首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serine hydroxymethyltransferase (EC 2.1.2.1), a member of the alpha-class of pyridoxal phosphate enzymes, catalyzes the reversible interconversion of serine and glycine, changing the chemical bonding at the C(alpha)-C(beta) bond of the serine side-chain mediated by the pyridoxal phosphate cofactor. Scission of the C(alpha)-C(beta) bond of serine substrate produces a glycine product and most likely formaldehyde, which reacts without dissociation with tetrahydropteroylglutamate cofactor. Crystal structures of the human and rabbit cytosolic serine hydroxymethyltransferases (SHMT) confirmed their close similarity in tertiary and dimeric subunit structure to each other and to aspartate aminotransferase, the archetypal alpha-class pyridoxal 5'-phosphate enzyme. We describe here the structure at 2.4 A resolution of Escherichia coli serine hydroxymethyltransferase in ternary complex with glycine and 5-formyl tetrahydropteroylglutamate, refined to an R-factor value of 17.4 % and R(free) value of 19.6 %. This structure reveals the interactions of both cofactors and glycine substrate with the enzyme. Comparison with the E. coli aspartate aminotransferase structure shows the distinctions in sequence and structure which define the folate cofactor binding site in serine hydroxymethyltransferase and the differences in orientation of the amino terminal arm, the evolution of which was necessary for elaboration of the folate binding site. Comparison with the unliganded rabbit cytosolic serine hydroxymethyltransferase structure identifies changes in the conformation of the enzyme, similar to those observed in aspartate aminotransferase, that probably accompany the binding of substrate. The tetrameric quaternary structure of liganded E. coli serine hydroxymethyltransferase also differs in symmetry and relative disposition of the functional tight dimers from that of the unliganded eukaryotic enzymes. SHMT tetramers have surface charge distributions which suggest distinctions in folate binding between eukaryotic and E. coli enzymes. The structure of the E. coli ternary complex provides the basis for a thorough investigation of its mechanism through characterization and structure determination of site mutants.  相似文献   

2.
N-Bromoacetylethanolamine phosphate rapidly and irreversibly inactivates rabbit muscle phosphoglycerate mutase. At high molar ratios of reagent to enzyme, loss of activity (both mutase and phosphatase) approximates pseudo-first order kinetics. A rate-saturation effect is observed with half-maximal rate of inactivation occurring at 0.32 mM reagent, a value close to the Km for 3-phosphoglyceric acid. This datum and the dissociation constant of the 2,3-bisphosphoglycerate-enzyme complex, as determined from inactivation kinetics in the presence of the bisphosphate, suggest that the reagent reacts at the substrate binding site. Inactivation results from the covalent incorporation of about 0.8 mol of reagent/mol of catalytic subunit as determined with 14C-labeled reagent. Incorporation is negligible in the presence of substrate and is reduced 8-fold in the presence of 6 M urea. From amino acid analyses on acid hydrolysates of the inactivated enzyme, we have identified a sulfhydryl group as the site of alkylation. A peptide containing the essential sulfhydryl group has been isolated from a tryptic digest of the enzyme inactivated with labeled reagent; its amino acid composition is Trp1, Lys1,-Cys(Cm)1, Asp1, Ser1, Glu2, Gly1, Ala1, Leu1, Phe2.  相似文献   

3.
Histidine 228 at the active site of Escherichia coli serine hydroxymethyltransferase was replaced with an asparagine. The mutant enzyme was expressed in a strain of E. coli that lacks wild type enzyme. Absorption spectra, circular dichroism spectra, and differential scanning calorimetry thermograms suggest that the amino acid change at the active site causes no detectable change in the tertiary structure of the enzyme. Kinetic studies demonstrated that kcat for the mutant enzyme is about 25% of the value for the wild type enzyme with either L-serine or allothreonine as substrate. Km or Kd values for amino acid substrates and reduced folate compounds were 2-10-fold larger with the mutant enzyme. The rate of interconversion of several enzyme-glycine complexes showed that the conversion of the external aldimine to the quinoid complex is not the rate-determining step for either the mutant or wild type enzyme in the presence of tetrahydrofolate. The binding of L-serine to the wild type enzyme gives a more thermally stable enzyme and increases its affinity for tetrahydrofolate. These effects are not found when L-serine binds to the mutant enzyme. The studies demonstrate that histidine 228 is not a catalytically essential residue and suggest that it is involved in interacting with either the amino acid substrate or the enzyme-bound pyridoxal phosphate.  相似文献   

