首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the last few years, our knowledge of genetically determined causes of short stature has greatly increased by reports of challenging patients, who offered the opportunity to study genes that play a role in growth. Since the first paper that showed the etiology of Laron syndrome [Godowski PJ, et al: Proc Natl Acad Sci USA 1989;86:8083-8087], many mutations in the growth hormone (GH) receptor have been identified. Recently, new mutations or deletions have been found in several components of the GH-insulin-like growth factor-I (IGF-I) axis: a homozygous mutation of the GH1 gene, resulting in a bio-inactive GH; mutations in the STAT5b gene, which plays a major role in the GH signal transduction; a homozygous missense mutation in the IGF-I gene; heterozygous mutations in the IGF-I receptor gene and a homozygous deletion of the acid-labile subunit gene. In this mini review, we describe the clinical and biochemical features of these genetic defects. Genetic analysis has become essential in the diagnostic workup of a patient with short stature. However, regarding the time consuming nature of molecular analysis, it is important to carefully select the patient for specific genetic evaluation. To help in this selection process, we developed flowcharts, based on the recently described patients, that can be used as guidelines in the diagnostic process of patients with severe short stature of unknown origin.  相似文献   

2.
The correlation between the molecular defects of the GH receptor (R), psychosocial development and brain abnormalities were evaluated in 10 patients with Laron syndrome (LS), in whom all data were available. The findings revealed that the intelligence quotient (IQ) and abnormalities in the brain of the patients with LS differ with various molecular defects of the GH-receptor. The most severe mental deficits and brain pathology occurred in patients with 3, 5, 6 exon deletion. Patients with point mutations in exons 2, 4 and 7 presented various degrees of medium to mild CNS abnormalities that correlated with the IQ. Notably, the patient with the E180 splice mutation in exon 6 had a normal IQ, which fits the report on normal IQ in a large Ecuadorian cohort with the same mutation. This is the first report to support a correlation between IQ, brain abnormalities and localization of the molecular defects in the GH-R gene. As all patients with LS are IGF-I-deficient, it must be assumed that other as yet unknown factors related to the molecular defects in the GH-R are the major cause of the differences in intellect and brain abnormalities.  相似文献   

3.
Transfection of the insulin-producing rat islet tumor cell line RIN-5AH with a full length cDNA of the rat hepatic growth hormone (GH) receptor (GH-R1-638) augments the GH-responsive insulin synthesis in these cells. Using this functional system we analyzed the effect of COOH-terminal truncation of the GH receptor. Two mutated cDNAs encoding truncated GH receptors, GH-R1-294 and GH-R1-454, respectively, were generated by site-directed mutagenesis and transfected into the RIN cells. Both receptor mutants were expressed on the cell surface and displayed normal GH binding affinity. Whereas GH-R1-638 had a molecular mass of about 110 kDa, GH-R1-294 and GH-R1-454 showed molecular masses of 49 and 80 kDa, respectively. Cells expressing GH-R1-454 internalized GH to a similar extent as cells transfected with the full length receptor and the parent cell line, but GH-R1-294-expressing cells showed a markedly reduced capability of GH internalization. In contrast to cells transfected with GH-R1-638, none of the cell lines expressing truncated GH receptors exhibited any increase of the GH-stimulated insulin production. We conclude that domains within the COOH-terminal half of the cytoplasmic part of the GH receptor are required for transduction of the signal for GH-stimulated insulin synthesis, whereas cytoplasmic domains proximal to the transmembrane region are involved in receptor-mediated GH internalization.  相似文献   

4.
Comparison between the skeletal remains of Homo floresiensis and the auxological and roentgenological findings in a large Israeli cohort of patients with Laron Syndrome (LS, primary or classical GH insensitivity or resistance) revealed striking morphological similarities, including extremely small stature and reduced cranial volume. LS is an autosomal recessive disease caused by a molecular defect of the Growth Hormone (GH) receptor or in the post-receptor cascades. Epidemiological studies have shown that LS occurs more often in consanguineous families and isolates, and it has been described in several countries in South East Asia. It is our conclusion that the findings from the island of Flores, which were attributed to a new species of the genus Homo, may in fact represent a local, highly inbred, Homo sapiens population in whom a mutation for the GH receptor had occurred.  相似文献   

