首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although several theoretical approaches consider general methods for dealing with shape, recent observations and experimental data show that embryos exhibit marked changes in the properties of the biological material involved in shape development and shape regulation capacity. In vivo experiments have shown that the amphibian embryo gradually develops from a situation in which it is not able to maintain its shape to one in which it can not only maintain its shape but also possesses a maximal tolerance towards deformation together with a maximal shape regulation capacity. So far two especially clear conclusions have emerged: (i) the form of the embryo appears to be determined by cell activities intrinsic to each stage, and (ii) the morphogenetic programme can be executed normally within wide limits notwithstanding dramatic deformations of the embryo during quite a long period. Thus the hypothesis may be advanced that shape and morphogenesis to some extent become independent phenomena during embryonic development.Fellow of the Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET, Argentina).  相似文献   

2.
Throughout the lifespan of an organism, shape changes are necessary for cells to carry out their essential functions. Nowhere is this more dramatic than embryonic development and gastrulation, when cell shape changes drive large-scale rearrangements in tissue architecture to establish the body plan of the organism. A longstanding question for both cell and developmental biologists has been how are forces generated to change cell shape? Recent studies in both cell culture and developing embryos have combined live imaging, computational analysis, genetics, and biophysics to identify ratchet-like behaviors in actomyosin networks that operate to incrementally change cell shape, drive cell movement, and deform tissues. Our analysis of several cell shape changes leads us to propose four regulatory modules associated with ratchet-like deformations that are tuned to generate diverse cell behaviors, coordinating cell shape change across a tissue.  相似文献   

3.
The asexual embryos of Volvox turn themselves inside out (invert) during development. Data presented indicate that inversion of the embryos is the result of several simple cellular shape changes, coordinated in space and time. Using whole embryos, cell groups and individual embryonic cells isolated by watchmaker's forceps and pressure on the coverslip, it was shown that the phialopore (opening) enlargement and concurrent stretching of the border cells is due to a constriction formed at the equator. However, if the posterior hemisphere is removed, this constriction no longer effects the expansion of the phialopore (which is in the anterior hemisphere) because the equatorial region is no longer anchored and has no base to support the outwardly directed force against the phialopore cells. If the posterior hemisphere is isolated several hours before inversion, the opening resulting from the incision acts as a “phialopore” and the direction of inversion is reversed. Individual cells and cells in groups undergo the same shape changes as corresponding cells in an intact embryo during inversion. This suggests that these cellular deformations are autonomous and inversion is a result of them.  相似文献   

4.
The number of accessory sperm found in the zona pellucida of porcine embryos was correlated to their individual quality and to the embryo quality range found within a single sow. Our goal was to determine whether accessory sperm counts provide semen evaluation with additional, useful information. Accessory sperm count was highest when only normal embryos were found in a given sow and diminished if oocytes or degenerated embryos were present (P<0.01). Within a given sow, normal embryos had higher (P<0.05) accessory sperm counts than degenerated embryos, although not when oocytes were also present. Fertilization capacity of sperm is optimal when only normal embryos are found in a given sow; this capacity is indicated by high accessory sperm counts. A decrease in fertilization capacity is reflected in diminishing accessory sperm counts. The boar had a significant effect (P<0.01) on accessory sperm count, but not on the percentage of normal embryos; this suggests that accessory sperm may be more sensitive indicators of the fertilization capacity of sperm than the percentage of normal embryos. We conclude that accessory sperm count can be used for the detection of compensable defects in sperm and is a valid parameter for assessing sperm fertilization capacity.  相似文献   

5.
The importance of mesenchymal-epithelial interactions for the proper development of the pancreas has been acknowledged since the early 1960s, even though the molecule(s) mediating this process have remained unknown. We demonstrate here that Fgf10, a member of the fibroblast growth factor family (FGFs), plays an essential role in this process. We show that Fgf10 is expressed in the mesenchyme directly adjacent to the early dorsal and ventral pancreatic epithelial buds. In Fgf10(-/-) mouse embryos, the evagination of the epithelium and the initial formation of the dorsal and ventral buds appear normal. However, the subsequent growth, differentiation and branching morphogenesis of the pancreatic epithelium are arrested; this is primarily due to a dramatic reduction in the proliferation of the epithelial progenitor cells marked by the production of the homeobox protein PDX1. Furthermore, FGF10 restores the population of PDX1-positive cells in organ cultures derived from Fgf10(-/-) embryos. These results indicate that Fgf10 signalling is required for the normal development of the pancreas and should prove useful in devising methods to expand pancreatic progenitor cells.  相似文献   

