首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Parasitism is emerging as one of the forces determining the outcome of biological invasions. Using field survey and laboratory experiments, we investigate parasitism as one of the factors mediating the interactions among invasive and native amphipods. An extensive survey (100 sites) of a small British island, revealed the native Gammarus duebeni celticus to be parasitised by the muscle wasting microsporidian Pleistophora mulleri and the acanthocephalan duck parasite Polymorphus minutus, the introduced European Gammarus pulex only by P. minutus and the North American Crangonyx pseudogracilis by neither. While Gammarus spp. were widespread in rivers (one or both species present in 64% of sites), C. pseudogracilis had a restricted distribution (7% of sites) and always co-occurred with Gammarus spp. In contrast, Gammarus spp. were absent from all pond/reservoir sites, with C. pseudogracilis present in over 90%. While the negative association of C. pseudogracilis with Gammarus spp. undoubtedly results from factors such as physico-chemical tolerance and predation as C. pseudogracilis can be heavily predated by Gammarus spp., it was notable that C. pseudogracilis co-occurred with Gammarus spp. more frequently when the latter were parasitised. Laboratory experiments clearly showed that predation on C. pseudogracilis was greatly diminished when G. d. celticus was parasitised by P. mulleri and G. pulex by P. minutus. Our study provides evidence that parasitism, by mediating a key interspecific interaction, is one of an array of interacting factors that may have a role in driving patterns of exclusion and co-existence in natives and invaders.  相似文献   

2.
1. The balance of predation between closely related invasive and native species can be an important determinant of the success or failure of biological invasions. In Irish freshwaters, the introduced amphipod Gammarus pulex has replaced the native G. duebeni celticus, possibly through differential mutual intraguild predation (IGP). Theoretically, parasitism could mediate such predation and hence the invasion outcome. However, this idea remains poorly studied. 2. In a field survey, we show that the acanthocephalan parasite Echinorynchus truttae is present in more G. pulex populations than G. d. celticus populations. In addition, within parasitised populations, E. truttae is more prevalent in the invader than in the native. 3. We show for the first time that an acanthocephalan parasite mediates predation between its intermediate macroinvertebrate hosts. In a field experiment, E. truttae parasitism of the invader lowered IGP upon the unparasitised native. In laboratory experiments, parasitism of G. pulex significantly reduced their predatory impact on recently moulted female G. d. celticus. Parasitism also appeared to cause reduction in predatory behaviour, such as attacks per contact on precopula guarded female natives. 4. We conclude that higher parasite prevalence in invaders as compared with natives, by mediation of interspecific interactions, could promote species coexistence, or at least slow species replacements, in this particular biological invasion.  相似文献   

3.
Invasive predators can have dramatic impacts on invaded communities. Extreme declines in macroinvertebrate populations often follow killer shrimp (Dikerogammarus villosus) invasions. There are concerns over similar impacts on fish through predation of eggs and larvae, but these remain poorly quantified. We compare the predatory impact of invasive and native amphipods (D. villosus and Gammarus pulex) on fish eggs and larvae (ghost carp Cyprinus carpio and brown trout Salmo trutta) in the laboratory. We use size-matched amphipods, as well as larger D. villosus reflecting natural sizes. We quantify functional responses, and electivity amongst eggs or larvae and alternative food items (invertebrate, plant and decaying leaf). D. villosus, especially large individuals, were more likely than G. pulex to kill trout larvae. However, the magnitude of predation was low (seldom more than one larva killed over 48 h). Trout eggs were very rarely killed. In contrast, carp eggs and larvae were readily killed and consumed by all amphipod groups. Large D. villosus had maximum feeding rates 1.6–2.0 times higher than the smaller amphipods, whose functional responses did not differ. In electivity experiments with carp eggs, large D. villosus consumed the most eggs and the most food in total. However, in experiments with larvae, consumption did not differ between amphipod groups. Overall, our data suggest D. villosus will have a greater predatory impact on fish populations than G. pulex, primarily due to its larger size. Higher invader abundance could amplify this difference. The additional predatory pressure could reduce recruitment into fish populations.  相似文献   