4.
The complete amino acid sequence of mitochondrial serine hydroxymethyltransferase from rabbit liver was determined. The sequence was obtained from analysis of peptides isolated from chymotryptic, cyanogen bromide, and limited acid cleavages of the protein. The enzyme consists of four identical subunits, each of 475 residues, i.e. 8 residues shorter than the subunit of the corresponding cytosolic isoenzyme. The sequences of the two rabbit proteins are easily aligned, provided a gap of 5 residues near the amino terminus and a gap of 3 residues near the carboxyl terminus are included in the mitochondrial sequence. The overall degree of identity between the two isoenzymes is 61.9%, whereas the structural identity of each eukaryotic isoenzyme with the corresponding Escherichia coli enzyme is about 40%. The rabbit isoenzymes are about 70 residues longer than the E. coli enzyme, with one-half of these residues accounted for by insertions in both isoenzymes near their carboxyl terminus. Predictions of secondary structure and calculations of hydropathy profiles are also presented, suggesting an even more extensive degree of identity in the three-dimensional folding of the three proteins, in accord with the known similarity of their catalytic properties. Evidence was obtained for the existence of additional molecular forms of the mitochondrial protein, differing in the absence of some amino acid residues at the amino terminus of the polypeptide chain.  相似文献   

5.
Cytosolic serine hydroxymethyltransferase has been shown previously to exhibit both broad substrate and reaction specificity. In addition to cleaving many different 3-hydroxyamino acids to glycine and an aldehyde, the enzyme also catalyzes with several amino acid substrate analogs decarboxylation, transamination, and racemization reactions. To elucidate the relationship of the structure of the substrate to reaction specificity, the interaction of both amino acid and folate substrates and substrate analogs with the enzyme has been studied by three different methods. These methods include investigating the effects of substrates and substrate analogs on the thermal denaturation properties of the enzyme by differential scanning calorimetry, determining the rate of peptide hydrogen exchange with solvent protons, and measuring the optical activity of the active site pyridoxal phosphate. All three methods suggest that the enzyme exists as an equilibrium between "open" and "closed" forms. Amino acid substrates enter and leave the active site in the open form, but catalysis occurs in the closed form. The data suggest that the amino acid analogs that undergo alternate reactions, such as racemization and transamination, bind only to the open form of the enzyme and that the alternate reactions occur in the open form. Therefore, one role for forming the closed form of the enzyme is to block side reactions and confer reaction specificity.  相似文献   

6.
Crystal structures of human and rabbit cytosolic serine hydroxymethyltransferase have shown that Tyr65 is likely to be a key residue in the mechanism of the enzyme. In the ternary complex of Escherichia coli serine hydroxymethyltransferase with glycine and 5-formyltetrahydrofolate, the hydroxyl of Tyr65 is one of four enzyme side chains within hydrogen-bonding distance of the carboxylate group of the substrate glycine. To probe the role of Tyr65 it was changed by site-directed mutagenesis to Phe65. The three-dimensional structure of the Y65F site mutant was determined and shown to be isomorphous with the wild-type enzyme except for the missing Tyr hydroxyl group. The kinetic properties of this mutant enzyme in catalyzing reactions with serine, glycine, allothreonine, D- and L-alanine, and 5,10-methenyltetrahydrofolate substrates were determined. The properties of the enzyme with D- and L-alanine, glycine in the absence of tetrahydrofolate, and 5, 10-methenyltetrahydrofolate were not significantly changed. However, catalytic activity was greatly decreased for serine and allothreonine cleavage and for the solvent alpha-proton exchange of glycine in the presence of tetrahydrofolate. The decreased catalytic activity for these reactions could be explained by a greater than 2 orders of magnitude increase in affinity of Y65F mutant serine hydroxymethyltransferase for these amino acids bound as the external aldimine. These data are consistent with a role for the Tyr65 hydroxyl group in the conversion of a closed active site to an open structure.  相似文献   

