首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Previously, we reported the discovery of a new compound, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) which was produced from oleic acid by a new bacterial isolate PR3 [6,7]. The reaction is unique in that it involves a hydroxylation at two positions and a rearrangement of the double bond of the substrate molecule. Now, we have isolated another compound from the reaction mixture determined by GC/MS to be 10-hydroxy-8-octadecenoic acid (HOD). NMR and IR data indicate that the unsaturation is probablycis. The optimum pH and temperature for the production of HOD by strain PR3 were 6.5 and 30°C, about the same as those for DOD. However, the amount of HOD detected remained small throughout an 48-h reaction period during which the amount of DOD increased sharply. At 48 h of reaction, the ratio between HODDOD was 110. HOD may be an intermediate in the biosynthesis of DOD from oleic acid.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

2.
Summary Sixty-two cultures from the ARS Culture Collection and 10 cultures isolated from soil and water samples collected in Illinois were screened for their ability to convert agricultural oils to value-added industrial chemicals. A new compound, 7,10-dihydroxy-8-(E)-octadecenoic acid (DOD) was produced from oleic acid by a new strain,Pseudomonas sp. PR3 isolated from a water sample in Morton, IL. Strain PR3 is a motile, small rod-shaped, Gram-negative bacterium. It has multiple polar flagellae and is oxidase-positive. Strain PR3 grows aerobically and cannot grow anaerobically. The strain produces white, smooth colonies on agar plate and no water-soluble pigment. The yield of the product was greater than 60%. The optimum time, pH and temperature for the production of DOD were: 2 days, 7.0, and 30°C, respectively. Glycerol and dextrose support the growth of strain PR3, but the cells grown from the former failed to catalyse the conversion of oleic acid to DOD. The production of DOD is unique in that it involves a hydroxylation at two positions and a rearrangement of the double bond of the substrate molecule.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

3.
Hydroxy fatty acids are considered as important value-added product for industrial application because of their special properties such as higher viscosity and reactivity. Microbial production of the hydroxy fatty acids from various fatty acid substrates have been actively studied using several microorganisms. The new bacterial isolate Pseudomonas aeruginosa (PR3) had been reported to produce mono-, di-, and tri-hydroxy fatty acids from different unsaturated fatty acids. Of those, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) and 7,10,12-trihydroxy-8(E)-octadecenoic acid (TOD) were produced from oleic acid and ricinoleic acid, respectively. Based on the postulated common metabolic pathway involved in DOD and TOD formation by PR3, it was assumed that palmitoleic acid containing a singular 9-cis double bond, common structural property sharing with oleic acid and ricinoleic acid, could be utilized by PR3 to produce hydroxy fatty acid. In this study, we tried to use palmitoleic acid as substrate for production of hydroxy fatty acid by PR3 and firstly confirmed that PR3 could produce 7,10-dihydroxy-8(E)-hexadecenoic acid (DHD) with 23% yield from palmitoleic acid. DHD production was peaked at 72 h after the substrate was added to the 24-h-culture.  相似文献   

4.
Hydroxy fatty acids (HFA) have gained importance because of their special properties such as higher viscosity and reactivity compared with other non-hydroxy fatty acids. The bacterial isolate Pseudomonas aeruginosa (PR3) was reported to produce mono-, di-, and trihydroxy fatty acids from different unsaturated fatty acids. Of those, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) was produced with high yield from oleic acid by PR3. Up to now, the substrates used for microbial HFA production were free fatty acids. However, it is possible to utilize triacylglycerides, specifically triolein containing three oleic groups, as a substrate by microbial enzyme system involved in HFA production from oleic acid. In this study we used triolein as a substrate and firstly report that triolein could be efficiently utilized by PR3 to produce DOD. Triolein was first hydrolyzed into oleic acid by the triolein-induced lipase and then the released oleic acid was converted to DOD by PR3. Results from this study demonstrated that natural vegetable oils, without being intentionally hydrolyzed, could be used as efficient substrates for the microbial production of value-added hydroxy fatty acids.  相似文献   

