献   

13.
 We tested whether treatment with an inhibitor of nitric oxide synthesis (N G-methyl-L-arginine, MeArg) can ameliorate interleukin-2(IL-2)-therapy-induced capillary leak syndrome in healthy or tumor-bearing mice without compromising the antitumor effects of IL-2 therapy. Healthy or C3-L5-mammary-adenocarcinoma-bearing C3H/HeJ mice were treated with one or two rounds of various doses of IL-2 (ten injections, i. p., every 8 h) or MeArg (ten injections s. c., every 8 h) or their combination. In an additional experiment, MeArg was given chronically in the drinking water, rather than s. c. to healthy mice subjected to one round of therapy as above. Mice were killed 1 h after their last IL-2 injection to measure the water content of the lungs and pleural cavities (markers of capillary leakage), NO production (given by NO2 and NO3 levels in the serum and pleural effusion), as well as the effect of therapies on the primary tumor size and number of spontaneous lung metastatic nodules. Results revealed that all doses of IL-2 (7500 – 35 000 Cetus U/injection), as well as both rounds of IL-2 therapy, caused capillary leakage. However, no pleural effusion was seen after the second round in any of the IL-2-treated groups. MeArg therapy, given subcutaneously (5 – 20 mg kg–1 injection–1 in healthy and 20 mg kg–1 injection–1 in tumor-bearing mice), did not ameliorate IL-2-induced capillary leakage in either group of mice, and did not compromise antitumor effects of IL-2. However, subcutaneous MeArg therapy alone reduced the growth of the primary tumors, the occurrence of spontaneous lung metastases and the amount of tumor-induced pulmonary edema. When MeArg therapy was given orally (1 mg/ml drinking water), a substantial drop in NO production, as well as reduction in capillary leakage was noted in IL-2-treated healthy mice. These findings suggest that NO inhibitors could be a valuable adjunct to IL-2 therapy of cancer and infectious diseases. Received: 23 October 1995 / Accepted: 22 November 1995  相似文献   

14.
We addressed the in vivo role of phosphatidylinositol 3-kinase-gamma (PI3K-gamma) in signaling the sequestration of polymorphonuclear leukocytes (PMNs) in lungs and in the mechanism of inflammatory lung vascular injury. We studied mice with deletion of the p110 catalytic subunit of PI3K-gamma (PI3K-gamma(-/-) mice). We measured lung tissue PMN sequestration, microvascular permeability, and edema formation after bacteremia induced by intraperitoneal Escherichia coli challenge. PMN infiltration into the lung interstitium in PI3K-gamma(-/-) mice as assessed morphometrically was increased 100% over that in control mice within 1 h after bacterial challenge. PI3K-gamma(-/-) mice also developed a greater increase in lung microvascular permeability after E. coli challenge, resulting in edema formation. The augmented lung tissue PMN sequestration in PI3K-gamma(-/-) mice was associated with increased expression of the PMN adhesive proteins CD47 and beta(3)-integrins. We observed increased association of CD47 and beta(3)-integrins with the extracellular matrix protein vitronectin in lungs of PI3K-gamma(-/-) mice after E. coli challenge. PMNs from these mice also showed increased beta(3)-integrin expression and augmented beta(3)-integrin-dependent PMN adhesion to vitronectin. These results point to a key role of PMN PI3K-gamma in negatively regulating CD47 and beta(3)-integrin expression in gram-negative sepsis. PI3K-gamma activation in PMNs induced by E. coli may modulate the extent of lung tissue PMN sequestration secondary to CD47 and beta(3)-integrin expression. Therefore, the level of PI3K-gamma activation may be an important determinant of PMN-dependent lung vascular injury.  相似文献   