4.
While we can usually understand the impacts of invasive species on recipient communities, invasion biology lacks methodologies that are potentially more predictive. Such tools should ideally be straightforward and widely applicable. Here, we explore an approach that compares the functional responses (FRs) of invader and native amphipod crustaceans. Dikerogammarus villosus is a Ponto-Caspian amphipod currently invading Europe and poised to invade North America. Compared with other amphipods that it actively replaces in freshwaters, D. villosus exhibited significantly greater predation, consuming significantly more prey with a higher type II FR. This corroborates the known dramatic field impacts of D. villosus on invaded communities. In another species, FRs were nearly identical in invasive and native ranges. We thus propose that if FRs of other taxa and trophic groups follow such general patterns, this methodology has potential in predicting future invasive species impacts.  相似文献   

5.
Animal introductions can often have unexpected and complex consequences for both native and invader species. Freshwater crustaceans such as Gammarus spp. (amphipods) and Mysis relicta (an ‘opossum shrimp’) have frequently come into contact because of deliberate and accidental introductions. However, there remains poor understanding of mechanisms leading to the co-existence and/or exclusion among amphipods and mysids. Here, we examined predatory and interference interactions between native (Gammarus duebeni celticus) and invasive (Gammarus tigrinus and Crangonyx pseudogracilis) amphipods and the native M. relicta in Britain’s largest expanse of freshwater, Lough Neagh. Laboratory mesocosm experiments simulating near-shore/mid-lough benthic habitats showed that both Gammarus species, but not C. pseudogracilis, preyed on M. relicta, which itself preyed on C. pseudogracilis. Further, M. relicta micro-distribution and habitat use changed because of interference from G. d. celticus and to a lesser extent G. tigrinus, with C. pseudogracilis having no such impact. In smaller microcosms, predation of M. relicta adults and juveniles by Gammarus spp. was significant. Although predation of Gammarus spp. by M. relicta was low, adult C. pseudogracilis were killed by M. relicta and its predation of juvenile C. pseudogracilis was high. We discuss the concurrence of these laboratory interactions with known field patterns of co-existence amongst these species.  相似文献   

6.
Understanding predator avoidance behavior by prey remains an important topic in community and invasion ecology. Recently, the Ponto-Caspian amphipod Echinogammarus ischnus (Stebbing 1898) was accidentally introduced into the Great Lakes. Since its introduction, it has displaced the native amphipod, Gammarus fasciatus (Say 1818), from several locations in the lower lakes. To assess whether behavioral differences in predator avoidance might be a causal mechanism increasing the success of the invasive amphipods, two experiments were conducted examining (1) native and invasive amphipod behavioral responses to five fish species with different foraging behaviors, and (2) amphipod responses to different densities of round gobies, a hyper-abundant benthic invertivore. Echinogammarus reduced its distance moved in the presence of all fish species tested, whereas Gammarus reduced its distance moved only after exposure to round gobies, black crappies, and rainbow darters. Both amphipod species increased the time spent motionless following exposure to round gobies, but not after encountering the scent of most of the remaining fish predators. The exception was that Echinogammarus also responded to black crappie scent whereas Gammarus did not. Although both amphipod species exhibited behavioral responses to many of the fish predators, the magnitude of their responses differed only after exposure to the brown bullhead. In the bullhead trials, Echinogammarus reduced its distance traveled significantly more than Gammarus. Both amphipod species increased their avoidance response to increasing goby density, however, the pattern of avoidance behavior was different. Invasive E. ischnus exhibited a consistently strong avoidance response to round gobies over the test duration. Native G. fasciatus initially avoided goby scent, but then either ceased their avoidance response or showed a hyper-avoidance response, depending on goby density. These results suggested (1) both species of amphipods were able to differentiate and react to a variety of fish predators, (2) invasive Echinogammarus amphipods avoided a larger range of fish predators than the native Gammarus, (3) increased avoidance behavior was associated with an increased density of fish, and (4) the avoidance response patterns of invasive Echinogammarus when faced with round goby predators might lead to increased predation on native Gammarus in habitats where they co-occur.  相似文献   

