首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of actin cytoskeleton disruption by cytochalasin D and latrunculin A on Ca2+ signals evoked by ADP, UTP or thapsigargin were investigated in glioma C6 cells. Despite the profound alterations of the actin cytoskeleton architecture and cell morphology, ADP and UTP still produced cytosolic calcium elevation in this cell line. However, calcium mobilization from internal stores and Ca2+ influx through store-operated Ca2+ channels induced by ADP and UTP were strongly reduced. Cytochalasin D and latrunculin A also diminished extracellular Ca2+ influx in unstimulated glioma C6 cells previously incubated in Ca2+ free buffer. In contrast, the disruption of the actin cytoskeleton had no effect on thapsigargin-induced Ca2+ influx in this cell line. Both agonist- and thapsigargin-generated Ca2+ entry was significantly decreased by the blocker of store-operated Ca2+ channels, 2-aminoethoxydiphenylborate. The data reveal that two agonists and thapsigargin activate store-operated Ca2+ channels but the mechanism of activation seems to be different. While the agonists evoke a store-mediated Ca2+ entry that is dependent on the actin cytoskeleton, thapsigargin apparently activates an additional mechanism, which is independent of the disruption of the cytoskeleton.  相似文献   

2.
The thiol reagent, thimerosal, has been shown to cause an increase in intracellular Ca2+ concentration ([Ca2+]i) in several cell types, and to cause Ca2+ spikes in unfertilized hamster eggs. Using single cell video-imaging we have shown that thimerosal evokes repetitive Ca2+ spikes in intact Fura-2-loaded HeLa cells that were similar in shape to those stimulated by histamine. Both thimerosal- and histamine-stimulated Ca2+ spikes occurred in the absence of extracellular (Ca2+ o), suggesting that they result from mobilization of Ca2+ from intracellular stores. Whereas histamine stimulated formation of inositol phosphates, thimerosal, at concentrations that caused sustained Ca2+ spiking, inhibited basal and histamine-stimulated formation of inositol phosphates. Thimerosal-evoked Ca2+ spikes are therefore not due to the stimulated production of inositol 1,4,5-trisphosphate (InsP3). The effects of thimerosal on Ca2+ spiking were probably due to alkylation of thiol groups on intracellular proteins because the spiking was reversed by the thiol-reducing compound dithiothreitol, and the latency between addition of thimerosal and a rise in [Ca2+]i was greatly shortened in cells where the intracellular reduced glutathione concentration had been decreased by preincubation with DL-buthionine (S,R)-sulfoximine. In permeabilized cells, thimerosal caused a concentration-dependent inhibition of Ca2+ accumulation, which was entirely due to inhibition of Ca2+ uptake into stores because thimerosal did not affect unidirectional 45Ca2+ efflux from stores preloaded with 45Ca2+. Thimerosal also caused a concentration-dependent sensitization of InsP3-induced Ca2+ mobilization: half-maximal mobilization of Ca2+ stores occurred with 161 +/- 20 nM InsP3 in control cells and with 62 +/- 5 nM InsP3 after treatment with 10 microM thimerosal. We conclude that thimerosal can mimic the effects of histamine on intracellular Ca2+ spiking without stimulating the formation of InsP3 and, in light of our results with permeabilized cells, suggest that thimerosal stimulates spiking by sensitizing cells to basal InsP3 levels.  相似文献   

3.
The possibility that inositol 1,4,5-trisphosphate (IP3) may act as a Ca2+-mobilizing second messenger in cardiac muscle in a manner analogous to its actions in other cell types has been examined using saponin-permeabilized myocytes and isolated cardiac sarcoplasmic reticulum. Myocytes permeabilized in the presence of MgATP2- sequestered Ca2+ to a level of about 200 nM, similar to the cytosolic free Ca2+ concentration of intact cells, but addition of IP3 was ineffective in causing Ca2+ release from intracellular stores. Similarly, IP3 (up to 50 microM) was unable to inhibit Ca2+ uptake or cause Ca2+ release from isolated canine cardiac sarcoplasmic reticulum vesicles in the presence of either EGTA or sodium vanadate. These results indicate that IP3 is unlikely to mediate mobilization of intracellular Ca2+ stores in myocardial cells.  相似文献   