15.
目的:观察小檗碱对流感病毒感染所致病毒性肺炎小鼠肺血管通透性的影响,并探讨其作用机制。方法:BALB/c小鼠108只随机分为3组,正常组、模型组、小檗碱组,25μL 50LD50病毒液滴鼻建立流感病毒感染的小鼠肺炎模型,感染后1 h,正常组和模型组予以双蒸水灌胃,小檗碱组予药物0.005 g.kg-1d-1腹腔注射;各组均给药2次/d,连续给药5 d。感染后的2 d、4 d、6 d,处死小鼠,肺组织称重以检测肺含水量;1%伊文氏兰5 mL/kg尾静脉注射检测肺血管通透性;Bicinchoninic acid(BCA)法检测肺泡灌洗液(BALF)中蛋白含量;放免法或酶免法测定肺组织中PGE2、PLA2及LT-B4含量。结果:病毒感染后,模型组肺含水量持续升高,肺血管通透性及BALF蛋白含量在感染后第4天开始明显升高,小檗碱降低了肺含水量、肺血管通透性及BALF蛋白含量(P<0.01);模型组肺组织中PGE2、PLA2、LT-B4的含量明显升高,小檗碱不同程度地抑制了PGE2、PLA2、LT-B4的表达。结论:小檗碱通过抑制流感病毒感染后肺组织中PGE2、PLA2、LT-B4的释放,降低了肺血管通透性及肺含水量,对病毒性肺炎中肺水肿的形成,起到一定的治疗作用。  相似文献   

16.
Vascular leak syndrome (VLS) is a life-threatening toxicity induced during IL-2 treatment of cancer patients. The mechanism of IL-2-induced VLS is still poorly understood. At present, there is no specific therapy for VLS. Previous studies from our laboratory demonstrated that hyaluronan (HA), a large glycosaminoglycan, abundant in the extracellular matrix and on the cell surface, caused a marked increase of IL-2-induced VLS in the lungs and liver of C57BL/6 mice. Conversely, blockade or knockout of its major receptor, CD44, resulted in a marked decrease of VLS, thereby suggesting a role for HA in VLS. In this study, we report a novel means to prevent IL-2-induced VLS by blocking endogenous HA with HA-specific binding peptide, Pep-1, a newly isolated peptide which specifically binds to soluble, cell-associated, and immobilized forms of HA. Our results demonstrated that blocking HA with Pep-1 dramatically inhibited IL-2-induced VLS in both normal mice as well as in mice bearing melanoma. Moreover, Pep-1 treatment maintained the effectiveness of IL-2 and prevented the metastasis of melanoma. IL-2-induced emigration of lymphocytes across the endothelium and cytotoxicity against tumor by lymphokine-activated killer cells were not affected by Pep-1. Instead, use of Pep-1 maintained endothelial integrity and reduced their apoptosis during IL-2-induced VLS. These data suggested that HA plays a critical role in regulating endothelial cell damage and induction of IL-2-mediated VLS. Also, blockade of HA using Pep-1 could constitute a novel therapeutic modality to prevent IL-2-mediated toxicity, thereby facilitating the effectiveness of high-dose IL-2 in the treatment of metastatic melanomas.  相似文献   

17.
Interleukin15 (IL 15) is a proinflammatory cytokine with elevated concentrations in autoimmune diseases involving the periphery (e.g. rheumatoid arthritis) and CNS (e.g. multiple sclerosis). Its interactions with the blood-brain barrier (BBB) were studied in normal and lipopolysaccharide (LPS)-treated mice. 125I-IL15 remained intact for at least 10 min after i.v. injection and reached CNS parenchyma with regional differences between brain and spinal cord. Both in vivo and in situ brain perfusion of 125I-IL15 showed that its permeation of the BBB was non-saturable. LPS induced a significant increase of IL15 uptake by the brain and spinal cord, partly related to a higher general permeability of the BBB. The results suggest that the BBB is an interface for blood-borne IL15 to interact with the CNS in the basal state and during inflammation.  相似文献   