5.
Pseudomonas aeruginosa strain PR3 (NRRL B-18602) converts oleic acid to a novel compound, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD). The bioconversion was scaled up in a 7-l bench-top, stirred-batch reactor to produce DOD for testing of potential industrial uses. Aeration was supplied continuously from the top through two ports on the headplate and periodically through a bottom sparger, in conjunction with the use of marine impellers for agitation. This unique aeration arrangement maintained the dissolved O2 concentration in the 40–60% range during the period of maximal bioconversion and it also avoided excessive medium foaming during the reaction. Furthermore, the level of dissolved O2 in the first 24 h of reaction played an important role in the initial rate of DOD production. DOD production reached a plateau after 72 h with a yield up to 100 g (or 50% recovery) from a total of 9 l medium from two reactors run simultaneously. The final culture broth was processed using newly adapted procedures in the pilot plant that included crystallization of DOD from ethyl acetate solution at –15°C. The newly developed bioprocess will serve as a platform for the scale-up production of other value-added products derived from vegetable oils and their component fatty acids.  相似文献   

6.
Microbial modification of naturally occurring materials is one of the efficient ways to add new values to them. Hydroxylation of free unsaturated fatty acids by microorganism is a good example of those modifications. Among microbial strains studied for that purpose, a new bacterial isolate Pseudomonas aeruginosa PR3 has been well studied to produce several hydroxy fatty acids from different unsaturated fatty acids. Of those hydroxy fatty acids, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) was efficiently produced from oleic acid by strain PR3. However, it was highly plausible to use vegetable oil containing oleic acid rather than free oleic acid as a substrate for DOD production by strain PR3. In this study, we firstly tried to use olive oil containing high content of oleic acid as a substrate for DOD production. DOD production from olive oil was confirmed by structural determination with GC, TLC, and GC/MS analysis. DOD production yield from olive oil was 53.5%. Several important environmental factors were also tested. Galactose and glutamine were optimal carbon and nitrogen sources, and magnesium ion was critically required for DOD production from olive oil. Results from this study demonstrated that natural vegetable oils containing oleic acid could be used as efficient substrate for the production of DOD by strain PR3.  相似文献   

7.
A bacterial isolate, Pseudomonas aeruginosa (PR3), has been reported to produce a new compound, 7,10,12-trihydroxy-8(E)-octadecenoic acid (TOD), from ricinoleic acid (Kuo TM, LK Manthey and CT Hou. 1998. J Am Oil Chem Soc 75: 875–879). The reaction is unique in that it involves an introduction of two additional hydroxyl groups at carbon 7 and 10 and a rearrangement of the double bond from carbon 9–10 (cis) to 8–9 (trans). In an effort to elucidate the metabolic pathway involved in the formation of TOD from ricinoleic acid by PR3, we have isolated another compound from the reaction mixture using HPLC. The structure of the new compound was determined to be 10, 12-dihydroxy-8(E)-octadecenoic acid (DHOD) by GC/MS, FTIR, and NMR. The structural similarity between DHOD and TOD and the results from the time course study of the above two compounds strongly suggested that DHOD was an intermediate in the bioconversion of ricinoleic acid to TOD by PR3. The optimum pH and temperature for the production of DHOD from ricinoleic acid by PR3 was 6.5 and 25°C, respectively. This is the first report on the production of 10,12-dihydroxy-8(E)-octadecenoic acid from ricinoleic acid by PR3. Journal of Industrial Microbiology & Biotechnology (2000) 24, 167–172. Received 28 July 1999/ Accepted in revised form 18 November 1999  相似文献   

8.
Hydroxy fatty acids (HFAs), originally found in small amount mainly from plant systems, are well known to have special properties such as higher viscosity and reactivity compared with other normal fatty acids. Recently, various microbial strains were tested to produce HFAs from different unsaturated fatty acids. Among those microbial strains tested, Pseudomonas aeruginosa PR3 are well known to utilize various unsaturated fatty acids to produce mono-, di-, and tri-HFAs. Previously, we reported that strain PR3 could utilize triolein as a substrate for the production of 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) via the induction of lipase activity (Chang et al., Appl Microbiol Biotechnol, 74:301–306, 2007). In this study, we focused on the development of the optimal environmental conditions for DOD production from triolein by PR3. Optimal initial medium pH and incubation temperature were pH 8.0 and 25°C, respectively. Magnesium ion was essentially required for DOD production. Optimal inoculum size, time for substrate addition, and substrate concentration were 1%, 12 to 24 h, and 300 mg, respectively.  相似文献   