4.
The origin and amount of mobilized Ca2+ in chemotactic peptide-stimulated guinea pig neutrophils were examined using biochemical techniques. The total amount of releasable Ca2+ by 20 microM A23187 from the unstimulated intact cells was 0.91 nmol/4 X 10(6) cells, as assessed by change in absorbance of the antipyrylazo III-Ca2+ complex. Two types of internal vesicular Ca2+ pool, mitochondrial and non-mitochondrial pool were identified in the saponin-permeabilized cells. The total amount of releasable Ca2+ was comparable to that accumulated by the non-mitochondrial pool at (1-2) X 10(-7) M of a free Ca2+ concentration. The mitochondrial uncoupler, capable of releasing Ca2+ from the mitochondrial pool, neither modified the basal cytosolic free Ca2+ in quin 2-loaded cells nor caused a Ca2+ efflux from the intact cells. These results suggest that the releasable Ca2+ may be located in the non-mitochondrial pool of unstimulated intact cells, and the mitochondrial pool contains little releasable Ca2+. The addition of fMet-Leu-Phe increased the cytosolic free Ca2+ by two processes: Ca2+ mobilization from internal stores and Ca2+ influx through the surface membrane. The Ca2+ mobilized and effluxed from the intact cells by stimulation with the maximal doses of fMet-Leu-Phe was estimated to be 0.27 nmol/4 X 10(6) cells. Almost equal amounts were released by the maximal doses of inositol 1,4,5-trisphosphate from the non-mitochondrial pool of saponin-treated cells that had accumulated Ca2+ at a free Ca2+ concentration of 1.4 X 10(-7) M. The mechanism related to the Ca2+ influx by fMet-Leu-Phe stimulation was also examined. The addition of nifedipine or phosphatidic acid did not affect the change in the cytosolic free Ca2+ induced by fMet-Leu-Phe, thereby suggesting that the receptor-mediated Ca2+ channel may be involved in the Ca2+ influx.  相似文献   

5.
The role of intracellular Ca2+ stores and capacitative Ca2+ entry on EGF-induced cell proliferation was investigated in mouse mammary epithelial cells. We have previously demonstrated that EGF enhances Ca2+ mobilization (release of Ca2+ from intracellular Ca2+ stores) and capacitative Ca2+ entry correlated with cell proliferation in mouse mammary epithelial cells. To confirm their role on EGF-induced cell cycle progression, we studied the effects of 2,5-di-tert-butylhydroquinone (DBHQ), a reversible inhibitor of the Ca2+ pump of intracellular Ca2+ stores, and SK&F 96365, a blocker of capacitative Ca2+ entry, on mitotic activity induced by EGF. Mitotic activity was examined using an antibody to PCNA for immunocytochemistry. SK&F 96365 inhibited capacitative Ca2+ entry in a dose-dependent manner (I50: 1-5 microM). SK&F 96365 also inhibited EGF-induced cell proliferation in the same range of concentration (I50: 1-5 microM). DBHQ suppressed [Ca2+]i response to UTP and thus depleted completely Ca2+ stores at 5 microM. DBHQ also inhibited EGF-induced cell proliferation at an I50 value of approximately 10 microM. The removal of these inhibitors from the culture medium increased the reduced mitotic activity reversibly. Using a fluorescent assay of DNA binding of ethidium bromide, no dead cells were detected in any of the cultures. These results indicate that the inhibitory effects of SK&F 96365 and DBHQ on cell proliferation were due to the inhibition of capacitative Ca2+ entry and Ca2+ mobilization suggesting the importance of capacitative Ca2+ entry and Ca2+ mobilization in the control of EGF-induced cell cycle progression in mouse mammary epithelial cells.  相似文献   

