首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Hindlimb unloading (HU) of rats induces a cephalic shift in body fluids. We hypothesized that the putative increase in cranial fluid pressure and decrease in peripheral fluid pressure would alter the morphology of resistance arteries from 2-wk HU male Sprague-Dawley rats. To test this hypothesis, the cerebral basilar, mesenteric, and splenic arteries were removed from control (C) and HU animals. The vessels were cannulated, and luminal pressure was set to 60 cmH(2)O. The resistance arteries were then relaxed with 10(-4) M nitroprusside, fixed, and cut into transverse cross sections (5 microm thick). Media cross-sectional area (CSA), intraluminal CSA, media layer thickness, vessel outer perimeter, and media nuclei number were determined. In the basilar artery, both media CSA (HU 17, 893 +/- 2,539 microm(2); C 12,904 +/- 1,433 microm(2)) and thickness (HU 33.9 +/- 4.1 microm; C 22.3 +/- 3.2 microm) were increased with hindlimb unloading (P < 0.05), intraluminal CSA decreased (HU 7,816 +/- 3,045 microm(2); C 13,469 +/- 5,500 microm(2)) (P < 0.05), and vessel outer perimeter and media nuclei number were unaltered. There were no differences in mesenteric or splenic resistance artery morphology between HU and C rats. These findings suggest that hindlimb unloading-induced increases in cephalic arterial pressure and, correspondingly, increases in circumferential wall stress result in the hypertrophy of basilar artery smooth muscle cells.  相似文献   

2.
Interactions between the biomechanical characteristics and pressure-induced active response of coronary microvessels are still not well known. We tested the hypothesis that pressure-dependent biomechanical characteristics of the coronary vascular wall are modulated by the active myogenic response and local vasodilators. We have utilized data obtained previously in isolated rat intramural coronary arterioles (approximately 100 microm in diameter), in which the diameter was investigated as a function of intraluminal pressure (Szekeres et al.: J. Cardiovasc. Pharmacol., 43, 242-249, 2004). To characterize the magnitude of myogenic response, diameter was expressed as percent of passive diameter as a function of pressure (normalized diameter; ND). In addition, circumferential wall stress (WS) and incremental distensibility (ID) were calculated. In control conditions, after an initial increase between 0-30 mm Hg, ND decreased substantially as pressure increased from 30 to 150 mm Hg. Correspondingly, WS gradually increased as a function of pressure (from 0.3 +/- 0.03 to 34.7 +/- 4.4 kPa) exhibiting a plateau phase between 40-80 mm Hg. In contrast, ID decreased and reached negative values (min: -104.9 +/- 21.9 10(-6) m2/N at 50 mm Hg). Inhibition of nitric oxide (NO) synthase by L-NNA decreased basal diameter (approximately 35% at 2 mm Hg), eliminated pressure-induced changes in ND, reduced the slope of pressure-WS curve, and decreased ID at lower pressures. Simultaneous administration of L-NNA and adenosine (which restored initial diameter, i.e. length of smooth muscle) restored--in part--the pressure-induced reduction in ND, reversed the pressure-induced behavior of WS to control, but not that of ID. These results not only confirm that in coronary arterioles wall stress is regulated by the myogenic response, but also suggest that there is interplay between the mechanical behavior of the wall and the myogenic response. Furthermore, the presence of NO seems to be necessary for maintaining a higher distensibility of intramural coronary arterioles allowing increases in diameter to lower pressures, which then activate the myogenic mechanism resulting in constrictions and full development of myogenic tone, as indicated by the presence of negative slope of pressure-diameter curve in the presence of NO.  相似文献   

