首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The endostyle is a pharyngeal organ for the internal filter feeding of urochordates, cephalochordates, and larval lamprey. This organ is also considered to be homologous to the follicular thyroid gland of higher vertebrates. Thyroglobulin (Tg) and thyroid peroxidase (TPO) are specifically expressed in the thyroid gland of higher vertebrates, and they play an important role in iodine metabolism for the synthesis of thyroid hormones. Previous histochemical observations showed that iodine-concentrating and peroxidase activities were detected in zones 7, 8, and 9 of the ascidian endostyle, suggesting that these zones contains cells that are equivalent to those in the vertebrate follicular thyroid. In order to investigate the molecular developmental mechanisms involved in the formation and function of the endostyle, with special reference to the evolution of the thyroid gland, in the present study, we isolated and characterized cDNA clones for TPO genes, CiTPO from Ciona intestinalis and HrTPO from Halocynthia roretzi. Northern blot and in situ hybridization analyses revealed that the expression of the ascidian TPO genes was restricted to zone 7, one of the elements equivalent to the thyroid. These results provide the first evidence at the gene expression level for shared function between a part of the ascidian endostyle and the vertebrate follicular thyroid gland. J. Exp. Zool. ( Mol. Dev. Evol. ) 285:158-169, 1999.  相似文献   

3.
4.
During zebrafish development, the thyroid primordium initiates expression of molecular markers such as hhex and nk2.1a in the endoderm prior to pharynx formation. As expected for an endodermally derived organ, initiation of thyroid development depends on Nodal signalling. We find that it also depends on three downstream effectors of Nodal activity, casanova (cas), bonnie and clyde (bon), and faust (fau)/gata5. Despite their early Nodal-dependent expression in the endoderm, both hhex and nk2.1a are only required relatively late during thyroid development. In hhex and nk2.1a loss-of-function phenotypes, thyroid development is initiated and arrests only after the primordium has evaginated from the pharyngeal epithelium. Thus, like pax2.1, both hhex and nk2.1a have similarly late roles in differentiation or growth of thyroid follicular cells, and here, we show that all three genes act in parallel rather than in a single pathway. Our functional analysis suggests that these genes have similar roles as in mammalian thyroid development, albeit in a different temporal mode of organogenesis.  相似文献   

5.
The sources, anastomoses and variations of bloodsupply of the laryngeal part of the pharynx were studied in 100 corpses of different sex and age. It has been established that the fronto-lateral divisions of the laryngeal part of the pharynx are supplied with blood by pharyngeal branches of the superior and inferior paryngeal arteries. Ligation of the pharyngeal arteries during laryngectomy prior to their entering the larynx, i. e. before the divergence of the pharyngeal branches from them, as conventional, causes restriction of supply of these parts and can contribute to disjunction of the pharyngeal suture. The trunks of laryngeal arteries with their pharyngeal branches should be preserved, if possible. The posterior wall of the laryngeal part of the pharynx is divided into three zones depending on the main arterial sources (the ascending pharyngeal, superior and inferior thyroid arteries).  相似文献   

6.
The pharynx is a distinctive organ in the center of the body of planarians. Although the process of pharynx regeneration has been studied previously, the details and mechanism of the process remain controversial. We examined the process of regeneration of the pharynx in the planarian Dugesia japonica in detail by in situ hybridization and immunohistochemistry for myosin heavy chain-A (DjMHC-A), which is mainly expressed in the pharynx muscles and pharynx-anchoring muscles. We also monitored the behavior of the neoblasts in this process. In the regenerating posterior body fragment, the pharyngeal rudiment was formed by accumulation of cells that were probably undifferentiated cells derived from the neoblasts. The pharynx muscles appeared to differentiate in the rudiment in a manner that was coordinated with the differentiation of the pharynx-anchoring muscles in the region surrounding the rudiment. During this process, all cells containing mRNA for DjMHC-A also contained the DjMHC-A protein. These results argue against a previously proposed hypothesis that in the mesenchyme, 'pharynx-forming cells', which are committed to differentiate into the pharyngeal cells but have not yet differentiated, gather in the rudiment to form the pharynx (Agata and Watanabe, 1999). Rather, the present observations suggest that regeneration of the planarian pharynx proceeds by accumulation of cells that are probably undifferentiated cells derived from neoblasts in the rudiment, followed by their differentiation into the pharyngeal cells there.  相似文献   

7.
The members of the FoxE subfamily of Fox (forkhead) genes are expressed in the developing pituitary, thyroid and lens. Mammalian Foxe1 is expressed primarily in the developing pituitary and thyroid gland, Foxe3 is expressed in the developing lens, while Xenopus FoxE4 is expressed in the developing lens and thyroid. Here we report the identification of Xenopus FoxE1, a gene that is primarily expressed in the developing pituitary and thyroid.  相似文献   