5.
《Endocrine practice》2015,21(12):1395-1402
Objective: To describe the characteristics of untreated and recombinant insulin-like growth factor 1 (IGF-1)- treated patients with the Laron syndrome (LS) as seen in our clinic over a period of over 50 years. In 1966, we reported a new disease, characterized by dwarfism (-4 to -10 height standard deviation score) typical facial features, small head circumference, obesity, and small genitalia. They resembled congenital growth hormone (GH) deficiency but had high levels of serum human GH and low IGF-1. Since then, our cohort grew to 69 patients, consisting of Jews of oriental origin, Muslins, and Christians originating from the Middle East or Mediterranean area. Many belong to consanguineous families.Methods: Molecular genetic investigations revealed that these patients had deletions or mutations in the GH receptor gene, but only individuals homozygous for this defect express the disease, coined “Laron syndrome” (LS; Online Mendelian Inheritance in Man# 262500).Results: During childhood, LS patients grow slowly, have a retarded bone age and sexual development, but reach full sexual development. The treatment of LS is recombinant IGF-1, which stimulates the linear growth but increases the degree of obesity. Adult-age patients with congenital IGF-1 deficiency are protected from cancer but can develop insulin resistance, glucose intolerance, diabetes, and cardiovascular disease. Due to pathologic changes in the brain related to the type of molecular defect in the GH receptor, they vary in their intellectual capacity. A number of LS patients marry, and with help of pregestational genetic diagnosis, have healthy children.Conclusion: LS is a unique disease model presenting a dissociation between GH and IGF-1 activity.Abbreviations:GH = growth hormonehGH = human growth hormoneIGF-1 = insulin-like growth factor 1LS = Laron syndromerIGF-1 = recombinant IGF-1SDS = standard deviation score  相似文献   

6.

Background

Human height is a complex trait with a strong genetic basis. Recently, a significant association between rare copy number variations (CNVs) and short stature has been identified, and candidate genes in these rare CNVs are being explored. This study aims to evaluate the association between mutations in ARID1B gene and short stature, both the syndromic and non-syndromic form.

Results

Based on a case-control study of whole genome chromosome microarray analysis (CMA), three overlapping CNVs were identified in patients with developmental disorders who exhibited short stature. ARID1B, a causal gene for Coffin Siris syndrome, is the only gene encompassed by all three CNVs. A following retrospective genotype-phenotype analysis based on a literature review confirmed that short stature is a frequent feature in those Coffin-Siris syndrome patients with ARID1B mutations. Mutation screening of ARID1B coding regions was further conducted in a cohort of 48 non-syndromic short stature patients,andfour novel missense variants including two de novo mutations were found.

Conclusion

These results suggest that haploinsufficient mutations of ARID1B are associated with syndromic short stature including Coffin-Siris syndrome and intellectual disability, while rare missense variants in ARID1B are associated with non-syndromic short stature. This study supports the notion that mutations in genes related to syndromic short stature may exert milder effect and contribute to short stature in the general population.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1898-1) contains supplementary material, which is available to authorized users.  相似文献   

7.
BACKGROUND/AIM: Insulin-like growth factor I (IGF-I) and insulin-like growth factor binding protein 3 (IGFBP-3) generation tests are both sensitive and specific measures of growth hormone (GH) sensitivity. Recently, the question of reproducibility of IGF generation tests has been raised. We report our analysis of the correlation of low- and high-dose GH IGF-I and IGFBP-3 generation tests among patients with GH deficiency, GH insensitivity, and idiopathic short stature. METHODS: A total of 198 subjects were randomized to either high- or low-dose GH for 7 days; the alternate dose was received after a 2-week washout period. Samples were collected at baseline and on days 5 and 8 of GH administration. RESULTS: The serum concentrations of IGF-I and IGFBP-3 correlated significantly from one test to the other, regardless of the diagnosis. In normal subjects and patients with GH insensitivity and GH deficiency, the delta over baseline in IGF-I and IGFBP-3 in the low-dose test was highly predictive of the delta values in the high-dose test. The delta correlation was greatly diminished, however, in the patient population having idiopathic short stature. CONCLUSIONS: These observations support partial GH insensitivity effecting IGF-I generation specifically, as a possible etiology for idiopathic short stature, and thus such patients may warrant appropriate biochemical and/or molecular evaluation for partial GH insensitivity.  相似文献   

8.
Although used as a therapeutic for 50 years, it is only recently that the application of molecular techniques has provided a basis for understanding growth hormone's (GH) clinical actions. This article reviews progress in our current knowledge of the molecular mechanism of growth hormone (GH) receptor activation based on a number of physicochemical techniques, and documents insights gained into the means used by the activated GH receptor to control the expression of genes regulating growth and metabolism. These findings are related to disorders of short stature, and the therapeutic consequences are summarized.  相似文献   