9.
Trihydroxy unsaturated fatty acids with 18 carbons have been reported as plant self-defense substances. Their production in nature is rare and is found mainly in plant systems. Previously, we reported that a new bacterial isolate, Pseudomonas aeruginosa PR3, converted oleic acid and ricinoleic acid to 7,10-dihydroxy-8(E)-octadecenoic acid and 7,10,12-trihydroxy-8(E)-octadecenoic acid, respectively. Here we report that strain PR3 converted linoleic acid to two compounds: 9,10,13-trihydroxy-11(E)-octadecenoic acid (9,10,13-THOD) and 9,12,13-trihydroxy-10(E)-octadecenoic acid (9,12,13-THOD). Stereochemical analyses showed the presence of 16 different diastereomers — the maximum number possible. The optimum reaction temperature and pH for THOD production were 30°C and 7.0, respectively. The optimum linoleic acid concentration was 10 mg/ml. The most effective single carbon and nitrogen sources were glucose and sodium glutamate, respectively. However, when a mixture of yeast extract (0.05%), (NH4)2HPO4 (0.2%), and NH4NO3 (0.1%) was used as the nitrogen source, THOD production was higher by 8.3% than when sodium glutamate was the nitrogen source. Maximum production of total THOD with 44% conversion of substrate was achieved at 72 h of incubation, after which THOD production plateaued up to 240 h. THOD production and cell growth increased in parallel with glucose concentration up to 0.3%, after which cell growth reached its maximum and THOD production did not increase. These results suggested that THODs were not metabolized by strain PR3. This is the first report of microbial production of 9,10,13- and 9,12,13-THOD from linoleic acid. Journal of Industrial Microbiology & Biotechnology (2000) 25, 109–115. Received 18 March 2000/ Accepted in revised form 09 June 2000  相似文献   

10.
Summary A bacterium, NRRL B-14797, isolated from composted manure, converted oleic acid exclusively to 10(R)-hydroxystearic acid in 3-day batch cultures. 9(Z)-Unsaturated fatty acids in a lipid extract from soybean soapstock were also hydrated effectively. Aerobic bioconversions by isolate B-14797 were compared with those byPseudomonas B-2994 andNocardia 5767, which produce mixtures of 10-hydroxy- and 10-ketostearic acids. The results of studies with resting cells and cell-free extracts were consistent with action of a hydratase and absence of secondary alcohol dehydrogenase in strain B-14797.The mention of firm names or trade products does not imply that they are endorsed or recommended by the US Department of Agriculture over other firms or similar products not mentioned.  相似文献   

11.
Hydroxy fatty acids (HFAs), originally obtained in small amounts from plant systems, are good examples of structurally modified lipids, and they render special properties such as higher viscosity and reactivity compared to normal fatty acids. Based on these properties, HFAs possess high industrial potential in a wide range of applications. Recently, various microbial strains were tested for the production of HFAs from different unsaturated fatty acids since HFA production is limited to plant systems. Among the microbial strains tested, Pseudomonas aeruginosa PR3 has been well studied for the production of 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) from oleic acid. Previously, we reported that strain PR3 could utilize triolein instead of oleic acid as a substrate for the production of DOD (Appl. Microbiol. Biotechnol. 2007, 74: 301–306). In this study, we focused on utilization of vegetable oil as a substrate for DOD production by PR3. Consequently, strain PR3 efficiently utilized high oleic safflower oil as a substrate for DOD production. Optimal initial medium pH and incubation time were pH 8.0 and 72 h, respectively. Optimal carbon and nitrogen sources were fructose and glutamine, respectively. Results from this study demonstrate that normal vegetable oils could be used as efficient substrates for the production of value-added HFAs by microbial bioconversion.  相似文献   

12.
Pseudomonas aeruginosa PR3 (NRRL B-18602) converts oleic acid to a novel compound, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD). Parameters that included medium volume, cell growth time, gyration speed, pH, substrate concentration, and dissolved oxygen concentration were evaluated for a scale-up production of DOD in batch cultures using Fernbach flasks and a bench-top bioreactor. Maximum production of about 2 g DOD (38% yield) was attained in Fernbach flasks containing 500 ml medium when cells were grown at 28°C and 300 rpm for 16–20 h and the culture was adjusted to pH 7 prior to substrate addition. Increases of medium volume and substrate concentration failed to enhance yield. When batch cultures were initially conducted in a reactor, excessive foaming occurred that made the bioconversion process inoperable. This was overcome by a new aeration mechanism that provided adequate dissolved oxygen to the fermentation culture. Under the optimal conditions of 650 rpm, 28°C, and 40–60% dissolved oxygen concentration, DOD production reached about 40 g (40% yield) in 4.5 L culture medium using a 7-L reactor vessel. This is the first report on a successful scale-up production of DOD. Received: 26 September 2002 / Accepted: 24 October 2002  相似文献   