6.
A correlated electrophysiological and light microscopic evaluation of trichocyst exocytosis was carried out the Paramecium cells which possess extensive cortical Ca stores with footlike links to the plasmalemma. We used not only intra- but also extracellular recordings to account for polar arrangement of ion channels (while trichocysts can be released from all over the cell surface). With three widely different secretagogues, aminoethyldextran (AED), veratridine and caffeine, similar anterior Nain and posterior Kout currents (both known to be Ca(2+)-dependent) were observed. Direct de- or hyperpolarization induced by current injection failed to trigger exocytosis. For both, exocytotic membrane fusion and secretagogue-induced membrane currents, sensitivity to or availability of Ca2+ appears to be different. Current responses to AED were blocked by W7 or trifluoperazine, while exocytosis remained unaffected. Reducing [Ca2+]o to < or = 0.16 microM (i.e., resting [Ca2+]i) suppressed electrical membrane responses triggered with AED, while we had previously documented normal exocytotic membrane fusion. From this we conclude that the primary effect of AED (as of caffeine) is the mobilization of Ca2+ from the subplasmalemmal pools which not only activates exocytosis (abolished by iontophoretic EGTA injection) but secondarily also spatially segregated plasmalemmal Ca(2+)-dependent ion channels (indicative of subplasmalemmal [Ca2+]i increase, but irrelevant for Ca2+ mobilization). The 45Ca2+ influx previously observed during AED triggering may serve to refill depleted stores. Apart from the insensitivity of our system to depolarization, the mode of direct Ca2+ mobilization from stores by mechanical coupling to the cell membrane (without previous Ca(2+)-influx from outside) closely resembles the model currently discussed for skeletal muscle triads.  相似文献   

7.
Effects of Ca2+ ions on the mobilization of Ca2+ from intracellular stores of intact and permeabilized (15 microM digitonin) Ehrlich ascites tumour cells (EATC) have been compared. For permeabilized cells, the dependences of the initial rate and amplitude of Ca2+ mobilization evoked by the addition of 100 nM inositol 1,4,5-trisphosphate (IP3) on preexisting [Ca2+] were bell-shaped within a [Ca2+] range 10(-7)-10(-6) M with the maxima at [Ca2+] = 166 nM. In intact cells, different concentrations of free cytosolic Ca2+ ([Ca2+]i) were produced using low (up to 0.005%) concentrations of digitonin which selectively increased the permeability of the plasma membrane. Stimulation of cells by exogenous ATP at [Ca2+]i = 10(-8)-10(-6) M resulted in Ca2+ mobilization the rate and amplitude of which were maximal at 102-115 nM Ca2+. The experimental Ca2+ dependences were fit by a model which includes channel opening upon Ca2+ binding and transition to the inactive states upon Ca2+ binding to the closed and open channel forms. Three inactivation types (including two particular cases) demonstrate a slight priority of inhibitory binding of Ca2+ only to the open channel, but predict markedly different parameter values. We conclude that an increase in [Ca2+] can stimulate IP3-induced mobilization, but in intact EATC, deviations of [Ca2+]i from the resting level (about 100 nM) attenuate responses to the agonist stimulation.  相似文献   

8.
Previous studies have demonstrated that stimulation of phospholipase C-linked G-protein-coupled receptors, including muscarinic M1 and M3 receptors, increases the release of the soluble form of amyloid precursor protein (sAPPalpha) by alpha-secretase cleavage. In this study, we examined the involvement of capacitative Ca2+ entry (CCE) in the regulation of muscarinic acetylcholine receptor (mAChR)-dependent sAPPalpha release in neuroblastoma SH-SY5Y cells expressing abundant M3 mAChRs. The sAPPalpha release stimulated by mAChR activation was abolished by EGTA, an extracellular Ca2+ chelator, which abolished mAChR-mediated Ca2+ influx without affecting Ca2+ mobilization from intracellular stores. However, mAChR-mediated sAPPalpha release was not inhibited by thapsigargin, which increases basal [Ca2+]i by depletion of Ca2+ from intracellular stores. While these results indicate that the mAChR-mediated increase in sAPPalpha release is regulated largely by Ca2+ influx rather than by Ca2+ mobilization from intracellular stores, we further investigated the Ca2+ entry mechanisms regulating this phenomenon. CCE inhibitors such as Gd3+, SKF96365, and 2-aminoethoxydiphenyl borane (2-APB), dose dependently reduced both Ca2+ influx and sAPPalpha release stimulated by mAChR activation, whereas inhibition of voltage-dependent Ca2+ channels, Na+/Ca2+ exchangers, or Na+-pumps was without effect. These results indicate that CCE plays an important role in the mAChR-mediated release of sAPPalpha.  相似文献   