6.
We present simple parametric equations in terms of Jacobi elliptic functions that provide a realistic model of abnormal variations in size which maintain the biconcave shape of a normal erythrocyte (anisocytosis) and abnormal variations in shape which maintain the original volume of the erythrocyte (poikilocytosis), as well as continuous deformations from the normal to the altered shapes. We illustrate our results with parameterizations of microcytes, macrocytes, and stomatocytes, and we apply these parameterizations to the numerical calculation of the induced transmembrane voltage in microcytes, macrocytes, and stomatocytes exposed to an external electromagnetic field of 1800 MHz.  相似文献   

7.
During development, vertebrate embryos undergo dramatic changes in shape. The lengthening and narrowing of a field of cells, termed convergent extension, contributes to a variety of morphogenetic processes. Focusing on frogs and fish, we review the different cellular mechanisms and the well-conserved signaling pathways that underlie this process.  相似文献   

8.
In the paedogenetic Dipteran insect Heteropeza pygmaea it is possible by physical or chemical means to obtain oocyte-nurse chamber complexes lacking the follicular epithelium. Such oocytes nevertheless complete oogenesis and begin embryonic development. Development of these “naked” eggs has been compared to normal egg development by cinematographic analysis. Eggs which are formed without follicular epithelium are completely spherical in shape and the increase in size which normally occurs during cleavage is much less extensive. Naked eggs show shape changes during the first part of cleavage, in which bulgy cytoplasmic protrusions are formed and disappear continuously. Protrusions which are present during the mitotic divisions are partly cleaved. Cleavage folds occur much earlier in naked eggs than in normal eggs. On the other hand, the duration of the mitotic cycles during nuclear multiplication of normal and naked eggs is similar. Development of naked eggs usually continues for some time after blastoderm formation before degeneration sets in. The events taking place prior to embryonic death are difficult to relate to normal gastrulation events. However, in some cases the morphogenetic movements of naked embryos resemble germ band formation of normal embryos.  相似文献   

9.
Abstract. The dominant mutation T , (Brachyury), of the T/t -complex in the mouse causes severe disorganization in neural tube, notochord, and somites in homozygotes. The use of scanning electron microscopy to investigate the relationships of cells to one another and to the extracellular matrix in the three axial organs and in the head mesenchyme reveals that cells in all areas examined are abnormal in size, shape, and arrangement in T/T embryos. Cells of T/T head mesenchyme and somites are arrayed in flat sheets of broadened cells with fewer cytoplasmic processes than those of normal littermates. The notochord is discontinuous and its surface is exposed rather than covered by a dense matrix as in the normal. Likewise the sheath of the T/T neural tube is less dense than normal. Cell size and shape are very irregular whereas normal neural tube cells are all about the same size. Extracellular matrix in T/T embryos is greatly decreased in all areas.  相似文献   

10.
The transition from preimplantation to postimplantation development leads to the initiation of complex cellular differentiation and morphogenetic movements, a dramatic decrease in cell cycle length, and a commensurate increase in the size of the embryo. Accompanying these changes is the need for the transfer of nutrients from the mother to the embryo and the elaboration of sophisticated genetic networks that monitor genomic integrity and the homeostatic control of cellular growth, differentiation, and programmed cell death. To determine the function of the murine zinc finger protein ZFR in these events, we generated mice carrying a null mutation in the gene encoding it. Homozygous mutant embryos form normal-appearing blastocysts that implant and initiate the process of gastrulation. Mutant embryos form mesoderm but they are delayed in their development and fail to form normal anterior embryonic structures. Loss of ZFR function leads to both an increase in programmed cell death and a decrease in mitotic index, especially in the region of the distal tip of the embryonic ectoderm. Mutant embryos also have an apparent reduction in apical vacuoles in the columnar visceral endoderm cells in the extraembryonic region. Together, these cellular phenotypes lead to a dramatic development delay and embryonic death by 8 to 9 days of gestation, which are independent of p53 function.  相似文献   