3.
BACKGROUND: Robust techniques for characterizing the biomechanical properties of mouse pulmonary arteries will permit exciting gene-level hypotheses regarding pulmonary vascular disease to be tested in genetically engineered animals. In this paper, we present the first measurements of the biomechanical properties of mouse pulmonary arteries. METHOD OF APPROACH: In an isolated vessel perfusion system, transmural pressure, internal diameter and wall thickness were measured during inflation and deflation of mouse pulmonary arteries over low (5-40 mmHg) and high (10-120 mmHg) pressure ranges representing physiological pressures in the pulmonary and systemic circulations, respectively. RESULTS: During inflation, circumferential stress versus strain showed the nonlinear "J"-shape typical of arteries. Hudetz's incremental elastic modulus ranged from 27 +/- 13 kPa (n = 7) during low-pressure inflation to 2,700 +/- 1,700 kPa (n = 9) during high-pressure inflation. The low and high-pressure testing protocols yielded quantitatively indistinguishable stress-strain and modulus-strain results. Histology performed to assess the state of the tissue after mechanical testing showed intact medial and adventitial architecture with some loss of endothelium, suggesting that smooth muscle cell contractile strength could also be measured with these techniques. CONCLUSIONS: The measurement techniques described demonstrate the feasibility of quantifying mouse pulmonary artery biomechanical properties. Stress-strain behavior and incremental modulus values are presented for normal, healthy arteries over a wide pressure range. These techniques will be useful for investigations into biomechanical abnormalities in pulmonary vascular disease.  相似文献   

4.
Dynamic capacitance of epicardial coronary arteries in vivo   总被引:2,自引:0,他引:2  
The dynamic capacitance of epicardial coronary arteries (i.d. greater than or equal to 0.4 mm) in vivo was assessed from the volume stiffness and volume of these arteries. The volume stiffness was derived from the pressure wave front velocity as determined in dogs by measuring the delay time between the pressure pulses recorded proximal and distal to a segment of the anterior descending branch of the left coronary artery. The pressure pulse was generated elsewhere in the arterial system during diastole. The volume of the epicardial coronary arteries was calculated from the lengths and diameters as measured in araldite casts, making corrections for in-vitro/in-vivo differences in dimensions. The dynamic capacitance of the right coronary artery, and the anterior descending and circumflex branches of the left coronary artery at an arterial pressure of 13.3 kPa and a frequency between 7 and 30 Hz was found to be 0.0024 +/- 0.0013, 0.0062 +/- 0.0028 and 0.0079 +/- 0.0035 mL/kPa (mean +/- SD), respectively. The total capacitance of the epicardial coronary arteries was calculated to be (0.007 mL/kPa)/100 g, which is small as compared to the total capacitance of the coronary vasculature, including the intramyocardial compartment, which is in the order of (0.5 mL/kPa)/100 g [1].  相似文献   

5.
Modest maternal dietary protein restriction in the rat leads to hypertension in adult male offspring. The purpose of this study was to determine whether female rats are resistant to developing the increased blood pressure seen in male rats after maternal protein restriction. Pregnant rats were fed a normal protein (19%, NP) or low-protein (8.5%, LP) diet throughout gestation. Renal renin protein and ANG II levels were reduced by 50-65% in male LP compared with NP pups, but were not suppressed in female LP compared with female NP. Mean arterial pressure in conscious, chronically instrumented adult female offspring (22 wk) was not different in LP (LP: 120 +/- 3 mmHg vs. NP: 121 +/- 2 mmHg), and glomerular filtration rate was also not different in LP vs. NP. The number of glomeruli per kidney was similar in adult LP and NP female offspring (LP: 26,050 +/- 2,071 vs. NP: 26,248 +/- 1,292, NP), and individual glomerular volume was also not different (LP: 0.92 +/- 0.11 10(6) microm(3), LP vs. NP: 1.07 +/- 0.11 10(6) microm(3)); the total volume of all glomeruli per kidney was also not significantly different. Thus female rats are relatively resistant to the programming for adult hypertension by perinatal protein restriction that we have described in males. This resistance may be due to the fact that modest maternal protein restriction does not reduce the number of glomeruli with which females are endowed as it does in males. The intrarenal renin-angiotensin system during development may play a key role in this protective effect of female gender.  相似文献   