9.
Earlier studies established that adenylyl cyclase in NCB-20 cell plasma membranes is inhibited by concentrations of Ca2+ that are achieved in intact cells. The present studies were undertaken to prove that agents such as bradykinin and ATP, which elevate the cytosolic Ca2+ concentration ([Ca2+]i) from internal stores in NCB-20 cells, could inhibit cyclic AMP (cAMP) accumulation as a result of their mobilization of [Ca2+]i and not by other mechanisms. Both bradykinin and ATP transiently inhibited [3H]cAMP accumulation in parallel with their transient mobilization of [Ca2+]i. The [Ca2+]i rise stimulated by bradykinin could be blocked by treatment with thapsigargin; this thapsigargin treatment precluded the inhibition of cAMP accumulation mediated by bradykinin (and ATP). A rapid rise in [Ca2+]i, as elicited by bradykinin, rather than the slow rise evoked by thapsigargin was required for inhibition of [3H]cAMP accumulation. Desensitization of protein kinase C did not modify the inhibitory action of bradykinin on [3H]cAMP. Effects of Ca2+ on phosphodiesterase were also excluded in the present studies. The accumulated data are consistent with the hypothesis that hormonal mobilization of [Ca2+]i leads directly to the inhibition of cAMP accumulation in these cells and presumably in other cells that express the Ca(2+)-inhibitable form of adenylyl cyclase.  相似文献   

10.
Stimulation of washed human platelets with alpha-thrombin was accompanied by aggregation, formation of inositol phosphates and phosphatidic acid, liberation of arachidonic acid, mobilization of intracellular Ca2+ stores, and influx of Ca2+ from the extracellular medium. Each of these responses was potentiated by a short pretreatment with epinephrine, although alone this agent was ineffective. A prolonged (5 min) stimulation with alpha-thrombin desensitized both phospholipase C and Ca2+ mobilization to a further thrombin challenge. Epinephrine added following thrombin desensitization restored both the ability of thrombin to release Ca2+ stores and stimulate inositol phospholipid hydrolysis. Resensitization was mediated by alpha 2-adrenergic receptors and lasted about 3 min, after which the Ca2+ levels returned again to basal levels. Pretreatment of platelets with phorbol dibutyrate at concentrations which specifically activate protein kinase C increased the rate of desensitization of the thrombin-induced release of Ca2+ stores and abolished the ability of epinephrine to restore the thrombin response. The protein kinase C inhibitor, staurosporine, blocked the inhibitory effect of phorbol ester and also reduced the rate of desensitization of thrombin and subsequent epinephrine action. These results suggest that thrombin activation of protein kinase C phosphorylates and inactivates a signaling protein which is common to both thrombin and alpha 2-adrenergic receptors. This protein is involved in thrombin stimulation of phospholipase C but is not directly stimulatory since epinephrine alone does not activate this enzyme. We searched for a known second messenger protein common to both thrombin and alpha 2-adrenergic receptors which was phosphorylated in intact platelets by protein kinase C in parallel with thrombin-induced desensitization. The alpha subunit of the inhibitory GTP-binding protein, Gi, was the only candidate which fulfilled all of these criteria as shown by immunoprecipitation. Therefore, we suggest that alpha i maintains the thrombin receptor in a state which can couple to phospholipase C when activated with thrombin. This permissive state of alpha i is blocked by phosphorylation by thrombin-activated protein kinase C.  相似文献   