11.
在纳米量级上探测红细胞生理病理特性对于揭示疾病的起源、早期诊断和有效的治疗是十分重要的。疾病可以从分子水平上扰乱红细胞的形貌和功能。缺铁性贫血病人的红细胞的形貌具有严重的表面畸形。通过高分辨率的原子力显微镜成像研究了健康人和缺铁性贫血病人红细胞的整个形貌和表面膜的差异。结果表明,红细胞的形貌参数(例如细胞的峰、谷、峰谷差、表面起伏和标准方差)可以探测健康和病理的红细胞。因此,红细胞的形貌信息可望成为诊断健康和疾病,以及评估治疗效果的重要指标。  相似文献   

12.
Abstract In normal ascidian development, cuticular fins begin to form at the late tailbud stage and are fully formed at hatching. When one or several neurulae were manually demembranated (follicle cells, vitelline coat and test cells removed) and cultured in seawater they failed to form caudal fins. Fins were normal when the follicle cells alone were removed. The shape of the fins was normal when demembranation was delayed to the late tailbud stage. Does demembranation cause the loss of an essential factor produced by the embryos themselves or do the test cells provide a factor for fin morphogenesis? Demembranated neurulae of Ascidia callosa were cultured in groups ranging in size from 2 to 80 in 1 ml volumes of seawater. The mean lengths of the caudal fins increased with group size. In larger groups, some embryos developed fins that were normal in shape and as long as undemembranated controls. Results were similar with Corella inflata. These experiments suggest that a diffusible substance from the embryos facilitates fin morphogenesis and that test cells are not required. Test cells deposit ‘ornaments’ on the tunic in some species. In other species no ornaments are produced. Ten families are compared. It is proposed that the test cells make the tunic hydrophilic.  相似文献   

13.
Early stages of vertebrate embryogenesis are characterized by a remarkable series of shape changes. The resulting morphological complexity is driven by molecular, cellular, and tissue-scale biophysical alterations. Operating at the cellular level, extracellular matrix (ECM) networks facilitate cell motility. At the tissue level, ECM networks provide material properties required to accommodate the large-scale deformations and forces that shape amniote embryos. In other words, the primordial biomaterial from which reptilian, avian, and mammalian embryos are molded is a dynamic composite comprised of cells and ECM. Despite its central importance during early morphogenesis we know little about the intrinsic micrometer-scale surface properties of primordial ECM networks. Here we computed, using avian embryos, five textural properties of fluorescently tagged ECM networks--(a) inertia, (b) correlation, (c) uniformity, (d) homogeneity, and (e) entropy. We analyzed fibronectin and fibrillin-2 as examples of fibrous ECM constituents. Our quantitative data demonstrated differences in the surface texture between the fibronectin and fibrillin-2 network in Day 1 (gastrulating) embryos, with the fibronectin network being relatively coarse compared to the fibrillin-2 network. Stage-specific regional anisotropy in fibronectin texture was also discovered. Relatively smooth fibronectin texture was exhibited in medial regions adjoining the primitive streak (PS) compared with the fibronectin network investing the lateral plate mesoderm (LPM), at embryonic stage 5. However, the texture differences had changed by embryonic stage 6, with the LPM fibronectin network exhibiting a relatively smooth texture compared with the medial PS-oriented network. Our data identify, and partially characterize, stage-specific regional anisotropy of fibronectin texture within tissues of a warm-blooded embryo. The data suggest that changes in ECM textural properties reflect orderly time-dependent rearrangements of a primordial biomaterial. We conclude that the ECM microenvironment changes markedly in time and space during the most important period of amniote morphogenesis--as determined by fluctuating textural properties.  相似文献   

14.
15.
Many ecological interactions involve, at some level, mechanical forces and the movements or structural deformations they produce. Although the most familiar examples involve the functional morphology of adult structures, all life history stages (not just the adults) are subject to the laws of physics. Moreover, the success of every lineage depends on the success of every life history stage (again, not just the adults). Therefore, insights gained by using mechanical engineering principles and techniques to study ecological interactions between gametes, embryos, larvae, and their environment are essential to a well-rounded understanding of development, ecology, and evolution. Here I draw on examples from the literature and my own research to illustrate ways in which mechanical forces in the environment shape development. These include mechanical forces acting as selective factors (e.g., when coral gamete size and shape interact with turbulent water flow to determine fertilization success) and as developmental cues (e.g., when plant growth responds to gravity or bone growth responds to mechanical loading). I also examine the opposite cause-and-effect relationship by considering examples in which the development of organisms impacts ecologically relevant mechanical forces. Finally, I discuss the potential for ecological pattern formation as a result of feedback loops created by such bidirectional interactions between developmental processes and mechanical forces in the environment.  相似文献   