6.
Endurance exercise training increases smooth muscle L-type Ca(2+) current density in both resistance and proximal coronary arteries of female miniature swine. The purpose of the present study was to determine 1) whether gender differences exist in coronary smooth muscle (CSM) L-type Ca(2+) current density and 2) whether endurance training in males would demonstrate a similar adaptive response as females. Proximal, conduit (approximately 1.0 mm), and resistance [~200 microm (internal diameter)] coronary arteries were obtained from sedentary and treadmill-trained swine of both sexes. CSM were isolated by enzymatic digestion (collagenase plus elastase), and voltage-gated Ca(2+)-channel current (I(Ca)) was determined by using whole cell voltage clamp during superfusion with 75 mM tetraethylammonium chloride and 10 mM BaCl(2). Current-voltage relationships were obtained at test potentials from -60 to 70 mV from a holding potential of -80 mV, and I(Ca) was normalized to cell capacitance (pA/pF). Endurance treadmill training resulted in similar increases in heart weight-to-body weight ratio, endurance time, and skeletal muscle citrate synthase activity in male and female swine. I(Ca) density was significantly greater in males compared with females in both conduit (-7.57 +/- 0.58 vs. -4.14 +/- 0.47 pA/pF) and resistance arteries (-11.25 +/- 0.74 vs. -6.49 +/- 0.87 pA/pF, respectively). In addition, voltage-dependent activation of I(Ca) in resistance arteries was shifted to more negative membrane potentials in males. Exercise training significantly increased I(Ca) density in both conduit and resistance arteries in females (-7.01 +/- 0.47 and -9.73 +/- 1.13 pA/pF, respectively) but had no effect in males (-8.61 +/- 0.50 and -12.04 +/- 1.07 pA/pF, respectively). Thus gender plays a significant role in determining both the magnitude and voltage dependence of I(Ca) in CSM and the adaptive response of I(Ca) to endurance training.  相似文献   

7.
The mechanisms of flow-induced vascular remodeling are poorly understood, especially in the coronary microcirculation. We hypothesized that application of flow in small coronary arteries in organoid culture would cause a nitric oxide (NO)-mediated dilation and inhibit inward remodeling. We developed an organoid culture setup to drive a flow through cannulated arterioles at constant luminal pressure via a pressure gradient between the pipettes. Subepicardial porcine coronary arterioles with diameter at full dilation and 60 mmHg (D0) of 168 +/- 10 (SE) microm were cannulated. Vessels treated with Nomega-nitro-L-arginine (L-NNA) to block NO production and untreated vessels were pressurized at 60 mmHg for 3 days with and without flow. Endothelium-dependent dilation to 10(-7) M bradykinin was preserved in all groups. Tone was significantly less in vessels cultured under flow conditions in the last half of the culture period. Untreated and L-NNA-treated vessels regulated their diameter to yield shear stresses of 10.3 +/- 2.1 and 14.0 +/- 2.4 (SE) dyn/cm2, respectively (not significantly different). Without L-NNA, passive pressure-diameter curves at the end of the culture period revealed inward remodeling in the control group [to 92.3 +/- 1.3% of D0 (SE)] and no remodeling in the vessels cultured under flow conditions (100.2 +/- 1.3% of D0); with L-NNA, the group subjected to flow showed inward remodeling (92.1 +/- 2.5% of D0). We conclude that pressurized coronary resistance arteries could be maintained in culture for several days with flow. Vessels cultured under flow conditions remained more dilated when NO synthesis was blocked. Inward remodeling occurred in vessels cultured under no-flow conditions and was inhibited by flow-dependent NO synthesis.  相似文献   