7.
Aspartase (L-aspartate ammonia-lyase, EC 4.3.1.1) of Escherichia coli W contains 38 half-cystine residues per tetrameric enzyme molecule. Two sulfhydryl groups were modified with N-ethylmaleimide or 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) per subunit, while 8.3 sulfhydryl groups were titrated with p-mercuribenzoic acid. In the presence of 4 M guanidine - HCl, 8.6 sulfhydryl groups reacted with DTNB per subunit. Aspartase was inactivated by various sulfhydryl reagents following pseudo-first-order kinetics. Upon modification of one sulfhydryl group per subunit with N-Ethylmaleimide, 85% of the original activity was lost; a complete inactivation was attained concomitant with the modification of two sulfhydryl groups. These results indicate that one or two sulfhydryl groups are essential for enzyme activity. L-Aspartate and DL-erythro-beta-hydroxyaspartate markedly protected the enzyme against N-ethylmaleimide-inactivation. Only the compounds having an amino group at the alpha-position exhibited protection, indicating that the amino group of the substrate contributes to the protection of sulfhydryl groups of the enzyme. Examination of enzymatic properties after N-ethylmaleimide modification revealed that 5-fold increase in the Km value for L-aspartate and a shift of the optimum pH for the activity towards acidic pH were brought about by the modification, while neither dissociation into subunits nor aggregation occurred. These results indicate that the influence of the sulfhydryl group modification is restricted to the active site or its vicinity of the enzyme.  相似文献   

8.
Serine hydroxymethyltransferase: origin of substrate specificity.   总被引:5,自引:0,他引:5  
All forms of serine hydroxymethyltransferase, for which a primary structure is known, have five threonine residues near the active-site lysyl residue (K229) that forms the internal aldimine with pyridoxal phosphate. For Escherichia coli serine hydroxymethyltransferase each of these threonine residues has been changed to an alanine residue. The resulting five mutant enzymes were purified and characterized with respect to kinetic and spectral properties. The mutant enzymes T224A and T227A showed no significant changes in kinetic and spectral properties compared to the wild-type enzyme. The T225A and T230A enzymes exhibited differences in Km and kcat values but exhibited the same spectral properties as the wild-type enzyme. The four threonine residues at positions 224, 225, 227, and 230 do not play a critical role in the mechanism of the enzyme. The T226A enzyme had nearly normal affinity for substrates and coenzymes but had only 3% of the catalytic activity of the wild-type enzyme. The spectrum of the T226A enzyme in the presence of amino acid substrates showed a large absorption maximum at 343 nm with only a small absorption band at 425 nm, unlike the wild-type enzyme whose enzyme-substrate complexes absorb at 425 nm. Rapid reaction studies showed that when amino acid substrates and substrate analogues were added to the T226A enzyme, the internal aldimine absorbing at 422 nm was rapidly converted to a complex absorbing at 343 nm in a second-order process. This was followed by a very slow first-order formation of a complex absorbing at 425 nm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
A Basu  M J Modak 《Biochemistry》1987,26(6):1704-1709
We have labeled the large fragment of Escherichia coli DNA polymerase I (Pol I) with pyridoxal 5'-phosphate, a substrate binding site directed reagent for DNA polymerases [Modak, M. J. (1976) Biochemistry 15, 3620-3626]. A covalent attachment of pyridoxal phosphate to Pol I results in the loss of substrate binding as well as the polymerase activity. The inactivation was found to be strictly dependent on the presence of a divalent metal ion. Four moles of pyridoxal phosphate was found to react per mole of the enzyme, while in the presence of substrate deoxynucleoside triphosphate only 3 mol of pyridoxal phosphate was bound. To identify the substrate-protected site on the enzyme, tryptic peptides from enzyme labeled with pyridoxal phosphate and tritiated borohydride, in the presence and absence of substrate, were resolved on a C-18 reverse-phase column. A single peptide containing the substrate-protected site was identified and further purified. The amino acid composition and sequence analysis of this peptide revealed it to span residues 756-775 in the primary acid sequence of Pol I. Lys-758 of this sequence was found to be the site of the pyridoxal phosphate reaction. It is therefore concluded that Lys-758 is the site of binding for the metal chelate form of nucleotide substrates in E. coli DNA polymerase I.  相似文献   