11.
A rise in the cytosolic free Ca2+ concentration due to both mobilization of Ca2+ from internal stores and influx of extracellular Ca2+ across the plasma membrane through 'second messenger-operated Ca2+ channels' is one of the first transmembrane signals detected following activation of CD2 or CD3 receptors on T-cells. In this study, we have further elucidated the regulation of these channels in the human T-leukemic cell line, JURKAT. Stimulation with either OKT3 or PHA induced a prompt influx of Ca2+ as assessed by MN2+ quenching of intracellular fura-2 fluorescence. When cytosolic free Ca2+ transient was partially buffered by loading the cells with BAPTA, neither agonist could induce Ca2+ entry into the cells as depicted by the lack of quenching of the fluorescence signal by Mn2+. This is in good agreement with our previous data on agonist-induced 45Ca2+ influx demonstrating that a rise in cytosolic free Ca2+ due to agonist-induced mobilization of Ca2+ from intracellular stores, could, directly or indirectly via the inositol cycle, initiate Ca2+ influx in these cells. Further support of this idea comes from the data demonstrating that agonist-induced mobilization of Ca2+ precedes the influx of Ca2+ across the plasma membrane. The present findings show that agonist-stimulation significantly increased the levels of Ins(1,4,5)P3 and Ins(1,3,4,5)P4 after only 5 s, indicating that one or both of these substances could play a role in the regulation of Ca2+ influx. However, when agonist-induced Mn2+ influx was totally abolished, by partially buffering the cytosolic free Ca2+ rise, the formation of Ins(1,4,5)P3 and Ins(1,3,4,5)P4 was not affected. Consequently, the dependence of an initial rise in cytosolic free Ca2+ for the subsequent regulation of Ca2+ influx across the plasma membrane, can be dissociated from the formation of both Ins(1,4,5)P3 and Ins(1,3,4,5)P4.  相似文献   

12.
Though only actual local free Ca2+ concentrations, [Ca2+], rather than total Ca concentrations, [Ca], govern cellular responses, analysis of total calcium fluxes would be important to fully understand the very complex Ca2+ dynamics during cell stimulation. Using Paramecium cells we analyzed Ca2+ mobilization from cortical stores during synchronous (< or = 80 ms) exocytosis stimulation, by quenched-flow/cryofixation, freeze-substitution (modified for Ca retention) and X-ray microanalysis which registers total calcium concentrations, [Ca]. When the extracellular free calcium concentration, [Ca2+]e, is adjusted to approximately 30 nM, i.e. slightly below the normal free intracellular calcium concentration, [Ca2+]i = 65 nM, exocytosis stimulation causes release of 52% of calcium from stores within 80 ms. At higher extracellular calcium concentration, [Ca2+]e = 500 microM, Ca2+ release is counterbalanced by influx into stores within the first 80 ms, followed by decline of total calcium, [Ca], in stores to 21% of basal values within 1 s. This includes the time required for endocytosis coupling (350 ms), another Ca2+-dependent process. To confirm that Ca2+ mobilization from stores is superimposed by rapid Ca2+ influx and/or uptake into stores, we substituted Sr2+ for Ca2+ in the medium for 500 ms, followed by 80 ms stimulation. This reveals reduced Ca signals, but strong Sr signals in stores. During stimulation, Ca2+ is spilled over preformed exocytosis sites, particularly with increasing extracellular free calcium, [Ca2+]e. Cortically enriched mitochondria rapidly gain Ca signals during stimulation. Balance calculations indicate that total Ca2+ flux largely exceeds values of intracellular free calcium concentrations locally required for exocytosis (as determined previously). Our approach and some of our findings appear relevant also for some other secretory systems.  相似文献   