16.
An analysis is presented on how structural cores modify their shape across homologous proteins, and whether or not a relationship exists between these structural changes and the vibrational normal modes that proteins experience as a result of the topological constraints imposed by the fold. A set of 35 representative, well-populated protein families is studied. The evolutionary directions of deformation are obtained by using multiple structural alignments to superimpose the structures and extract a conserved core, together with principal components analysis to extract the main deformation modes from the three-dimensional superimposition. In parallel, a low-resolution normal mode analysis technique is employed to study the properties of the mechanical core plasticity of these same families. We show that the evolutionary deformations span a low dimensional space of 4-5 dimensions on average. A statistically significant correspondence exists between these principal deformations and the approximately 20 slowest vibrational modes accessible to a particular topology. We conclude that, to a significant extent, the structural response of a protein topology to sequence changes takes place by means of collective deformations along combinations of a small number of low-frequency modes. The findings have implications in structure prediction by homology modeling.  相似文献   

17.
At the eight-cell stage, the blastomeres of the preimplantation mouse embryo undergo a dramatic shape change, compaction, which is considered essential to the future segregation of presumptive cell types. This investigation demonstrates that compaction 1) occurs in vivo, 2) is accompanied by the formation of tight and gap junctions and 3) can be reversibly inhibited in vitro by calcium-depleted medium and also by cytochalasin B (CCB). Although microtubules frequently are observed in cortical regions where compaction is proceeding, colcemid and colchicine have no inhibitory effect.Calcium-free medium and CCB dissociate compacted embryos, over 50% of which recover in normal medium in 3 and 0.25 hr, respectively. The Ca2+ threshold for compaction is approximately 0.1–0.2 mM and may be required for normal intercellular adhesions. Since compaction marks the beginning of tight junction formation and provides the necessary cell-to-cell apposition for the development of the zonula occludens at the morula stage, it is considered to be the initial step in blastocyst morphogenesis. In addition, this investigation provides the means to reprogram compaction by reversible inhibition and thereby study theories of cell determination.  相似文献   

18.
19.
The effect of wing flexibility on aerodynamic force production has emerged as a central question in insect flight research. However, physical and computational models have yielded conflicting results regarding whether wing deformations enhance or diminish flight forces. By experimentally stiffening the wings of live bumblebees, we demonstrate that wing flexibility affects aerodynamic force production in a natural behavioural context. Bumblebee wings were artificially stiffened in vivo by applying a micro-splint to a single flexible vein joint, and the bees were subjected to load-lifting tests. Bees with stiffened wings showed an 8.6 per cent reduction in maximum vertical aerodynamic force production, which cannot be accounted for by changes in gross wing kinematics, as stroke amplitude and flapping frequency were unchanged. Our results reveal that flexible wing design and the resulting passive deformations enhance vertical force production and load-lifting capacity in bumblebees, locomotory traits with important ecological implications.  相似文献   

20.
The development of the shape and structure of somites in the teleost Brachydanio rerio was studied in embryos under normal conditions and in immobilized embryos. Three different immobilization methods were applied: enclosure in agar, a glass rod in the neural tube and anaesthesia in MS-222. When the performance of the lateral body movements is prevented, the shape development of the somites in embryos and young larvae becomes reversed. When the agar-immobilization is terminated, the larvae resume their normal movements. In about 10 days, the shape of the somites is again as in control larvae. We conclude, that the lateral body movements have both a shape-determining and a shape-stabilizing role during the early stages of somite morphogenesis. It is suggested that in normal embryos differences in shortening between lateral and medial muscle fibres, cause differences in longitudinal growth of the muscle fibres and that the oblique muscle fibre arrangement is a consequence of these differences in growth. In immobilized embryos and larvae, the longitudinal growth of the muscle fibres is decreased. Also the difference in the longitudinal growth rate between lateral and medial muscle fibres diminishes in all somites. We conclude that for the normal morphogenesis of the somites the performance of the specific function, that is to bring about lateral body movements, is required. We suggest, that the impact of the lateral body movements on the development of the structure of the somites is mediated through adaptive growth of the muscle fibres. The suggestion may also apply to the development of the pinnate structure of muscles of higher vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号