8.
The thymus and parathyroid glands are derived from the third pharyngeal pouch endoderm. The mechanisms that establish distinct molecular domains in the third pouch and control the subsequent separation of these organ primordia from the pharynx are poorly understood. Here, we report that mouse embryos that lack two FGF feedback antagonists, Spry1 and Spry2, display parathyroid and thymus hypoplasia and a failure of these organ primordia to completely separate from the pharynx. We show that FGF ligands and downstream reporter genes are expressed in highly regionalised patterns in the third pouch and that sprouty gene deletion results in upregulated FGF signalling throughout the pouch endoderm. As a consequence, the initiation of markers of parathyroid and thymus fate is altered. In addition, a normal apoptotic programme that is associated with the separation of the primordia from the pharynx is disrupted, resulting in the maintenance of a thymus-pharynx attachment and a subsequent inability of the thymus to migrate to its appropriate position above the heart. We demonstrate that the sprouty genes function in the pharyngeal endoderm itself to control these processes and that the defects in sprouty-deficient mutants are, at least in part, due to hyper-responsiveness to Fgf8. Finally, we provide evidence to suggest that parathyroid hypoplasia in these mutants is due to early gene expression defects in the third pouch, whereas thymus hypoplasia is caused by reduced proliferation of thymic epithelial cells in the thymus primordium.  相似文献   

9.
10.
G. Purschke    C. Jouin 《Journal of Zoology》1988,215(3):405-432
General anatomy and ultrastructure of the ventral pharyngeal organs were investigated in Succocirrus krusudensis, Protodriloides chaetifer and P. symbioticus. Succocirrus papillocercus, a species without a ventral pharyngeal organ, was included for comparison. The two genera show homologous similarities in their pharynges: bulbus muscle composed of transverse muscle fibres and interstitial cells, those cells with small cell bodies and processes containing prominent tonofilaments which are orientated dorsoventrally and connect the bulbus epithelium with the investing muscle; bulbus muscle fibres circomyarian with nuclei and mitochondria located basally, investing muscle also with interstitial cells, which lack tonofilaments; oesophagus surrounded by gland cells opening into the pharynx. Most likely, a ventral pharynx with these characters was already present in the stem species of Saccocirridae, Protodriloidae fam. n. and Protodrilidae and evolutionary processes led to several changes: a tongue-like organ with a prominent tip and supporting elements is a synapomorphic character of Protodrilus and Succocirrus; the pharyngeal organ is reduced to stomodeal pouches and salivary glands in S. papillocercus and completely lost in Asromus raenioides. These results and data from previous studies are summarized in a tentative phylogenetic dendrogram and allow the introduction of a new family, Protodriloidae.  相似文献   

11.
I evaluate the lines of evidence—cell types, genes, gene pathways, fossils—in putative chordate ancestors—cephalochordates and ascidians—pertaining to the evolutionary origin of the vertebrate neural crest. Given the intimate relationship between the neural crest and the dorsal nervous system during development, I discuss the dorsal nervous system in living (extant) members of the two groups, especially the nature, and genes, and gene regulatory networks of the brain to determine whether any cellular and/or molecular precursors (latent homologues) of the neural may have been present in ancestral cephalochordates or urochordates. I then examine those fossils that have been interpreted as basal chordates or cephalochordates to determine whether they shed any light on the origins of neural crest cell (NCC) derivatives. Do they have, for example, elements of a head skeleton or pharyngeal arches, two fundamental vertebrate characters (synapomorphies)? The third topic recognizes that the origin of the neural crest in the first vertebrates accompanied the evolution of a brain, a muscular pharynx, and paired sensory organs. In a paradigm-breaking hypothesis—often known as the ‘new head hypothesis’—Carl Gans and Glen Northcutt linked these evolutionary innovations to the evolution of the neural crest and ectodermal placodes (Gans and Northcutt Science 220:268-274, 1983. doi:10.1126/science.220.4594.268; Northcutt and Gans The Quarterly Review of Biology 58:1–28, 1983. doi:10.1086/413055). I outline the rationale behind the new head hypothesis before turning to an examination of the pivotal role played by NCCs in the evolution of pharyngeal arches, in the context of the craniofacial skeleton. Integrations between the evolving vertebrate brain, muscular pharynx and paired sensory organs may have necessitated that the pharyngeal arch skeletal system—and subsequently, the skeleton of the jaws and much of the skull (the first vertebrates being jawless)—evolved from NCCs whose developmental connections were to neural ectoderm and neurons rather than to mesoderm and connective tissue; mesoderm produces much of the vertebrate skeleton, including virtually all the skeleton outside the head. The origination of the pharyngeal arch skeleton raises the issue of the group of organisms in which and how cartilage arose as a skeletal tissue. Did cartilage arise in the basal proto-vertebrate from a single germ layer, cell layer or tissue, or were cells and/or genes co-opted from several layers or tissues? Two recent studies utilizing comparative genomics, bioinformatics, molecular fingerprinting, genetic labeling/cell selection, and GeneChip Microarray technologies are introduced as powerful ways to approach the questions that are central to this review.  相似文献   