8.
To study arterial remodeling in response to hypertension, Deoxycortico-sterone acetate (DOCA)-salt hypertension was induced in immature (aged 16 weeks) and middle-aged (48 weeks) rats, and biomechanical properties and wall dimensions of common carotid arteries were determined. Arterial segments were excised at 10 or 16 weeks postoperatively from the immature rats and at 16 weeks from the middle-aged ones. In vitro pressure-diameter tests were performed under normal (in Krebs-Ringer solution), active (norepinephrine), and passive (papaverine) conditions. Non-treated, age-matched rats (26, 32, and 64 weeks) were used to obtain control data. Wall thickness at in vivo blood pressure level was increased by hypertension at all ages; however, there were no significant changes in inner diameter. In hypertensive rats, arterial outer diameter was smaller under normal condition than under passive condition, indicating the increase of smooth muscle tone by hypertension. Diameter reduction developed by norepinephrine was increased by hypertension, which was significant above 100 mmHg; however, there were no significant differences between hypertensive and normotensive arteries, if compared at respective in vivo blood pressures. No significant differences were observed in wall stiffness at in vivo pressure. Wall hoop stress at in vivo blood pressure had a significant positive correlation with the pressure in 26-week old arteries. However, there were no differences in the stress between hypertension and normotension in 32- and 64-week old arteries. These results were essentially similar to previous ones observed in Goldblatt hypertension and in younger animals. Age-related differences in arterial wall remodeling were not clearly observed.  相似文献   

9.
The understanding of the pathophysiology of female sexual dysfunction suffers from the lack of a convenient model for the study of female genital sexual response. In this study, systemic arterial blood pressure (BP) as well as partial oxygen tension, temperature, and blood engorgement of the vagina [using laser-Doppler flowmetry in arbitrary units (AU)] were measured in anesthetized, ovariectomized (1 wk before the start of the experiment) female rats. Vaginal sexual arousal was replicated by electrical stimulation of the pelvic nerve (PNS). PNS induced reproducible increases in the different vaginal parameters (from baseline value, respectively: 16 +/- 10 to 30 +/- 12 mmHg; 34.9 +/- 0.6 to 36 +/- 0.6 degrees C; 450 +/- 196 to 1,500 +/- 360 AU; P < 0.05, paired t-test) and BP (90 +/- 7 to 123 +/- 13 mmHg, P < 0.05, paired t-test). Vaginal vascular resistance was significantly decreased during PNS (from 0.23 +/- 0.15 to 0.08 +/- 0.02 mmHg/AU). Vaginal wall tension was also measured with a force transducer. PNS induced an increase in vaginal wall tension (1.0 +/- 0.2 g), followed by a decrease under the prestimulation value. Intravenous atropine sulfate (1 mg/kg) injection abolished the increase in vaginal wall tension without significantly affecting vaginal vascular resistance. Intravenous vercuronium bromide (2 mg/kg) injection abolished the decrease in vaginal wall tension. Concomitant electrical stimulation of the paravertebral sympathetic chain inhibited vaginal response induced by PNS. Electrical stimulation of the medial preoptic area of the hypothalamus induced a response qualitatively equivalent to PNS with a significant decrease of vaginal vascular resistance. These data support that vaginal contractions involve both smooth and striated muscles and indicate that neural control of vaginal sexual arousal have great similarities in male and female rats.  相似文献   

10.
Chronically hypoxic rats (exposed to 5000 m elevation for 3 weeks) develop pulmonary hypertension (PH) that is reversed upon return to normoxia and is blocked by bradykinin (BK) antagonist B9430 treatment (100 microg/kg s.c. three times per week). Treatment of rats with both the synthetic VEGF receptor-1/2 antagonist 3-[(2,4-dimethylpyrrol-5-yl)methylidenyl]-indolin-2-one (SU5416) (200 mg/kg, single s.c. injection) and hypoxia (3 weeks) causes irreversible severe PH characterized by marked elevation of pulmonary artery pressure (PAP), right ventricular hypertrophy, and obliteration of pulmonary arteries by proliferating endothelial cells (EC). Between weeks I and 2 of treatment, there is increased apoptotic EC death and caspase-3 activity. The combination of hypoxia with VEGFR-1 and -2 blockade appears to cause death of normal lung EC and proliferation of an apoptosis-resistant proliferating EC phenotype. Cotreatment with BK antagonist B9430 and (or) the broad caspase inhibitor Z-Asp-2,6-dichlorobenzoyloxymethylketone (Z-Asp) (2 mg/kg three times per week) prevented development of severe PH and caused significant reduction of PAP: 39.7 +/- 4.6 mmHg in Z-Asp + SU5416, 37.1 +/- 1.2 mmHg in BK antagonist B9430 + SU5416, 27.2 +/- 0.7 mmHg in Z-Asp alone, and 36.6 +/- 3.0 mmHg in BK antagonist alone versus 48 +/- 1.7 mmHg in SU5416-treated rats and 32.8 +/-1.4 mmHg in vehicle-treated controls. The PAP correlated with the right ventricular mass. Pulmonary arteries of rats treated with Z-Asp and BK antagonist B9430 had a marked reduction of intravascular EC, yet there was still evidence of medial muscular hypertrophy, similar to that observed in chronically hypoxic rats not treated with SU5416. We conclude that EC death induced by VEGFR-2 blockade with SU5416 may trigger an EC selection process that allows for the expansion of apoptosis-resistant EC, possibly driven by mechanisms independent of VEGF and VEGFR-2.  相似文献   