10.
The chemical and kinetic mechanisms of purified aspartate-beta-semialdehyde dehydrogenase from Escherichia coli have been determined. The kinetic mechanism of the enzyme, determined from initial velocity, product and dead end inhibition studies, is a random preferred order sequential mechanism. For the reaction examined in the phosphorylating direction L-aspartate-beta-semialdehyde binds preferentially to the E-NADP-Pi complex, and there is random release of the products L-beta-aspartyl phosphate and NADPH. Substrate inhibition is displayed by both Pi and NADP. Inhibition patterns versus the other substrates suggest that Pi inhibits by binding to the phosphate subsite in the NADP binding site, and the substrate inhibition by NADP results from the formation of a dead end E-beta-aspartyl phosphate-NADP complex. The chemical mechanism of the enzyme has been examined by pH profile and chemical modification studies. The proposed mechanism involves the attack of an active site cysteine sulfhydryl on the carbonyl carbon of aspartate-beta-semialdehyde, with general acid assistance by an enzyme lysine amino group. The resulting thiohemiacetal is oxidized by NADP to a thioester, with subsequent attack by the dianion of enzyme bound phosphate. The collapse of the resulting tetrahedral intermediate leads to the acyl-phosphate product and liberation of the active site cysteine.  相似文献   

11.
A comparison of the tryptic peptide maps of serine hydroxymethyltransferase from sheep, human, ox livers and Escherichia coli revealed that the mammalian enzymes were similar, while the bacterial enzyme exhibited differences in the primary structure. N-terminus of the reduced carboxymethylated sheep liver enzyme was acetylated. Serine hydroxymethyltransferase was hydrolyzed with trypsin and fragments of peptides were separated by high performance liquid chromatography using a combination of gel permeation, reverse phase and ion-pair chromatography. The peptides were sequenced manually using the 4-N,N'-dimethyl aminoazobenzene-4'-isothiocyanate/phenyl isothiocyanate double coupling method. The tryptic peptides with 80% homology or above were aligned on the rabbit liver enzyme sequence.  相似文献   

12.
The complete amino acid sequence of cytosolic serine hydroxymethyltransferase from rabbit liver was determined. The sequence was determined from analysis of peptides isolated from tryptic and cyanogen bromide cleavages of the enzyme. Special procedures were used to isolate and sequence the C-terminal and blocked N-terminal peptides. Each of the four identical subunits of the enzyme consists of 483 residues. The sequence could be easily aligned with the sequence of Escherichia coli serine hydroxymethyltransferase. The primary structural homology between the rabbit and E. coli enzymes is about 42%. The importance of the primary and predicted secondary structural homology between the two enzymes is discussed.  相似文献   

13.
Two isoenzymes of rat liver acid phosphatase (orthophosphoric-monoester phosphohydrolase (acid optimum) EC 3.1.3.2) have been purified to homogeneity, at least one of these for the first time. Both of the rat liver isoenzymes have identical specific activities towards p-nitrophenyl phosphate. Molecular weights of the native enzymes are 92 000 for rat liver isoenzyme I and 93 000 for isoenzyme II, while the subunit molecular weights are 51 000 and 52 000 respectively. Data on substrate specificity and pH dependence are presented for the homogeneous canine prostatic enzyme, which is also isolated as a dimeric enzyme of (native) molecular weight 89 000. Carbohydrate analysis data are presented for canine prostatic acid phosphatase and it is further noted that both isoenzymes of rat liver acid phosphatase are also glycoproteins. The amino acid compositions of the two rat liver isoenzymes are presented together with those of the similar dimeric acid phosphatase of human liver and of canine prostate. Comparison of these results with published data for the amino acid composition of human prostatic acid phosphatase shows substantial similarities. However, significant differences are seen in the amino acid composition of rat liver acid phosphatase isoenzyme I as compared to a previous literature report. Most notably, 17 histidine residues are found per mol of isoenzyme I and 18 for isoenzyme II.  相似文献   