7.
Conditions fostering coexistence of native species with invasive species have received little attention in invasion biology, especially for closely related invasive and native species. We used long-term datasets on multiple replicate invasions to define conditions under which native virile crayfish (Orconectes virilis) can coexist with invasive rusty crayfish (O. rusticus). We examined multiple drivers of coexistence involving habitat use and predation at between-lake and within-lake scales to derive predictions that could guide prioritization efforts to prevent future introductions of rusty crayfish and mitigate impacts of existing invasions. Lakes in which native species persisted for many years had significantly less cobble and sand habitats, and significantly more vegetated habitats compared to lakes from which native crayfish have been displaced. In the presence of rusty crayfish, virile crayfish alter their habitat use to vegetated habitats relative to habitat use in the absence of rusty crayfish. Such vegetated habitats had greater plant standing crop, plant species richness, and sediment percent organic matter compared to vegetated sites occupied by rusty crayfish. Our results suggest that low abundance of cobble habitat and altered habitat use allows native crayfish to coexist with the rusty crayfish invader. At the within-lake scale, virile crayfish persist by escaping predation in the vegetated habitats, despite suboptimal abiotic conditions. By understanding these abiotic and biotic conditions that promote coexistence, managers could enhance native crayfish persistence by targeting high cobble lakes for efforts to prevent the introduction of invasive crayfish, and targeting vegetated habitats for protection in already invaded lakes.  相似文献   

8.
1. Invasive species in aquatic systems are major drivers of changes in biodiversity. Amphipods are key species in freshwaters, with invasive amphipods either replacing or coexisting with native species and often damaging local biodiversity. However, the consequences of interactions among native and invasive amphipods for their habitat use and feeding ecology and ecosystem function are not yet well understood. 2. We examined a number of streams in Brittany and Northern Ireland, with native and invasive amphipods, to evaluate the consequences of species interactions for both habitat use and diet. Our field studies centred on testing two proposed models: a cohabitation model without competition between two native species (Gammarus pulex vs Echinogammarus berilloni), and a competition model between an invasive and a native species (Gammarus pulex vs Gammarus duebeni celticus). For these three species, alone and in combination, we assessed their habitat use and feeding patterns, the latter through gut contents and stable C and N isotope analyses of their tissues. 3. When existing as single‐species populations, all three species used stream habitats broadly similarly, although G. pulex was more strongly associated with leaf litter and vegetation compared to pebble substrata than the other species. When G. pulex coexisted with either E. berilloni or G. d. celticus, the latter two changed to using all habitats equally, whereas the former retained its habitat preferences. 4. Similarly, all three species when alone had similar gut contents, with inorganic material predominating, followed by leaf and woody material and more rarely algae and invertebrates. When G. pulex coexisted with E. berilloni, the diet of the latter did not change; however, the frequency of inorganic matter, leaves and wood declined in the gut contents of G. pulex. When G. pulex coexisted with G. d. celticus, the pattern of gut contents did not change in either species. 5. When existing as single‐species populations, G. pulex had a broader range of isotopic signatures, both for δ13C and for δ15N, than the two other species, indicating a more variable diet among individuals. When G. pulex coexisted with either E. berilloni or G. d. celticus, the latter two had similar ranges of δ13C and δ15N, whereas for G. pulex the range was much less for δ13C and δ15N, suggesting a less diverse diet. 6. Our results infer two different modes of coexistence between native and non‐native amphipods. We have shown that the native species, which coexist stably, appear to show interference competition, leading to spatial habitat segregation, whereas competition for food and possible intraguild predation by G. pulex on G. d. celticus would explain why the distribution and density of the latter is affected by G. pulex. However, since all the species have a similar diet and feeding habit, we expect no great overall effect on ecosystem processes as a consequence of species interactions and displacements.  相似文献   

9.
Yellow crazy ants (Anoplolepis gracilipes) threaten invertebrates on many tropical islands, but little work has been done in continental ecosystems. We found 4.4–16.0 times more cruiser butterfly caterpillars were attacked in Australian rain forest sites with A. gracilipes than in native ant sites, and extrafloral nectar had little influence.  相似文献   

10.

Background

Invasive predators may change the structure of invaded communities through predation and competition with native species. In Europe, the invasive signal crayfish Pacifastacus leniusculus is excluding the native white clawed crayfish Austropotamobius pallipes.

Methodology and Principal Findings

This study compared the predatory functional responses and prey choice of native and invasive crayfish and measured impacts of parasitism on the predatory strength of the native species. Invasive crayfish showed a higher (>10%) prey (Gammarus pulex) intake rate than (size matched) natives, reflecting a shorter (16%) prey handling time. The native crayfish also showed greater selection for crustacean prey over molluscs and bloodworm, whereas the invasive species was a more generalist predator. A. pallipes parasitised by the microsporidian parasite Thelohania contejeani showed a 30% reduction in prey intake. We suggest that this results from parasite-induced muscle damage, and this is supported by a reduced (38%) attack rate and increased (30%) prey handling time.