11.
Our objective was to test the hypothesis that short-term exercise training (STR) of pigs increases endothelium-dependent dilation (EDD) of coronary arteries but not coronary arterioles. Female Yucatan miniature swine ran on a treadmill for 1 h, at 3.5 mph, twice daily for 7 days (STR; n = 28). Skeletal muscle citrate synthase activity was increased in STR compared with sedentary controls (Sed; n = 26). Vasoreactivity was evaluated in isolated segments of conduit arteries (1-2 mm ID, 3-4 mm length) mounted on myographs and in arterioles (50-100 microm ID) isolated and cannulated with micropipettes with intraluminal pressure set at 60 cmH(2)O. EDD was assessed by examining responses to increasing concentrations of bradykinin (BK) (conduit arteries 10(-12)-10(-6) M and arterioles 10(-13)-10(-6) M). There were no differences in maximal EDD or BK sensitivity of coronary arterioles from Sed and STR hearts. In contrast, sensitivity of conduit arteries (precontracted with PGF(2alpha)) to BK was increased significantly (P < 0.05) in STR (EC(50), 2.33 +/- 0.62 nM, n = 12) compared with Sed animals (EC(50), 3.88 +/- 0.62 nM, n = 13). Immunoblot analysis revealed that coronary arteries from STR and Sed animals had similar levels of endothelial nitric oxide synthase (eNOS). In contrast, eNOS protein was increased in STR aortic endothelial cells. Neither protein nor mRNA levels of eNOS were different in coronary arterioles from STR compared with Sed animals. STR did not alter expression of superoxide dismutase (SOD-1) protein in any artery examined. We conclude that pigs exhibit increases in EDD of conduit arteries, but not in coronary arterioles, at the onset of exercise training. These adaptations in pigs do not appear to be mediated by alterations in eNOS or SOD-1 expression.  相似文献   

12.
《Gender Medicine》2012,9(6):548-556
BackgroundIt is well known that sex differences occur in both the pathogenesis and therapy of hypertension. A deeper understanding of the underlying processes may be helpful when planning a personalized therapeutic strategy.ObjectiveIn laboratory animal experiments, we studied the early mechanisms of vascular adaptation of the intramural small coronary arteries that play a fundamental role in the blood supply of the heart.MethodsIn our study, an osmotic minipump was implanted into 10 male and 10 female Sprague-Dawley rats. The pump remained in situ for 4 weeks, infusing a dose of 100 ng/kg/min angiotensin II acetate. Four weeks later, the animals were killed, and the intramural coronary arteries from the left coronary branch, which are fundamentally responsible for the blood supply of the heart, were prepared. The pharmacologic reactivity and biomechanical properties of the prepared segments were studied in a tissue bath.ResultsThe relative heart mass and vessel wall thickness were greater in females than males (0.387 [0.009] g/100 g vs 0.306 [0.006] g/100 g body weight; 41.9 [4.09] μm vs 33.45 [3.37] μm on 50 mm Hg). The vessel tone and vasoconstriction in response to thromboxane agonists were, however, significantly more pronounced in males. The extent of relaxation in response to bradykinin was also greater in females. Although we observed inward eutrophic remodeling in females, an increase in wall stress and elastic modulus dominated in males.ConclusionThe early steps of angiotensin II–dependent hypertension evoked very different adaptation mechanisms in males and females.  相似文献   