14.
Serine hydroxymethyltransferase has a conserved histidine residue (His-228) next to the lysine residue (Lys-229) which forms the internal aldimine with pyridoxal 5'-phosphate. This histidine residue is also conserved at the equivalent position in all amino acid decarboxylases and tryptophan synthase. Two mutant forms of Escherichia coli serine hydroxymethyltransferase, H228N and H228D, were constructed, expressed, and purified. The properties of the wild type and mutant enzymes were studied with substrates and substrate analogs by differential scanning calorimetry, circular dichroism, steady state kinetics, and rapid reaction kinetics. The conclusions of these studies were that His-228 plays an important role in the binding and reactivity of the hydroxymethyl group of serine in the one-carbon-binding site. The mutant enzymes utilize substrates and substrate analogs more effectively for a variety of alternate non-physiological reactions compared to the wild type enzyme. As one example, the mutant enzymes cleave L-serine to glycine and formaldehyde when tetrahydropyteroylglutamate is replaced by 5-formyltetrahydropteroylglutamate. The released formaldehyde inactivates these mutant enzymes. The loss of integrity of the one-carbon-binding site with L-serine in the two mutant forms of the enzyme may be the result of these enzymes not undergoing a conformational change to a closed form of the active site when serine forms the external aldimine complex.  相似文献   

15.
Chemical modification of amino acid residues with phenylglyoxal, diethylpyrocarbonate, and N-bromosuccinimide indicated that at least one residue each of arginine, histidine, and tryptophan were necessary for the activity of human liver serine hydroxymethyltransferase. Protection by substrates suggested that these residues might occur at the active site of the enzyme.  相似文献   

16.
Leukotriene A4 hydrolase from the human lung was purified to apparent homogeneity. The molecular weight (68,000-71,000), the amino acid composition, and the N-terminal amino acid sequence were similar to those of the human neutrophil enzyme but different from those of human erythrocyte enzyme. The lung enzyme was inactivated by its substrate, leukotriene A4. To elucidate the substrate and the inactivator specificity of this enzyme, we synthesized various geometric and positional isomers of leukotriene A4. 14,15-Leukotriene A4, leukotriene A4 methyl ester, and geometric isomers of leukotriene A4 could not serve as substrates, but they inactivated the enzyme. On the other hand, styrene oxide and (5S)-trans-5,6-oxide-8,10,14-cis-12-trans-eicosatetraenoic acid neither served as substrates nor inactivated the enzyme. These results indicate that whereas allylic epoxide structures of arachidonic acids are responsible for inactivation of the enzyme, the free carboxylic acid, 5,6-oxide, and the tetraene structure with the 7,9-trans-11,14-cis configuration are required as a substrate for leukotriene A4 hydrolase.  相似文献   

17.
A low-molecular-weight human liver acid phosphatase was purified 2580-fold to homogenity by a procedure involving ammonium sulfate fractionation, acid treatment, and SP-Sephadex ion-exchange chromatography with ion-affinity elution. The purified enzyme contains a single polypeptide chain and has a molecular weight of 14,400 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The amino acid composition of this enzyme (E) is reported. A pH dependence study using p-nitrophenyl phosphate as a substrate (S) revealed the effect of substrate ionization (pKa 5.2) and the participation of a group in the ES complex having a pKa value of 7.8. The enzyme is readily inactivated by sulfhydryl reagents such as heavy metal ions. Alkylation of the enzyme with iodoacetic acid and iodoacetamide causes complete inactivation of the enzyme and this inactivation is prevented by the presence of phosphate ion. The enzyme is also inactivated by treatment with diethyl pyrocarbonate; protection against this reagent is afforded by phosphate ion. The substrate specificity of this enzyme is unusual for an acid phosphatase. Of the many alkyl and aryl phosphomonoesters tested, the only possibly physiological substrate hydrolyzed by this enzyme was flavin mononucleotide, which exhibits a V which is 3-fold larger at pH 5.0 and 6-fold larger at pH 7.0 than that for p-nitrophenyl phosphate. However, the enzyme also catalyzes the hydrolysis of acetyl phosphate at pH 5.0 with a velocity eight times larger than that reported for an acyl phosphatase from human erythrocytes.  相似文献   