13.
In previous studies, a new microbial strain ALA2 was isolated which produced many new products from linoleic acid [Gardner H.W., Hou C.T., Weisleder D. and Brown W. 2000. Lipids 35: 1055–1060; Hou C.T. 1998. 12,13,17-Trihydroxy-9(Z)-Octodecenoic acid and derivatives and microbial isolate for production of the acid. US Patent No. 5, 852, 196]. Strain ALA2 was preliminary identified as Clavibacter sp. based on its physiological and fatty acid profiles. To determine if strain ALA2 is the optimal strain for industrial applications, other related strains were screened for their abilities to convert linoleic acids. Two strains from Clavibacter and 20 type strains from the phylogenetically related genus Microbacterium were studied. Surprisingly, all of these strains tested showed very little or no activity in converting linoleic acid. On reexamination of the identification of strain ALA2, the sequence of the 16S ribosomal RNA gene of ALA2 was found to be 99% identical to that of Bacillus megaterium and the strain was also found to have 76.3% DNA homology to the B. megaterium type strain. Therefore, strain ALA2 is now reclassified as B. megaterium. Screening of 56 strains of B megaterium strains showed that many of them were able to produce reasonable amounts of hydroxyl fatty acids from linoleic acid, although strain ALA2 possessed the greatest activity.  相似文献   

14.
Zeleny R  Kolarich D  Strasser R  Altmann F 《Planta》2006,224(1):222-227
The long held but challenged view that plants do not synthesize sialic acids was re-evaluated using two different procedures to isolate putative sialic acid containing material from plant tissues and cells. The extracts were reacted with 1,2-diamino-4,5-methylene dioxybenzene and the fluorescently labelled 2-keto sugar acids analysed by reversed phase and normal phase HPLC and by HPLC–electrospray tandem mass spectrometry. No N-glycolylneuraminic acid was found in the protein fraction from Arabidopsis thaliana MM2d cells. However, we did detect 3-deoxy-d-manno-octulosonic acid and trace amounts (3–18 pmol/g fresh weight) of a compound indistinguishable from N-acetylneuraminic acid by its retention time and its mass spectral fragmentation pattern. Thus, plant cells and tissues contain five orders of magnitude less sialic acid than mammalian tissues such as porcine liver. Similar or lower amounts of N-acetylneuraminic acid were detected in tobacco cells, mung bean sprouts, apple and banana. Yet even yeast and buffer blanks, when subjected to the same isolation procedures, apparently contained the equivalent of 5 pmol of sialic acid per gram of material. Thus, we conclude that it is not possible to demonstrate unequivocally that plants synthesize sialic acids because the amounts of these sugars detected in plant cells and tissues are so small that they may originate from extraneous contaminants.  相似文献   

15.
A fermentation process for the microbial production of a new lipid surface-active compound, 7,10-dihydroxy-8 (E)-octadecenoic acid (OCD), has been established using a vegetable oil as carbon source in a coordinated carbon/nitrogen feed strategy. The surfactant was produced during the logarithmic growth phase. Aeration was the most critical parameter for product formation. Up to 7 g product/l was produced.The authors are with the Laboratorio de Microbiologia, Facultad de Farmacia, Avenida Diagonal 643, Universidad de Barcelona, 08028 Barcelona, Spain  相似文献   

16.
One solution to the global crisis of antibiotic resistance is the discovery of novel antimicrobial compounds for clinical application. Marine organisms are an attractive and, as yet, relatively untapped resource of new natural products. Cell extracts from the marine diatom, Phaeodactylum tricornutum, have antibacterial activity and the fatty acid, eicosapentaenoic acid (EPA), has been identified as one compound responsible for this activity. During the isolation of EPA, it became apparent that the extracts contained further antibacterial compounds. The present study was undertaken to isolate these additional antibacterial factors using silica column chromatography and reverse-phase high-performance liquid chromatography. Two antibacterial fractions, each containing a pure compound, were isolated and their chemical structures were investigated by mass spectrometry and nuclear magnetic resonance spectroscopy. The antibacterial compounds were identified as the monounsaturated fatty acid (9Z)-hexadecenoic acid (palmitoleic acid; C16:1 n-7) and the relatively unusual polyunsaturated fatty acid (6Z, 9Z, 12Z)-hexadecatrienoic acid (HTA; C16:3 n-4). Both are active against Gram-positive bacteria with HTA further inhibitory to the growth of the Gram-negative marine pathogen, Listonella anguillarum. Palmitoleic acid is active at micro-molar concentrations, kills bacteria rapidly, and is highly active against multidrug-resistant Staphylococcus aureus. These free fatty acids warrant further investigation as a new potential therapy for drug-resistant infections.  相似文献   