13.
Current literature suggests that chronic nitric oxide synthase (NOS) inhibition has differential effects on endothelium-dependent dilation (EDD) of conduit arteries vs. arterioles. Therefore, we hypothesized that chronic inhibition of NOS would impair EDD of porcine left anterior descending (LAD) coronary arteries but not coronary arterioles. Thirty-nine female Yucatan miniature swine were included in the study. Animals drank either tap water or water with N(G)-nitro-L-arginine methyl ester (L-NAME; 100 mg/l), resulting in control and chronic NOS inhibition (CNI) groups, respectively. Treatment was continued for 1-3 mo (8.3 +/- 0.6 mg x kg(-1) x day(-1)). In vitro EDD of coronary LADs and arterioles was assessed via responses to ADP (LADs only) and bradykinin (BK), and endothelium-independent function was assessed via responses to sodium nitroprusside (SNP). Chronic NOS inhibition diminished coronary artery EDD to ADP and BK. Incubating LAD rings with L-NAME decreased relaxation responses of LADs from control pigs but not from CNI pigs such that between-group differences were abolished. Neither indomethacin (Indo) nor sulfaphenazole incubation significantly affected relaxation responses of LAD rings to ADP or BK. Coronary arteries from CNI pigs showed enhanced relaxation responses to SNP. In contrast to coronary arteries, coronary arterioles from CNI pigs demonstrated preserved EDD to BK and no increase in dilation responses to SNP. L-NAME, Indo, and L-NAME + Indo incubation did not result in significant between-group differences in arteriole dilation responses to BK. These results suggest that although chronic NOS inhibition diminishes EDD of LAD rings, most likely via a NOS-dependent mechanism, it does not affect EDD of coronary arterioles.  相似文献   

14.
Previous studies have shown that hindlimb unweighting of rats, a model of microgravity, reduces evoked contractile tension of peripheral conduit arteries. It has been hypothesized that this diminished contractile tension is the result of alterations in the mechanical properties of these arteries (e.g., active and passive mechanics). Therefore, the purpose of this study was to determine whether the reduced contractile force of the abdominal aorta from 2-wk hindlimb-unweighted (HU) rats results from a mechanical function deficit resulting from structural vascular alterations or material property changes. Aortas were isolated from control (C) and HU rats, and vasoconstrictor responses to norepinephrine (10(-9)-10(-4) M) and AVP (10(-9)-10(-5) M) were tested in vitro. In a second series of tests, the active and passive Cauchy stress-stretch relations were determined by incrementally increasing the uniaxial displacement of the aortic rings. Maximal Cauchy stress in response to norepinephrine and AVP were less in aortic rings from HU rats. The active Cauchy stress-stretch response indicated that, although maximum stress was lower in aortas from HU rats (C, 8.1 +/- 0.2 kPa; HU, 7.0 +/- 0.4 kPa), it was achieved at a similar hoop stretch. There were also no differences in the passive Cauchy stress-stretch response or the gross vascular morphology (e.g., medial cross-sectional area: C, 0.30 +/- 0.02 mm(2); HU, 0.32 +/- 0.01 mm(2)) between groups and no differences in resting or basal vascular tone at the displacement that elicits peak developed tension between groups (resting tension: C, 1.71 +/- 0.06 g; HU, 1.78 +/- 0.14 g). These results indicate that HU does not alter the functional mechanical properties of conduit arteries. However, the significantly lower active Cauchy stress of aortas from HU rats demonstrates a true contractile deficit in these arteries.  相似文献   