13.
We have studied the role of the actin cytoskeleton in bombesin-induced inositol 1,4,5-trisphosphate (IP(3))-production and Ca(2+)release in the pancreatic acinar tumour cell line AR4-2J. Intracellular and extracellular free Ca(2+)concentrations were measured in cell suspensions, using Fura-2. Disruption of the actin cytoskeleton by pretreatment of the cells with latrunculin B (10 microM), cytochalasin D (10 microM) or toxin B from Clostridium difficile (20 ng/ml) for 5-29 h led to inhibition of both, bombesin-stimulated IP(3)-production and Ca(2+)release. The toxins had no effect on binding of bombesin to its receptor, on Ca(2+)uptake into intracellular stores and on resting Ca(2+)levels. Ca(2+)mobilization from intracellular stores, induced by thapsigargin (100 nM) or IP(3)(1 microM) was not impaired by latrunculin B. In latrunculin B-pretreated cells inhibition of both, bombesin-stimulated IP(3)- production and Ca(2+)release was partly suspended in the presence of aluminum fluoride, an activator of G-proteins. Aluminum fluoride had no effect on basal IP(3)and Ca(2+)levels of control and toxin-pretreated cells. We conclude that disruption of the actin cytoskeleton impairs coupling of the bombesin receptor to its G-protein, resulting in inhibition of phospholipase C-activity with subsequent decreases in IP(3)-production and Ca(2+)release.  相似文献   

14.
It has previously been shown that, in pituitary gonadotrope cells, the initial rise in cytosolic Ca2+ induced by GnRH is due to a Ca2+ mobilization from intracellular stores. This raises the possibility that the initial transient spike phase of LH release might be fully or partially independent of extracellular Ca2+. We have therefore characterized the extracellular Ca2+ requirements, and the sensitivity to Ca2+ channel blockers, of the spike and plateau phases of secretion separately. In the absence of extracellular Ca2+ the spike and plateau phases were inhibited by 65 +/- 4% and 106 +/- 3%, respectively. Both phases exhibited a similar dependence on concentration of extracellular Ca2+. However, voltage-sensitive Ca2+ channel blockers D600 and nifedipine had a negligible effect on the spike phase, while inhibiting the plateau phase by approximately 50%. In contrast, ruthenium red, Gd3+ ions, and Co2+ ions inhibited both spike and plateau phases to a similar extent as removal of extracellular Ca2+. A fraction (35 +/- 4%) of spike phase release was resistant to removal of extracellular Ca2+. This fraction was abolished after calcium depletion of the cells by preincubation with EGTA in the presence of calcium ionophore A23187, indicating that it depends on intracellular Ca2+ stores. Neither absence of extracellular Ca2+, nor the presence of ruthenium red or Gd3+ prevented mobilization of 45Ca2+ from intracellular stores by GnRH. We conclude that mobilization of intracellular stored Ca2+ is insufficient by itself to account for full spike phase LH release.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
To determine whether lysophospholipids mobilize cellular Ca2+, intact rat islets were prelabelled with 45Ca2+ and subjected to three maneuvers designed to simulate the physiologic accumulation of lysophospholipids: (1) exogenous provision; (2) addition of porcine pancreatic phospholipase A2; and (3) provision of p-hydroxymercuribenzoic acid, which impedes both the reacylation and hydrolysis of endogenous lysophospholipids, leading to their accumulation in islets. Each maneuver provoked 45Ca2+ efflux at concentrations nearly identical to those previously reported to induce insulin release in the absence of toxic effects on the islets. Lysophosphatidylcholine (lysoPC) and lysophosphatidylinositol were active, whereas the ethanolamine and serine derivatives, and lysophosphatidic acid, were much less effective. The effects of lysoPC were reversible; they also were reduced by lanthanum or gentamicin (which are probes of superficial, plasma membrane-bound stores of Ca2+) or by prior depletion of membrane-bound cellular Ca2+ stores using ionomycin, but not by removal of extracellular Ca2+ or Na+. The effects of lysoPC, phospholipase A2 and p-hydroxymercuribenzoic acid were largely independent of any hydrolysis to, or accumulation of, free fatty acids as assessed by resistance to dantrolene or trifluoperazine (which selectively reduce arachidonic acid-induced 45Ca2+ efflux and insulin release). Thus, lysophospholipids are a newly recognized class of lipid mediators which may promote insulin release at least in part via mobilization of a pool(s) of Ca2+ ('trigger Ca2+') bound in the plasma membrane and possibly in other cellular membranes.  相似文献   