Conclusions and Significance

Our results indicate that the per capita (i.e., functional response) difference between the species may contribute to success of the invader and extinction of the native species, as well as decreased biodiversity and biomass in invaded rivers. In addition, the reduced predatory strength of parasitized natives may impair their competitive abilities, facilitating exclusion by the invader.  相似文献   

11.
Aquarium experiments were used to study indications of interference competition, such as substratum choice shifts, swimming activities and mortality of invasive and indigenous gammarids in each other's presence. The more recent invaders Gammarus tigrinus and Dikerogammarus villosus were more likely to prefer stone substratum, whereas the native Gammarus pulex and an earlier invader Gammarus roeseli were found more frequently in the water layer. Sand was the least likely substratum to be chosen by any of the species. G. pulex and G. roeseli did not alter their substratum preference in each other's presence. In the presence of D. villosus, G. pulex shifted towards smaller stones and increased its swimming activities, whereas D. villosus did not change its behaviour in the presence of G. pulex. These shifts may indicate interference competition, with D. villosus being the stronger competitor. The greatest shifts in substratum preference arose when one species had occupied a substratum before the other one was introduced, especially when D. villosus was already present before G. pulex was introduced, possibly indicating pre-emptive competition. Swimming activities of G. pulex increased in the presence of D. villosus, whereas D. villosus spent little time swimming. Mortality was comparable between the different experiments without any indication of predation. The effect of Intra Guild Predation (IGP) may not be reflected adequately by short-time experiments as moults occurred seldom during the experiments. Although no IGP was observed during our experiments, habitat shifts occurred, which may indicate that competitive interactions are apparent before IGP starts. Such shifts may serve to avoid intraguild competition.  相似文献   

12.
Experimental field and laboratory studies indicate that Cerithidea californica, a native mud snail, is restricted to only a portion of its normal habitat range in San Francisco Bay as a result of direct interactions with an introduced ecological equivalent, Ilyanassa obsoleta. The native snail typically inhabits marsh pans, tidal creeks and mudflats in estuaries along the Pacific coast. However, in San Francisco Bay it is confined to pans for most of the year, while the non-native snail inhabits the creeks and mudflats. Experiments and field monitoring demonstrate that this abnormal distribution pattern is caused by 1) interference competition for space in the form of an adult-adult behavioral avoidance by C. californica in the presence of invading I. obsoleta, and 2) predation by I. obsoleta on the eggs and juveniles of C. californica. The competitive exclusion of C. californica by I. obsoleta has not led to the extinction of the native snail because of the existence of a refuge for C. californica in pan habitats, beyond the physiological tolerances of I. obsoleta. As a consequence of the seasonal migrations of both species and changes in abiotic factors along the habitat gradient, repeated competitive displacements, rather than a one-time competitive exclusion, are observed between these two species. This is the first documented case of the competitive displacement of an endemic marine intertidal species by an introduced ecological equivalent.  相似文献   

13.
14.
There is growing concern that global environmental change might exacerbate the ecological impacts of invasive species by increasing their per capita effects on native species. However, the mechanisms underlying such shifts in interaction strength are poorly understood. Here, we test whether ocean acidification, driven by elevated seawater pCO2, increases the susceptibility of native Olympia oysters to predation by invasive snails. Oysters raised under elevated pCO2 experienced a 20% increase in drilling predation. When presented alongside control oysters in a choice experiment, 48% more high-CO2 oysters were consumed. The invasive snails were tolerant of elevated CO2 with no change in feeding behaviour. Oysters raised under acidified conditions did not have thinner shells, but were 29–40% smaller than control oysters, and these smaller individuals were consumed at disproportionately greater rates. Reduction in prey size is a common response to environmental stress that may drive increasing per capita effects of stress-tolerant invasive predators.  相似文献   