15.
The effect of estrogen on the passive characteristics of arteries is not known. We hypothesized that estrogen would increase arterial distensibility as part of its protective effect on the vasculature. Female Sprague-Dawley rats were ovariectomized at 11 weeks of age. One group received a placebo (n = 6), while two other groups (n = 5 each) of rats received a 17beta-estradiol pellet (0.15 mg or 0.5 mg with 60-day release). After 4 weeks of estrogen replacement, coronary and mesenteric arteries (<200 microm diameter) were dissected and mounted on a dual-chamber arteriograph. Lumen diameter and wall thickness were measured in pressurized arteries. The relative changes in diameter (distensibility) as well as wall thickness per unit change in pressure were significantly increased (p < 0.05) in the coronary arteries of the 0.5 mg estradiol replaced rats compared with the ovariectomized control animals and the 0.15 mg estradiol replaced rats. Surprisingly, in the mesenteric arteries from the same animals, there was no difference in distensibility or pressure - wall thickness among the groups. This study provides experimental data of a novel hypothesis that estrogen may afford part of its protection through vascular remodeling of the coronary circulation.  相似文献   

16.
Short-term hibernating myocardium is characterized by reduced contractile function during persistent moderate ischemia, the recovery of metabolic parameters, and the absence of necrosis. To study the afterload dependence of regional wall excursion in short-term hibernating myocardium, in 11 enflurane-anesthetized swine the left anterior descending coronary artery was cannulated and hypoperfused for 90 min to reduce anterior systolic wall thickening (WT, sonomicrometry) by 60%. Under control conditions, at 5 and 90 min ischemia the descending thoracic aorta was acutely constricted to increase left ventricular (LV) pressure by 30 mmHg. Under control conditions, increased LV pressure resulted in decreased WT [i.e., a negative slope of the relationship between WT and LV end-systolic pressure: -11.2 +/- 4.2 (SD) microm/mmHg]. This slope was further significantly decreased at 5 min ischemia (-26.5 +/- 8.8 microm/mmHg) but returned toward control values in short-term hibernating myocardium at 90 min ischemia (-17.2 +/- 6.6 microm/mmHg). At 30 min reperfusion, the slope was once more significantly decreased (-27.8 +/- 8.1 microm/mmHg). In conclusion, WT in short-term hibernating myocardium is less afterload dependent than in acutely ischemic and reperfused myocardium.  相似文献   

17.
The passive mechanical properties of blood vessel mainly stem from the interaction of collagen and elastin fibers, but vessel constriction is attributed to smooth muscle cell (SMC) contraction. Although the passive properties of coronary arteries have been well characterized, the active biaxial stress-strain relationship is not known. Here, we carry out biaxial (inflation and axial extension) mechanical tests in right coronary arteries that provide the active coronary stress-strain relationship in circumferential and axial directions. Based on the measurements, a biaxial active strain energy function is proposed to quantify the constitutive stress-strain relationship in the physiological range of loading. The strain energy is expressed as a Gauss error function in the physiological pressure range. In K(+)-induced vasoconstriction, the mean ± SE values of outer diameters at transmural pressure of 80 mmHg were 3.41 ± 0.17 and 3.28 ± 0.24 mm at axial stretch ratios of 1.3 and 1.5, respectively, which were significantly smaller than those in Ca(2+)-free-induced vasodilated state (i.e., 4.01 ± 0.16 and 3.75 ± 0.20 mm, respectively). The mean ± SE values of the inner and outer diameters in no-load state and the opening angles in zero-stress state were 1.69 ± 0.04 mm and 2.25 ± 0.08 mm and 126 ± 22°, respectively. The active stresses have a maximal value at the passive pressure of 80-100 mmHg and at the active pressure of 140-160 mmHg. Moreover, a mechanical analysis shows a significant reduction of mean stress and strain (averaged through the vessel wall). These findings have important implications for understanding SMC mechanics.  相似文献   