12.
13.
14.
15.
16.
17.
Head development in vertebrates requires reciprocal patterning interactions between cranial neural crest and the ectodermal, mesodermal and endodermal components of the branchial arches. Patterning elements within the pharyngeal endoderm and oral ectoderm appear to play defining roles in this process. Several homeobox genes of the NK-2 class (Nkx2-1, Nkx2-3, Nkx2-5 and Nkx2-6) are expressed regionally in the developing pharynx, and Nkx2-1 mutants and Nkx2-5/Nkx2-6 double mutants show loss of thyroid and distal lung progenitors, and pharyngeal cell viability, respectively. Here we examined the expression and genetic role of Nkx2-3 in pharyngeal development. Nkx2-3 was expressed in the pharyngeal floor and pouches, as well as in oral and branchial arch ectoderm. Expression persisted in the developing thyroid until birth, in mucous-forming cells of the lingual and sublingual salivary glands, and in odontogenic epithelium of the mandible. Examination of Nkx2-3 null mice revealed defects in maturation and cellular organisation of the sublingual glands. Furthermore, cusps were absent from mandibular molars and the third molar was occasionally missing. These data suggest roles for Nkx2-3 during pharyngeal organogenesis, although the considerable potential for genetic redundancy within and outside of this gene family may mask earlier functions in organ specification.  相似文献   

18.
Objectives : The morbidity and mortality of the dependent elderly that result from aspiration pneumonia are recognized as a major geriatric health problem. Most cases of bacterial pneumonia are initiated following colonization or superinfection of the pharynx by pathogenic bacteria, followed by aspiration of pharyngeal contents. A recent study revealed that bacteria, that commonly cause respiratory infection, colonized the dentures of dependent elderly. This suggests that denture plaque may function as a reservoir of potential respiratory pathogens to facilitate colonization on the pharynx. The purpose of this study was to determine the possible correlation between denture and pharyngeal microflora. Study Design : The denture and pharyngeal bacterial flora of 50 dependent elderly were examined, and the microorganisms identified by culturing. The agreement between the bacterial species in denture plaque and pharyngeal microflora was investigated using the Kappa method. Results : The microorganism species on the dentures and pharyngeal mucosa of the subjects had an agreement rate of 68.5%. The agreement rate for each of the bacterial species of the dentures and pharynx was also demonstrated to be high. Conclusions : Dentures should be considered an important reservoir of organisations which could colonise the pharynx, and the importance of controlling denture plaque for the prevention of aspiration pneumonia cannot be overemphasized.  相似文献   

19.
Shibata Y  Fujii T  Dent JA  Fujisawa H  Takagi S 《Genetics》2000,154(2):635-646
The pharynx of Caenorhabditis elegans is a neuromuscular organ responsible for feeding, concentrating food by its pumping movement. A class of mutants, the eat mutants, are defective in this behavior. We have identified a novel eat gene, eat-20, encoding a unique transmembrane protein with three EGF motifs. Staining with a specific polyclonal antibody reveals that EAT-20 is expressed predominantly in the pharyngeal muscles and a subset of neurons. Some hypodermal cells also express EAT-20. eat-20 mutant animals are starved, have smaller brood sizes, and have prolonged egg-laying periods. The starvation apparently results from pharyngeal pumping defects, including a reduced pumping rate and "slippery pumping," in which the contents of the pharynx sometimes move rostrally. However, electrical activity of eat-20 mutants appears normal by electropharyngeogram.  相似文献   

20.
G. Purschke 《Zoomorphology》1988,108(2):119-135
Summary Transmission electron microscopic studies were carried out on the ventral pharyngeal organs in Ctenodrilus serratus and Scoloplos armiger. The pharyngeal organs are composed of a muscle bulbus and a tongue-like organ. In both species the muscle bulbus consists of transverse muscle fibres and interstitial cells with voluminous cell bodies and dorsoventral tonofilaments; the investing muscle runs into the tongue-like organ; the nuclei of the investing muscle fibres are located in caudal bulges; salivary glands are not present, but numerous gland cells occur in the bulbus epithelium. The tongue-like organ, however, is formed by lateral folds (C. serratus) or a bridge-like structure (S. armiger). The specific structure of the bulbus muscle is probably a homologous characteristic also occurring in several other polychaete families. The phylogenetic importance of this ventral pharynx is discussed and a hypothesis is suggested to explain the differentiation of certain other ventral pharyngeal organs from this probably primitive type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号