15.
Since its introduction, Anolis sagrei (Sauria: Polychrotidae) has been replacing native A. carolinensis in Florida and native A. conspersus in Grand Cayman Island as the common anole of urban environments and other open habitats. To assess the likelihood that predation of juvenile native anoles by A. sagrei adults is an important interaction in this process, the propensities for intraguild predation and cannibalism were assessed for A. sagrei and A. carolinensis in Florida and for A. sagrei and A. conspersus in Grand Cayman. Predation experiments were conducted in cages, using freshly captured lizards, in which adult males of each species were presented with conspecific and heterospecific juveniles. Adult A. sagrei were (1) significantly more likely to eat juveniles than were adult A. carolinensis or A. conspersus, and (2) significantly more likely to eat heterospecific than conspecific juveniles, whereas adult A. carolinensis and A. conspersus were not. Thus, the propensity for intraguild predation is asymmetrical in favor of introduced A. sagrei in Florida and Grand Cayman. Further study is needed, however, to determine the importance of intraguild predation under field conditions. Received: 14 July 1999 / Accepted: 6 March 2000  相似文献   

16.
Body size differences can impact the strength and type of interaction among and within species. This study examines the effect of body size differences on intraguild predation (IGP) and cannibalism in regulating the relative abundance of two species of temperate marine amphipods throughout a season. Intraguild predation was asymmetrical, with primarily Jassa marmorata preying on Apocorophium acutum (with little predation by A. acutum on J. marmorata). Intraguild predation increased significantly as body size difference increased. Cannibalism in J. marmorata was only significant among individuals of different body sizes. Tube building by A. acutum was also found to be effective in protecting against IGP, especially in the presence of large J. marmorata. Experimental results suggest an ontogenetic niche shift occurs in J. marmorata, which may provide a potential explanation for observed patterns of abundance in a natural population.  相似文献   

17.
In North America there is conflicting evidence concerning whether the invasive Asian clam, Corbicula fluminea, and native mussels (Unionidae), can successfully co-exist. One reason underlying disparate conclusions may be the different spatial scales at which data have been collected. We compared the distribution and abundance of native unionid mussels and Corbicula at two spatial scales, stream reaches and 0.25 m2 patches, within one biogeographic region, the Ouachita Highlands, of the south central U.S. We found that Corbicula abundance was negatively related to native mussel abundance at small spatial scales. While Corbicula densities varied widely in patches without native mussels, and in patches where mussels occurred at low abundance, Corbicula density was never high in patches where mussels were dense. We hypothesize that the likelihood of successful Corbicula invasion decreases with increasing abundance of adult native mussels. Several mechanisms may potentially drive this pattern including lack of space for Corbicula to colonize, physical displacement by actively burrowing mussels, and locally reduced food resources in patches where native mussels are feeding. In addition, Corbicula may be unable to withstand environmental bottlenecks as readily as unionids. When patch-scale density and biomass information were pooled to represent entire stream reaches, the negative relationship between native mussels and Corbicula was no longer as apparent, and there was not a significant relationship between native mussels and Corbicula. These results point to the importance of appropriate sample scale in examining potential associations between species.  相似文献   

18.
19.
20.
Coccinellid communities across North America have experienced significant changes in recent decades, with declines in several native species reported. One potential mechanism for these declines is interference competition via intraguild predation; specifically, increased predation of native coccinellid eggs and larvae following the introduction of exotic coccinellids. Our previous studies have shown that agricultural fields in Michigan support a higher diversity and abundance of exotic coccinellids than similar fields in Iowa, and that the landscape surrounding agricultural fields across the north central U.S. influences the abundance and activity of coccinellid species. The goal of this study was to quantify the amount of egg predation experienced by a native coccinellid within Michigan and Iowa soybean fields and explore the influence of local and large-scale landscape structure. Using the native lady beetle Coleomegilla maculata as a model, we found that sentinel egg masses were subject to intense predation within both Michigan and Iowa soybean fields, with 60.7% of egg masses attacked and 43.0% of available eggs consumed within 48 h. In Michigan, the exotic coccinellids Coccinella septempunctata and Harmonia axyridis were the most abundant predators found in soybean fields whereas in Iowa, native species including C. maculata, Hippodamia parenthesis and the soft-winged flower beetle Collops nigriceps dominated the predator community. Predator abundance was greater in soybean fields within diverse landscapes, yet variation in predator numbers did not influence the intensity of egg predation observed. In contrast, the strongest predictor of native coccinellid egg predation was the composition of edge habitats bordering specific fields. Field sites surrounded by semi-natural habitats including forests, restored prairies, old fields, and pasturelands experienced greater egg predation than fields surrounded by other croplands. This study shows that intraguild predation by both native and exotic predators may contribute to native coccinellid decline, and that landscape structure interacts with local predator communities to shape the specific outcomes of predator-predator interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号