18.
The inner diameter and wall thickness of rat middle cerebral arteries (MCAs) were measured in vitro in both a pressure-induced, myogenically-active state and a drug-induced, passive state to quantify active and passive mechanical behavior. Elasticity parameters from the literature (stiffness derived from an exponential pressure-diameter relationship, beta, and elasticity in response to an increment in pressure, Einc-p) and a novel elasticity parameter in response to smooth muscle cell (SMC) activation, Einc-a, were calculated. beta for all passive MCAs was 9.11 +/- 1.07 but could not be calculated for active vessels. The incremental stiffness increased significantly with pressure in passive vessels; Einc-p (10(6) dynes/cm2) increased from 5.6 +/- 0.5 at 75 mmHg to 14.7 +/- 2.4 at 125 mmHg, (p < 0.05). In active vessels, Einc-p (10(6) dynes/cm2) remained relatively constant (5.5 +/- 2.4 at 75 mmHg and 6.2 +/- 1.0 at 125 mmHg). Einc-a (10(6) dynes/cm2) increased significantly with pressure (from 15.1 +/- 2.3 at 75 mmHg to 49.4 +/- 12.6 at 125 mmHg, p < 0.001), indicating a greater contribution of SMC activity to vessel wall stiffness at higher pressures.  相似文献   

19.
It is well recognised that oestrogens possess vasodilatory properties, and similar responses to testosterone have been demonstrated. However, vasomotor effects of other steroid hormones have not been well described. Direct comparisons of the relative vasoactivity of different steroid hormones in different vascular beds in male and female genders have not been made. Coronary and pulmonary arteries from adult Wistar rats were mounted in a wire myograph, loaded to 100 and 17 mmHg respectively, maximally pre-contracted with 1 x 10(-4) M prostaglandin-F-2-alpha, and dose response curves to 1 x 10(-6) to 1 x 10(-3) or 3 x 10(-3) M of 17 beta-oestradiol, testosterone, progesterone, and cortisol dissolved in water were constructed. Addition of each steroid hormone caused acute, dose dependent dilatation in coronary and pulmonary vessels. In coronary arteries the order of activity was testosterone > progesterone > 17 beta-oestradiol > cortisol, p < 0.001. In pulmonary arteries, the order of activity was progesterone > testosterone > cortisol > 17 beta-oestradiol, p < 0.001. Pulmonary arteries from male animals were more sensitive to the effects of testosterone than those from female animals, p = 0.003, whereas coronary arteries from female animals were more sensitive to the effects of 17 beta-oestradiol than those from male animals, p < 0.001. We have demonstrated significant differences in the in vitro vasomotor effects of different steroid hormones in two distinct vascular beds. Gender differences in vasomotor responses to steroid hormones may play a role in the aetiology of vasospastic diseases.  相似文献   

20.
The conduction of vasodilation along resistance vessels has been presumed to reflect the electrotonic spread of hyperpolarization from cell to cell along the vessel wall through gap junction channels. However, the vasomotor response to acetylcholine (ACh) encompasses greater distances than can be explained by passive decay. To investigate the underlying mechanism for this behavior, we tested the hypothesis that ACh augments the conduction of hyperpolarization. Feed arteries (n = 23; diameter, 58 +/- 4 microm; segment length, 2-8 mm) were isolated from the hamster retractor muscle, cannulated at each end, and pressurized to 75 mmHg (at 37 degrees C). Vessels were impaled with one or two dye-containing microelectrodes simultaneously (separation distance, 50 microm to 3.5 mm). Membrane potential (E(m)) (rest, approximately -30 mV) and electrical responses were similar between endothelium and smooth muscle, as predicted for robust myoendothelial coupling. Current injection (-0.8 nA, 1.5 s) evoked hyperpolarization (-10 +/- 1 mV; membrane time constant, 240 ms) that conducted along the vessel with a length constant (lambda) = 1.2 +/- 0.1 mm; spontaneous E(m) oscillations (approximately 1 Hz) decayed with lambda = 1.2 + 0.1 mm. In contrast, ACh microiontophoresis (500 nA, 500 ms, 1 microm tip) evoked hyperpolarization (-14 +/- 2 mV) that conducted with lambda = 1.9 +/- 0.1 mm, 60% further (P < 0.05) than responses evoked by purely electrical stimuli. These findings indicate that ACh augments the conduction of hyperpolarization along the vessel wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号