首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
《Journal of Asia》2021,24(4):1087-1094
Transforming growth factor-beta (TGF-β) signaling pathway plays important roles in embryonic development, cell proliferation and tissue differentiation in vertebrates. Our previous studies demonstrated that TGF-β signal activates Smad1-POU-TFAM and PP2A-Akt pathways to regulate pupal diapause in Helicoverpa armigera. In this study, we investigated the function of TGF-β activates Smad2 pathway in H. armigera. Phylogenetic analysis of H. armigera TGF-β receptor I (TGFβRI), Smad2, Smad4 genes showed high conservation across species. In vitro experiments showed that TGFβRI was localized in the cell membrane where it binds Smad2 leading to the phosphorylation of Smad2. Smad4 was mainly localized in the cytoplasm, and bind to Smad2. Protein expression analysis showed that expression of TGFβRI, Smad4, Smad2, p-Smad2 were lower in diapause-destined pupae compared with nondiapause-destined pupae. Notably, treatment with 20-hydroxyecdysone (20E) increased expression of the above proteins. Inhibition of TGF-β/Smad2 signaling pathway delayed pupal development. These findings indicate that TGF-β/Smad2 pathway is involved in pupal development or diapause in H. armigera.  相似文献   

3.
Calorie restriction [CR; 60% of ad libitum (AL) intake] improves insulin-stimulated glucose transport, concomitant with enhanced phosphorylation of Akt. The mechanism(s) for the CR-induced increase in Akt phosphorylation of insulin-stimulated muscle is unknown. The purpose of this study was to determine whether CR increased the ratio of catalytic to regulatory subunits favoring enhanced phosphatidylinositol (PI) 3-kinase signaling, which may contribute to increases in Akt phosphorylation and glucose transport in insulin-stimulated muscles. We measured the PI 3-kinase regulatory (p85alpha/beta, p50alpha, and p55alpha) and catalytic (p110) subunits abundance in skeletal muscle from male F344B/N rats after 8 wk of AL or CR treatment. In CR compared with AL muscles, regulatory isoforms, p50alpha and p55alpha abundance were approximately 40% lower (P < 0.01) with unchanged p85alpha/beta levels. There was no diet-related change in catalytic subunit abundance. Despite lower IRS-1 levels ( approximately 35%) for CR vs. AL, IRS-1-p110 association in insulin-stimulated muscles was significantly (P < 0.05) enhanced by approximately 50%. Downstream of PI 3-kinase, CR compared with AL significantly enhanced Akt serine phosphorylation by 1.5-fold higher (P = 0.01) and 3-O-methylglucose transport by approximately 20% in muscles incubated with insulin. The increased ratio of PI 3-kinase catalytic to regulatory subunits favors enhanced insulin signaling, which likely contributes to greater Akt phosphorylation and improved insulin sensitivity associated with CR in skeletal muscle.  相似文献   

4.
The insulin/insulin-like growth factor signaling (IIS) cascade is highly conserved and regulates diverse physiological processes such as metabolism, lifespan, reproduction and immunity. Transgenic overexpression of Akt, a critical regulator of IIS, was previously shown to shorten mosquito lifespan and increase resistance to the human malaria parasite Plasmodium falciparum. To further understand how IIS controls mosquito physiology and resistance to malaria parasite infection, we overexpressed an inhibitor of IIS, phosphatase and tensin homolog (PTEN), in the Anopheles stephensi midgut. PTEN overexpression inhibited phosphorylation of the IIS protein FOXO, an expected target for PTEN, in the midgut of A. stephensi. Further, PTEN overexpression extended mosquito lifespan and increased resistance to P. falciparum development. The reduction in parasite development did not appear to be due to alterations in an innate immune response, but rather was associated with increased expression of genes regulating autophagy and stem cell maintenance in the midgut and with enhanced midgut barrier integrity. In light of previous success in genetically targeting the IIS pathway to alter mosquito lifespan and malaria parasite transmission, these data confirm that multiple strategies to genetically manipulate IIS can be leveraged to generate fit, resistant mosquitoes for malaria control.  相似文献   