16.
The mechanisms by which endothelin-1 (ET-1) and endothelin-3 (ET-3) stimulate Ca2+ mobilization were investigated in rat aortic smooth muscle cells. Both ET-1 and ET-3 potently stimulated mobilization of Ca2+ from intracellular stores, however only ET-1-stimulated Ca2+ mobilization appeared to occur as a consequence of an elevation in cellular inositol trisphosphate (IP3) concentration. Neomycin, an inhibitor of phospholipase C, inhibited both the increase in [3H]IP3 formation and the mobilization of Ca2+ induced by ET-1, however it did not affect Ca2+ mobilization induced by ET-3. Together these findings indicate that ET-1 stimulates Ca2+ mobilization via an increase in IP3, whereas the effect of ET-3 appears to be mediated by a separate, IP3-independent signalling pathway.  相似文献   

17.
Regulatory role of prolactin (PRL) on Ca2+ mobilization in human mammary gland cell line MCF-7 was examined. Direct addition of PRL did not affect cytoplasmic Ca2+ concentration ([Ca2+]i); however, treatment with PRL for 24h significantly decreased the peak level and duration time of [Ca2+]i elevation evoked by ATP or thapsigargin (TG). Intracellular Ca2+ release by IP3 or TG in permeablized cells was not decreased after PRL-treatment, indicating that the Ca2+ release was not impaired by PRL treatment. Extracellular Ca2+ entry evoked by ATP or TG was likely to be intact, because entry of extracellular Ba2+ was not affected by PRL treatment. Among Ca2+-ATPases expressed in MCF-7 cells, we found significant increase of secretory pathway Ca2+-ATPase type 2 (SPCA2) mRNA in PRL-treated cells by RT-PCR experiments including quantitative RT-PCR. Knockdown of SPCA2 by siRNA in PRL-treated cells showed similar Ca2+ mobilization to that in PRL-untreated cells. The present results suggest that PRL facilitates Ca2+ transport into Golgi apparatus and may contribute the supply of Ca2+ to milk.  相似文献   

18.
Inositol 1,4,5-trisphosphate (InsP3)-induced Ca2+ release from intracellular stores displays complex kinetic behavior. While it well established that cytosolic [Ca2+] can modulate release by acting on the InsP3 receptor directly, the role of the filling state of internal Ca2+stores in modulating Ca2+ release remains unclear. Here we have reevaluated this topic using a technique that permits rapid and reversible changes in free [Ca2+] in internal stores of living intact cells without altering cytoplasmic [Ca2+], InsP3 receptors, or sarcoendoplasmic reticulum Ca2+ ATPases (SERCAs). N,N,N',N'-Tetrakis(2-pyridylmethyl)ethylene diamine (TPEN), a membrane-permeant, low affinity Ca2+ chelator was used to manipulate [Ca2+] in intracellular stores, while [Ca2+] changes within the store were monitored directly with the low-affinity Ca2+ indicator, mag-fura-2, in intact BHK-21 cells. 200 microM TPEN caused a rapid drop in luminal free [Ca2+] and significantly reduced the extent of the response to stimulation with 100 nm bradykinin, a calcium-mobilizing agonist. The same effect was observed when intact cells were pretreated with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid(acetoxymethyl ester) (BAPTA-AM) to buffer cytoplasmic [Ca2+] changes. Although inhibition of Ca2+ uptake using the SERCA inhibitor tBHQ permitted significantly larger release of Ca2+ from stores, TPEN still attenuated the release in the presence of tBHQ in BAPTA-AM-loaded cells. These results demonstrate that the filling state of stores modulates the magnitude of InsP3-induced Ca2+release by additional mechanism(s) that are independent of regulation by cytoplasmic [Ca2+] or effects on SERCA pumps.  相似文献   