9.
We report on a 13-year-old girl who was the first child of nonconsanguineous parents, and who suffered from short stature accompanied with mental retardation, generalized hyperpigmentation of the skin and craniofacial findings. Her cardiological examination revealed atrial septal defect, mitral valve prolapsus and atrial septal aneurysm. Brain scans revealed dilatation of the third and lateral ventricles and a pontine cleft. Growth hormone (GH) deficiency was observed during the evaluation of GH/IGF-I axis. All the laboratory tests performed including metabolic screening, conventional karyotype and oligonucleotide array were normal. Mutation analysis of the C2ORF3 7 gene revealed no mutation. The clinical signs seen in this patient likely represent a new dysmorphological syndrome which has not been previously described.  相似文献   

10.
Genetic analysis of short stature   总被引:4,自引:0,他引:4  
Short stature is a major concern for patients and their parents, and represents a diagnostic challenge to the clinician. A correct diagnosis is of particular importance in view of the availability of effective, but costly, therapy in a small subset of cases. Many different genetic etiologies of short stature are known. Therefore, chromosome as well as molecular analysis are requisite diagnostic investigations in children with short stature. Particularly in the group of children with idiopathic short stature, possibilities of molecular analysis are often underestimated. Important options are UPD7 and the FGFR3, SHOX, GH1 and GHR genes. Furthermore, analysis of the IGF and IGF1R genes should be considered. We propose a flow chart for molecular analysis in short stature.  相似文献   

11.
Noonan syndrome (NS) is a phenotypically heterogeneous syndrome which is frequently associated with short stature. Recent genetic investigations have identified mutations in five genes, namely PTPN11, KRAS, SOS1, NF1 and RAF1 in patients with the NS phenotype. PTPN11 is the commonest, being present in approximately 50% of cases. The degree of short stature in children does not associate closely with the presence of mutations, however some PTPN11-positive patients have decreased GH-dependent growth factors consistent with mild GH insensitivity. GH therapy, using doses similar to those approved for Turner syndrome (TS), induced short-term increases in height velocity over 1-3 years, and may improve final adult height with longer-term treatment.  相似文献   

12.
We have previously reported (Bauer MK, Breier BH, Bloomfield FH, Jensen EC, Gluckman PD, and Harding JE. J Endocrinol 177: 83-92, 2003) that a chronic pulsatile infusion of growth hormone (GH) to intrauterine growth-restricted (IUGR) ovine fetuses increased fetal circulating IGF-I levels without increasing fetal growth. We hypothesized a cortisol-induced upregulation of fetal hepatic GH receptor (GH-R) mRNA levels, secondary increases in IGF-I mRNA levels, and circulating IGF-I levels, but a downregulation of the type I IGF receptor (IGF-IR) as an explanation. We, therefore, measured mRNA levels of genes of the somatotrophic axis by real-time RT-PCR in fetal and placental tissues of fetuses with IUGR (induced by uteroplacental embolization from 110- to 116-days gestation) that received either a pulsatile infusion of GH (total dose 3.5 mg/day) or vehicle from 117-126 days and in control fetuses (n = 5 per group). Tissues were collected at 127 days (term, 145 days). Fetal cortisol concentrations were significantly increased in IUGR fetuses. However, in liver, GH-R, but not IGF-I or IGF-IR, mRNA levels were decreased in both IUGR groups. In contrast, in placenta, GH-R, IGF-I, and IGF-IR expression were increased in IUGR vehicle-infused fetuses. GH infusion further increased placental GH-R and IGF-IR, but abolished the increase in IGF-I mRNA levels. GH infusion reduced IGF-I expression in muscle and increased GH-R but decreased IGF-IR expression in kidney. IUGR increased hepatic IGF-binding protein (IGFBP)-1 and placental IGFBP-2 and -3 mRNA levels with no further effect of GH infusion. In conclusion, the modest increases in circulating cortisol concentrations in IUGR fetuses did not increase hepatic GH-R mRNA expression and, therefore, do not explain the increased circulating IGF-I levels that we found with GH infusion, which are likely due to reduced clearance rather than increased production. We demonstrate tissue-specific regulation of the somatotrophic axis in IUGR fetuses and a discontinuity between GH-R and IGF-I gene expression in GH-infused fetuses that is not explained by alterations in phosphorylated STAT5b.  相似文献   