18.
Optimal culture conditions of a methylotrophic Hyphomicrobium methylovorum and improved purification of serine hydroxymethyltransferase from the bacterium were established for the large-scale preparation of the enzyme. The first crystalline serine hydroxymethyltransferase from the microbial source was obtained in the apo form and found to be homogeneous. Amino acid analysis revealed that the enzyme had higher value per subunit for acidic and neutral amino acids than that from rabbit liver. The carboxy-terminal amino acid analysis suggested the sequence -Ile-Ala-Tyr.  相似文献   

19.
The affinity label N-bromoacetylethanolamine phosphate (BrAcNHEtOP) has been used previously at pH 6.5 to identify His-359 of rabbit muscle aldolase as an active site residue. We now find that the specificity of the reagent is pH-dependent. At pH 8.5, alkylation with 14C-labeled BrAcNHEtOP abolishes both fructose-1,6-P2 cleavage activity and transaldolase activity. The stoichiometry of incorporation, the kinetics of inactivation, and the protection against inactivation afforded by a competitive inhibitor or dihydroxyacetone phosphate are consistent with the involvement of an active site residue. A comparison of 14C profiles obtained from chromatography on the amino acid analyzer of acid hydrolysates of inactivated and protected samples reveals that inactivation results from the alkylation of lysyl residues. The major peptide in tryptic digests of the inactivated enzyme has been isolated. Based on its amino acid composition and the known sequence of aldolase, Lys-146 is the residue preferentially alkylated by the reagent. Aldolase modified at His-359 is still subject to alkylation of lysine; thus Lys-146 and His-359 are not mutually exclusive sites. However, aldolase modified at Lys-146 is not subject to alkylation of histidine. One explanation of these observations is that modification of Lys-146 abolishes the binding capacity of aldolase for substrates and substrate analogs (BrAcNHEtOP), whereas modification of his-359 does not. Consistent with this explanation is the ability of aldolase modified at His-359 to form a Schiff base with substrate and the inability of aldolase modified at Lys-146 to do so. Therefore, Lys-146 could be one of the cationic groups that functions in electrostatic binding of the substrate's phosphate groups.  相似文献   

20.
The combined activities of rabbit liver cytosolic serine hydroxymethyltransferase and C1-tetrahydrofolate synthase convert tetrahydrofolate and formate to 5-formyltetrahydrofolate. In this reaction C1-tetrahydrofolate synthase converts tetrahydrofolate and formate to 5,10-methenyltetrahydrofolate, which is hydrolyzed to 5-formyltetrahydrofolate by a serine hydroxymethyltransferase-glycine complex. Serine hydroxymethyltransferase, in the presence of glycine, catalyzes the conversion of chemically synthesized 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate with biphasic kinetics. There is a rapid burst of product that has a half-life of formation of 0.4 s followed by a slower phase with a completion time of about 1 h. The substrate for the burst phase of the reaction was shown not to be 5,10-methenyltetrahydrofolate but rather a one-carbon derivative of tetrahydrofolate which exists in the presence of 5,10-methenyltetrahydrofolate. This derivative is stable at pH 7 and is not an intermediate in the hydrolysis of 5,10-methenyltetrahydrofolate to 10-formyltetrahydrofolate by C1-tetrahydrofolate synthase. Cytosolic serine hydroxymethyltransferase catalyzes the hydrolysis of 5,10-methenyltetrahydrofolate pentaglutamate to 5-formyltetrahydrofolate pentaglutamate 15-fold faster than the hydrolysis of the monoglutamate derivative. The pentaglutamate derivative of 5-formyltetrahydrofolate binds tightly to serine hydroxymethyltransferase and dissociates slowly with a half-life of 16 s. Both rabbit liver mitochondrial and Escherichia coli serine hydroxymethyltransferase catalyze the conversion of 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate at rates similar to those observed for the cytosolic enzyme. Evidence that this reaction accounts for the in vivo presence of 5-formyltetrahydrofolate is suggested by the observation that mutant strains of E. coli, which lack serine hydroxymethyltransferase activity, do not contain 5-formyltetrahydrofolate, but both these cells, containing an overproducing plasmid of serine hydroxymethyltransferase, and wild-type cells do have measurable amounts of this form of the coenzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号