18.
A decrease in superoxide dismutase (SOD), the first cellular defence against free radicals, occurs at about the same time as the activation of macrophages within the islets of low-dose streptozocin (LDS)-treated mice. Furthermore, a decrease in the total islet capillary area also has been shown to occur by 10 days after the first streptozocin (STZ) injection and this decline in capillary area is concomitant with the activation of macrophages as is the fall in SOD. Intracellular levels of SOD have been shown to increase after administration of acetyl-homocysteine-thiolactone (citiolone); therefore, the aim of the present study was to observe any relationship between the citiolone-induced increase in SOD levels and islet microvasculature area during LDS-induced diabetes. C57BL6/J male mice were pretreated with daily intramuscular injections of 50 mg citiolone/kg body wt. for 30 days and were then rendered diabetic with 45 mg STZ/kg body wt. given for 5 days; citiolone was given until the animals were killed (days 6, 11 and 18 after the first STZ injection). Further animals were used as non-diabetic and diabetic (STZ-only) controls. The results show that LDS-treated animals when given citiolone: (1) were generally normoglycaemic; (2) had SOD levels that were higher than those of STZ-only control animals; (3) had an islet capillary area that was larger than that of LDS-treated mice. Therefore, the administration of a free radical scavenger, namely citiolone, is able partly to counteract and delay the reduction of islet vascular area and oedema formation in LDS-treated mice.  相似文献   

19.
Fluid conductance and protein permeability have been studied in isolated perfused lung models of pulmonary edema. However, previous studies have not investigated changes of both fluid conductance and protein permeability in the same isolated lung preparation after injury. Arachidonic acid (AA) metabolites are involved in the inflammatory processes that lead to the development of pulmonary edema. The hemodynamic effects of AA have been well established; however, controversy exists concerning the ability of AA to alter the permeability of the pulmonary microvasculature to fluid and protein. The purpose of this study was to simultaneously determine whether transvascular fluid conductance and protein permeability are increased in isolated perfused rabbit lungs with pulmonary edema induced by AA. Indomethacin (80 microM) was added to the perfusate to inhibit the hemodynamic effects of AA and produce a pressure-independent model of pulmonary edema. Fluid conductance was assessed by determination of the capillary filtration coefficient (Kf), and protein permeability was evaluated by measurement of 125I-albumin clearance. The injection of AA (3 mg/200 ml of perfusate) into the pulmonary arterial catheter resulted in an increase in lung weight over the remaining 30-min experimental period. Kf (microliter.s-1 x cmH2O-1 x g dry lung-1) was increased (P < 0.05) in AA-treated lungs at 10 and 30 min post-AA injection when compared with control lungs and baseline values (determined 10 min before AA injection). Albumin clearance was also greater (P < 0.05) in lungs that received AA. 125I-albumin clearance was measured at different rates of fluid flux produced by elevation of venous pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Bifidobacterium, one of the major components of intestinal microflora, shows anti‐influenza virus (IFV) potential as a probiotic, partly through enhancement of innate immunity by modulation of the intestinal immune system. Bifidobacterium longum MM‐2 (MM‐2), a very safe bacterium in humans, was isolated from healthy humans and its protective effect against IFV infection in a murine model shown. In mice that were intranasally inoculated with IFV, oral administration of MM‐2 for 17 consecutive days improved clinical symptoms, reduced mortality, suppressed inflammation in the lower respiratory tract, and decreased virus titers, cell death, and pro‐inflammatory cytokines such as IL‐6 and TNF‐α in bronchoalveolar lavage fluid. The anti‐IFV mechanism of MM‐2 involves innate immunity through significant increases in NK cell activities in the lungs and spleen and a significant increase in pulmonary gene expression of NK cell activators such as IFN‐γ, IL‐2, IL‐12 and IL‐18. Even in non‐infected mice, MM‐2 administration also induced significant enhancement of both IFN‐γ production by Peyer's patch cells (PPs) and splenetic NK cell activity. Oral administration of MM‐2 for 17 days activates systemic immunoreactivity in PPs, which contributes to innate immunity, including NK cell activation, resulting in an anti‐IFV effect. MM‐2 as a probiotic may function as a prophylactic agent in the management of an IFV epidemic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号