19.
Properties of different Ca2+ pools in permeabilized rat thymocytes   总被引:1,自引:0,他引:1  
The regulation of free Ca2+ concentration by intracellular pools and their participation in the mitogen-induced changes of the cytosolic free Ca2+ concentration, [Ca2+]i, was studied in digitonin-permeabilized and intact rat thymocytes using a Ca2+-selective electrode, chlortetracycline fluorescence and the Ca2+ indicator quin-2. It is shown that in permeabilized thymocytes Ca2+ can be accumulated by two intracellular compartments, mitochondrial and non-mitochondrial. Ca2+ uptake by the non-mitochondrial compartment, presumably the endoplasmic reticulum, is observed only in the presence of MgATP, is increased by oxalate and inhibited by vanadate. The mitochondria do not accumulate calcium at a free Ca2+ concentration below 1 microM. The non-mitochondrial compartment has a greater affinity for calcium and is capable of sequestering Ca2+ at a free Ca2+ concentration less than 1 microM. At free Ca2+ concentration close to the cytoplasmic (0.1 microM) the main calcium pool in permeabilized thymocytes is localized in the non-mitochondrial compartment. Ca2+ accumulated in the non-mitochondrial pool can be released by inositol 1,4,5-triphosphate (IP3) which has been inferred to mediate Ca2+ mobilization in a number of cell types. Under experimental conditions in which ATP-dependent Ca2+ influx is blocked, the addition of IP3 results in a large Ca2+ release from the non-mitochondrial pool; thus IP3 acts by activation of a specific efflux pathway rather than by inhibiting Ca2+ influx. SH reagents do not prevent IP3-induced Ca2+ mobilization. Addition of the mitochondrial uncouplers, FCCP or ClCCP, to intact thymocytes results in no increase in [Ca2+]i measured with quin-2 tetraoxymethyl ester whereas the Ca2+ ionophore A23187 induces a Ca2+ release from the non-mitochondrial store(s). Thus, the data obtained on intact cells agree with those obtained in permeabilized thymocytes. The mitogen concanavalin A increases [Ca2+]i in intact thymocytes suspended in both Ca2+-containing an Ca2+-free medium. This indicates a mitogen-induced mobilization of an intracellular Ca2+ pool, probably via the IP3 pathway.  相似文献   

20.
The role of pertussis toxin (PT)-sensitive and -insensitive guanine nucleotide-binding proteins (G proteins) in the stimulation of Ca2+ mobilization by thrombin was investigated in cultured rat aortic smooth muscle cells. Characterization using immunoblotting with specific antisera indicated the presence in isolated membranes of the G alpha i2, G alpha i3, G alpha s, G beta 35, and G beta 36 protein subunits as well as a lower molecular weight species of unknown identity. To assess the importance of G proteins in the coupling of thrombin receptors to Ca2+ mobilization, we investigated the effect of PT on Ca2+ responses using fluorescence spectroscopy and the Ca2+ indicator dye Fura-2. Pretreatment of cells for 2 h with PT (1 microgram/ml), which produced 91.3% ADP-ribosylation of PT-sensitive G proteins, did not affect the magnitude of thrombin-induced release of Ca2+ from internal stores, suggesting that the residual 8.7% of PT-sensitive G proteins, or PT-insensitive mechanisms, was responsible for Ca2+ release. However, after an 18-h pretreatment with PT, which produced ADP-ribosylation of the total complement of PT-sensitive G proteins, the thrombin-induced peak Ca2+ response was inhibited by approximately 72%, suggesting that the major fraction of the Ca2+ response was mediated by a slowly ribosylating component. The delayed effect of the toxin was not caused by down-regulation of the beta-subunit of G proteins because quantitative immunoblots showed that levels of the beta-subunit remained constant throughout the period of PT pretreatment. It was also not caused by a reduction in the size of the thrombin-releasable Ca2+ pool because Ca2+ release induced by agents that release Ca2+ directly from internal stores, 2,5-di-tert-butylhydroquinone or thapsigargin, was not affected. In addition, the delayed effect of PT could not be explained in terms of differences in thrombin-induced [3H]inositol trisphosphate (IP3) formation because the level of inhibition of IP3 formation after a 2-h PT treatment was similar to that present after an 18-h pretreatment. The results indicate that a slowly ribosylating PT-sensitive species is the major G protein pathway that couples thrombin-receptor activation to Ca2+ mobilization. This G protein appears to be involved not in the mechanisms that generate IP3 but rather possibly in coupling at the level of the intracellular Ca2+ store.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号