5.
Animal steroid hormones stimulate extracellular Ca2+ influx into cells; however, the mechanism remains unclear. In this study, we determined that the Ca2+ influx induced by steroid hormone 20-hydroxyecdysone (20E) is mediated by the calcium release-activated calcium channel modulator 1 (CRACM1/Orai1). The Orai1 mRNA is highly expressed during midgut programmed cell death in the lepidopteran insect Helicoverpa armigera. 20E upregulated the expression of Orai1 in H. armigera larvae and in an epidermal cell line (HaEpi). Knockdown of Orai1 in HaEpi cells blocked 20E-induced Ca2+ influx, and the inhibitor of inositol 1, 4, 5-trisphosphate receptor (IP3R) Xestospongin (XeC) blocked 20E-induced Ca2+ influx, suggesting that 20E, via Orai1, induces stored-operated Ca2+ influx. Orai1 interacts with stromal interaction molecule 1(Stim1) to exert its function in 20E-induced Ca2+ influx. 20E promotes Orai1 aggregation through G-protein-coupled receptors, phospholipase C gamma 1, and Stim1. Knockdown of Orai1 in the HaEpi cell line repressed apoptosis and maintained autophagy under 20E regulation. Knockdown of Orai1 in larvae delayed pupation, repressed midgut apoptosis, maintained the midgut in an autophagic state, and repressed 20E-pathway gene expression. These results revealed that steroid hormone 20E, via Orai1, induces Ca2+ influx to promote the transition of midgut from autophagy to apoptosis.  相似文献   

6.
Insulin and insulin-like growth factor signaling (IIS) regulates cell death, repair, autophagy, and renewal in response to stress, damage, and pathogen challenge. Therefore, IIS is fundamental to lifespan and disease resistance. Previously, we showed that insulin-like growth factor 1 (IGF1) within a physiologically relevant range (0.013–0.13 µM) in human blood reduced development of the human parasite Plasmodium falciparum in the Indian malaria mosquito Anopheles stephensi. Low IGF1 (0.013 µM) induced FOXO and p70S6K activation in the midgut and extended mosquito lifespan, whereas high IGF1 (0.13 µM) did not. In this study the physiological effects of low and high IGF1 were examined in detail to infer mechanisms for their dichotomous effects on mosquito resistance and lifespan. Following ingestion, low IGF1 induced phosphorylation of midgut c-Jun-N-terminal kinase (JNK), a critical regulator of epithelial homeostasis, but high IGF1 did not. Low and high IGF1 induced midgut mitochondrial reactive oxygen species (ROS) synthesis and nitric oxide (NO) synthase gene expression, responses which were necessary and sufficient to mediate IGF1 inhibition of P. falciparum development. However, increased ROS and apoptosis-associated caspase-3 activity returned to baseline levels following low IGF1 treatment, but were sustained with high IGF1 treatment and accompanied by aberrant expression of biomarkers for mitophagy, stem cell division and proliferation. Low IGF1-induced ROS are likely moderated by JNK-induced epithelial cytoprotection as well as p70S6K-mediated growth and inhibition of apoptosis over the lifetime of A. stephensi to facilitate midgut homeostasis and enhanced survivorship. Hence, mitochondrial integrity and homeostasis in the midgut, a key signaling center for IIS, can be targeted to coordinately optimize mosquito fitness and anti-pathogen resistance for improved control strategies for malaria and other vector-borne diseases.  相似文献   

7.
8.
9.
10.
11.
12.
Putative roles of retinoblastoma protein in apoptosis   总被引:2,自引:0,他引:2  
Cell numbers are regulated by a balance between processes of proliferation and apoptosis (programmed cell death). Proper regulation in a cell requires an accurate co-ordination between these two processes. Indeed, it has recently been found that dysregulation of cell cycle progression is essential for the initiation of apoptosis. Retinoblastoma protein (RB) is an important tumour suppressor and a cell cycle regulator. Most recent studies suggest that RB also plays a regulatory role in the process of apoptosis. During the onset of apoptosis, the hyperphosphorylated form of RB (p120/hyper) is converted to a hypophosphorylated form (p115/hypo), which is mediated by a specific protein-serine/ threonine phosphatase activity. The p115/hypo/RB may play an active role in the regulation of apoptosis. Accompanied by the endonucleosomal fragmentation of DNA, the newly formed p115/hypo/RB is immediately cleaved by a protease that has properties of the interleukin-1beta-converting enzyme family. By contrast, the unphosphorylated form of RB (p110/unphos) remains uncleaved during apoptosis. Further studies suggest that p110/unphos/RB functions as an inhibitor of apoptosis. Therefore, a balance between RB phosphatases and kinases and consequent RB phosphorylation status may be important for the determination of cellular fate.  相似文献   