13.
It is known that growth hormone (GH) plays an important role in growth and development.Additionally, emerging evidence suggest that it also influences hypothalamic-pituitary-gonadal function. We have found that GH from different species has different effects in mice. In rodents, human GH (hGH) binds to both GH and prolactin (PRL) receptors; it has both somatotrophic and lactotrophic effects. Since PRL has a profound effect on neuroendocrine function, the results obtained from hGH treatment or from transgenic animals expressing the hGH gene reflect PRL-like effects of this hormone. However, bovine GH (bGH) is purely somatogenic and therefore the effects of bGH represent the function of the natural GH produced in rodents. Furthermore, our studies in mice and rats have shown that not all effects of GH are stimulatory and the duration of exposure of the hypothalamo-hypophyseal-gonadal system to GH might influence the secretions of gonadotropins and gonadal steroids. In humans, excess productions of GH in acromegaly and GH resistance in Laron syndrome adversely affect reproduction. Similarly, it has been demonstrated that in transgenic mice expressing various GH genes, in insulin-like growth factor-I (IGF-I) gene-knockout mice, in GH receptor gene-disrupted (GHR-KO) mice, and in Ames dwarf mice the onset of puberty and/or fertility is altered. Therefore, excess or subnormal secretion of GH can affect reproduction. We have shown that the hypothalamic-pituitary functions are affected in transgenic mice expressing the GH genes, Ames dwarf mice and in GH receptor gene knockout mice. The majority of the GH effects are mediated via IGF-I and the aforementioned effects may be due to the GH-induced IGF-I secretion or due to the absence of this peptide production. It is important to realize that the syntheses and actions of IGF binding proteins are controlled by IGF-I. Furthermore, some IGF binding proteins can inhibit IGF-I action. Therefore, the concentrations of IGF binding proteins and the ratio of these binding proteins and IGF-I within the body might play a pivotal role in modulating IGF-I effects on the neuroendocrine-gonadal system.  相似文献   

14.
No metabolic side-effects of clinical significance have been reported during a 5-year study of growth hormone (GH) therapy in children with GH deficiency, Turner syndrome, idiopathic short stature or chronic renal insufficiency. In particular, insulin levels increase but remain within the normal range, as do glucose and haemoglobin A(1c). A recent study showed that the effects of growth on insulin sensitivity in prepubertal children with idiopathic short stature represent the changes in carbohydrate tolerance observed during normal adolescence. Thus, GH treatment may lead to prolongation of the physiological state of insulin resistance observed in normal puberty. Insulin levels during the fasting state and 2 h after a standard glucose load showed no further rise after the first 3 years of continuous GH therapy. The hyperinsulinaemia observed during GH therapy may, therefore, amplify the anabolic effects of insulin on protein metabolism during puberty.  相似文献   

15.
Park P  Cohen P 《Hormone research》2004,62(Z1):59-65
Growth hormone (GH) therapy has evolved rapidly over the past decade, and continuing research has established a clear role for therapeutic GH in a wide spectrum of disorders, including idiopathic GH deficiency (childhood- and adult-onset), Turner syndrome, Prader-Willi syndrome, small-for-gestational age children with failure of catch-up growth, AIDS-related catabolism, children with chronic renal failure, and idiopathic short stature. Although GH is used therapeutically in a wide variety of conditions, actual guidelines regarding the logistics of GH dosing continue to evolve, with data emerging regarding efficacy and safety. This review proposes a role for insulin-like growth factor I measurement in optimizing GH dosing.  相似文献   

16.
Conditioned medium from gestation day 18 rat placental cultures showed potent stimulation of the directional migration of human retinal endothelial cells. To examine the role of major secreted placental proteins in this chemotaxic activity, prolactin-like proteins (PLPs)-B and C were purified from rat placenta using immuno-affinity chromatography. In contrast to conditioned medium, native PLP-B and PLP-C preparations failed to show any significant stimulation of endothelial cell migration. This study further examined the ability of PLP-B to bind to rat receptors for growth hormone (GH-R) and prolactin (PRL-R). In competitive binding assays with [125I]-hGH, neither native nor recombinant PLP-B preparations showed significant high affinity binding to the transfected rat GH-R or PRL-R. In summary, neither PLP-B nor PLP-C exhibit the potent chemotaxis stimulatory activity of placental conditioned media, nor does PLP-B show evidence of ability to act via rat GH or PRL receptors.  相似文献   

17.
Growth hormone (GH) elicits a variety of biological activities mainly mediated by the GH receptor (GHR), a transmembrane protein that, based on in vitro studies, seemed to function as a homodimer. To test this hypothesis directly, we investigated patients displaying the classic features of Laron syndrome (familial GH resistance characterized by severe dwarfism and metabolic dysfunction), except for the presence of normal binding activity of the plasma GH-binding protein, a molecule that derives from the exoplasmic-coding domain of the GHR gene. In two unrelated families, the same GHR mutation was identified, resulting in the substitution of a highly conserved aspartate residue by histidine at position 152 (D152H) of the exoplasmic domain, within the postulated interface sequence involved in homodimerization. The recombinant mutated receptor protein was correctly expressed at the plasma membrane. It displayed subnormal GH-binding activity, a finding in agreement with the X-ray crystal structure data inferring this aspartate residue outside the GH-binding domain. However, mAb-based studies suggested the critical role of aspartate 152 in the proper folding of the interface area. We show that a recombinant soluble form of the mutant receptor is unable to dimerize, the D152H substitution also preventing the formation of heterodimers of wild-type and mutant molecules. These results provide in vivo evidence that monomeric receptors are inactive and that receptor dimerization is involved in the primary signalling of the GH-associated growth-promoting and metabolic actions.  相似文献   