17.
Employing a mineral salts medium containing Tween 80 as the primary carbon source, a strain of Bacillus stearothermophilus was isolated which was able to hydrolyse selected second and third-generation pyrethroids to non-insecticidal products. Of a range of pyrethroid insecticides the trans-isomer of permethrin was the most readily transformed by this microbial isolate, whilst flumethrin was the least. 3-Phenoxybenzoic acid and the respective halovinyl or haloacid moieties were detected as the major hydrolytic products of the pyrethroids. It is believed that 3-phenoxybenzoic acid was formed from 3-phenoxybenzyl alcohol which was not however detected as an intermediate in these systems. 3-Phenoxybenzoic acid was further transformed to 4-hydroxy-3-phenoxybenzoic acid. A potential metabolic pathway has been described.  相似文献   

18.
Pseudomonas aeruginosa PR3 (NRRL B-18602) converts oleic acid to a novel compound, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD). Parameters that included medium volume, cell growth time, gyration speed, pH, substrate concentration, and dissolved oxygen concentration were evaluated for a scale-up production of DOD in batch cultures using Fernbach flasks and a bench-top bioreactor. Maximum production of about 2 g DOD (38% yield) was attained in Fernbach flasks containing 500 ml medium when cells were grown at 28 degrees C and 300 rpm for 16-20 h and the culture was adjusted to pH 7 prior to substrate addition. Increases of medium volume and substrate concentration failed to enhance yield. When batch cultures were initially conducted in a reactor, excessive foaming occurred that made the bioconversion process inoperable. This was overcome by a new aeration mechanism that provided adequate dissolved oxygen to the fermentation culture. Under the optimal conditions of 650 rpm, 28 degrees C, and 40-60% dissolved oxygen concentration, DOD production reached about 40 g (40% yield) in 4.5 L culture medium using a 7-L reactor vessel. This is the first report on a successful scale-up production of DOD.  相似文献   

19.
Protocatechuic acid (PCA), chlorogenic acid (CA) and luteolin (LT) are plant phenols found in Chinese medicinal herbs such as Lonicera japonica. Cytotoxicity assays showed that PCA, CA and LT (at 100 μmol/L) effectively killed the HepG2 hepatocellular carcinoma cells. Among these three naturally occurring compounds, only PCA was capable of stimulating the c-Jun N-terminal kinase (JNK) and p38 subgroups of the mitogen-activated protein kinase (MAPK) family. Coincidently, PCA-induced cell death was rescued by specific inhibitors for JNK and p38, while the cytotoxicities of CA and LT were partially eliminated by the antioxidant effect of N-acetyl-L-cysteine (NAC). Further investigation demonstrated that the aqueous extract of Lonicera japonica also triggered HepG2 cell death in a JNK-dependent manner, but the amount of PCA alone in this herbal extract was insufficient to contribute the subsequent cytotoxic effect. Collectively, our results suggest that PCA is a naturally occurring compound capable of inducing JNK-dependent hepatocellular carcinoma cell death. An erratum to this article is available at.  相似文献   

20.
Summary >Screening for the bacteriocin production of strains of lactic acid bacteria from various meat and meat products resulted in the detection of a bacteriocin-producing Lactococcus lactis subsp. cremoris CTC 204, isolated from chicken. The bacteriocin inhibited not only closely related lactic acid bacteria (Lactobacillus helveticus), but also pathogenic microorganisms (Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, and Clostridium perfringens). It was inactivated by α-chymotrypsin, ficin, papain, and pronase E, but not by lipase or pepsin. This compound was heat stable even at autoclaving temperature (121°C for 10min) and was produced during refrigerated storage. It was also active over a wide pH range (2–10), but the highest activity was observed in the lower pH range. The results indicated that dipping raw beef in the bacteriocin produced by strain CTC 204 could contribute to the extension of the shelf life of refrigerated bovine meat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号