13.
The PI3K/Akt pathway is central for numerous cellular functions and is frequently deregulated in human cancers. The catalytic subunits of PI3K, p110, are thought to have a potential oncogenic function, and the regulatory subunit p85 exerts tumor suppressor properties. The fruit fly, Drosophila melanogaster, is a highly suitable system to investigate PI3K signaling, expressing one catalytic, Dp110, and one regulatory subunit, Dp60, and both show strong homology with the human PI3K proteins p110 and p85. We recently showed that p37δ, an alternatively spliced product of human PI3K p110δ, displayed strong proliferation-promoting properties despite lacking the catalytic domain completely. Here we functionally evaluate the different domains of human p37δ in Drosophila. The N-terminal region of Dp110 alone promotes cell proliferation, and we show that the unique C-terminal region of human p37δ further enhances these proliferative properties, both when expressed in Drosophila, and in human HEK-293 cells. Surprisingly, although the N-terminal region of Dp110 and the C-terminal region of p37δ both display proliferative effects, over-expression of full length Dp110 or the N-terminal part of Dp110 decreases survival in Drosophila, whereas the unique C-terminal region of p37δ prevents this effect. Furthermore, we found that the N-terminal region of the catalytic subunit of PI3K p110, including only the Dp60 (p85)-binding domain and a minor part of the Ras binding domain, rescues phenotypes with severely impaired development caused by Dp60 over-expression in Drosophila, possibly by regulating the levels of Dp60, and also by increasing the levels of phosphorylated Akt. Our results indicate a novel kinase-independent function of the PI3K catalytic subunit.  相似文献   

14.
Deleted in breast cancer-1 (DBC1) contributes to the regulation of cell survival and apoptosis. Recent studies demonstrated that DBC is phosphorylated at Thr454 by ATM/ATR kinases in response to DNA damage, which is a critical event for p53 activation and apoptosis. However, how DBC1 phosphorylation is regulated has not been studied. Here we show that protein phosphatase 4 (PP4) dephosphorylates DBC1, regulating its role in DNA damage response. PP4R2, a regulatory subunit of PP4, mediates the interaction between DBC1 and PP4C, a catalytic subunit. PP4C efficiently dephosphorylates pThr454 on DBC1 in vitro, and the depletion of PP4C/PP4R2 in cells alters the kinetics of DBC1 phosphorylation and p53 activation, and increases apoptosis in response to DNA damage, which are compatible with the expression of the phosphomimetic DBC-1 mutant (T454E). These suggest that the PP4-mediated dephosphorylation of DBC1 is necessary for efficient damage responses in cells.  相似文献   

15.
16.
17.
18.
Intraerythrocytic development of the human malaria parasite Plasmodium falciparum appears as a continuous flow through growth and proliferation. To develop a greater understanding of the critical regulatory events, we utilized piggyBac insertional mutagenesis to randomly disrupt genes. Screening a collection of piggyBac mutants for slow growth, we isolated the attenuated parasite C9, which carried a single insertion disrupting the open reading frame (ORF) of PF3D7_1305500. This gene encodes a protein structurally similar to a mitogen-activated protein kinase (MAPK) phosphatase, except for two notable characteristics that alter the signature motif of the dual-specificity phosphatase domain, suggesting that it may be a low-activity phosphatase or pseudophosphatase. C9 parasites demonstrated a significantly lower growth rate with delayed entry into the S/M phase of the cell cycle, which follows the stage of maximum PF3D7_1305500 expression in intact parasites. Genetic complementation with the full-length PF3D7_1305500 rescued the wild-type phenotype of C9, validating the importance of the putative protein phosphatase PF3D7_1305500 as a regulator of pre-S-phase cell cycle progression in P. falciparum.  相似文献   

19.
Reversible protein phosphorylation catalyzed by kinases and phosphatases is a major form of posttranslational regulation that plays a central role in regulating many signaling pathways. While large families of both protein kinases and protein phosphatases have been identified in plants, kinases outnumber phosphatases. This raises the question of how a relatively limited number of protein phosphatases can maintain protein phosphorylation homeostasis in a cell. Recent studies have shown that Arabidopsis FyPP1 (Phytochrome-associated serine/threonine protein phosphatase 1) and FyPP3 encode the catalytic subunits of protein phosphatase 6 (PP6), and that they directly binds to the A subunits of protein phosphatase 2A (PP2AA proteins), and SAL (SAPS domain-like) proteins to form the heterotrimeric PP6 holoenzyme complex. Emerging evidence is suggesting that PP6, acts in opposition with multiple classes of kinases, to regulate the phosphorylation status of diverse substrates and subsequently numerous developmental processes and responses to environmental stimuli.  相似文献   

20.
A phosphorylated regulatory subunit of cyclic AMP-dependent protein kinase (type II) was purified to homogeneity from inorganic [32P]phosphate-injected rats.A new method of measuring the phosphorylation reaction was developed. It was found that this regulatory subunit was phosphorylated in cells and comprised 60, 82 and 55% of the total regulatory subunit in brain, heart and liver cytosol fractions from rats, respectively.Dephosphorylation was stimulated by cyclic nucleotides. The Ka values for cyclic AMP and cyclic IMP were 0.30 and 1.0 μM, respectively. Purified phosphoprotein phosphatase could dephosphorylate the regulatory subunit and this reaction was also stimulated by cyclic nucleotides with similar Ka values. The inhibitors of phosphoprotein phosphatase, NaF and ZnCl2, protected against dephosphorylation unless ADP or cyclic AMP were present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号