18.
The role of the GH/IGF-I axis for cardiac function and structure.   总被引:1,自引:0,他引:1  
There is ample evidence to support a role for the GH/IGF-I axis in regulation of cardiac growth, structure and function. GH may act directly on the heart or through circulating IGF-I (Fig. 1). Moreover, GH has been found to regulate local production of IGF-I in the heart. Both the GH-R and IGF-I-R are expressed in cardiac tissue. Hence, the IGF-I-R receptor can theoretically be activated through locally produced IGF-I acting via autocrine/paracrine mechanisms, or via circulating IGF-I exerting its effects as an endocrine agent. During conditions of pressure and volume overload, an increased systolic wall stress triggers an induction of gene expression of IGF-I GH-R and possibly IGF-J-R implying a potential role for the GH/IGF-I axis in the development of adaptive hypertrophy of the heart and vessels. Cardiovascular effects of GH in clinical studies include beneficial effects on contractility, exercise performance and TPR, and experimental studies suggest an increased Ca2+ responsiveness as one possible underlying cause, although effects of GH and IGF-I on apoptosis may possibly also play a role. The GH secretagogue hexarelin improves cardiac function after experimental myocardial infarction either through an increased GH secretion or possibly through a cardiac GHS receptor, although this needs further investigation. Moreover, it is clear that further basic and clinical studies are required to gain insight into the GH and IGF-I mechanisms of action and to monitor long-term effects when GH is administered as substitution therapy or as an agent in the treatment of congestive heart failure.  相似文献   

19.
We studied the plasma GH profiles in 6 patients with Turner's syndrome and 6 normal girls of short stature by sampling every 20 min for 24 hours. We observed episodic secretion of GH in these subjects. The mean plasma 24 h GH level in patients with Turner's syndrome was 3.6 +/- 1.4 (SD) ng/ml which was significantly lower than that of normal short girls (7.1 +/- 2.2 ng/ml, p less than 0.01). The GH secretion during both nighttime and daytime was decreased in the patients with Turner's syndrome, however the number of pulses did not differ significantly. There were no correlations between the mean plasma 24 h GH level on one hand and peak GH level obtained after GH provocative test and plasma somatomedin C on the other. Plasma FSH and LH levels were also measured in 4 patients with Turner's syndrome. Both levels were elevated and there observed no clear pulsatile secretion of FSH, but, some pulsatile secretion of LH was observed in two patients. These data indicate that patients with Turner's syndrome have decreased endogenous GH secretion, even though they show normal GH responses to GH provocative tests.  相似文献   

20.
Diverse growth hormone receptor gene mutations in Laron syndrome.   总被引:3,自引:0,他引:3  
To better understand the molecular genetic basis and genetic epidemiology of Laron syndrome (growth-hormone insensitivity syndrome), we analyzed the growth-hormone receptor (GHR) genes of seven unrelated affected individuals from the United States, South America, Europe, and Africa. We amplified all nine GHR gene exons and splice junctions from these individuals by PCR and screened the products for mutations by using denaturing gradient gel electrophoresis (DGGE). We identified a single GHR gene fragment with abnormal DGGE results for each affected individual, sequenced this fragment, and, in each case, identified a mutation likely to cause Laron syndrome, including two nonsense mutations (R43X and R217X), two splice-junction mutations, (189-1 G to T and 71 + 1 G to A), and two frameshift mutations (46 del TT and 230 del TA or AT). Only one of these mutations, R43X, has been previously reported. Using haplotype analysis, we determined that this mutation, which involves a CpG dinucleotide hot spot, likely arose as a separate event in this case, relative to the two prior reports of R43X. Aside from R43X, the mutations we identified are unique to patients from particular geographic regions. Ten GHR gene mutations have now been described in this disorder. We conclude that Laron syndrome is caused by diverse GHR gene mutations, including deletions, RNA processing defects, translational stop codons, and missense codons. All the identified mutations involve the extracellular domain of the receptor, and most are unique to particular families or geographic areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号