首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies were carried out to measure changes in the transmembrane potential of rat alveolar macrophages during exposure of the cells to zymosan particles or to the membrane perturbant, phorbol-12-myristate-13-acetate (PMA), and to determine if changes in membrane potential are related to superoxide anion release. Exposure of the cells to either zymosan or PMA leads to membrane depolarization, which precedes superoxide anion release. Furthermore, the magnitude of the depolarization is dependent upon the concentration of either zymosan or PMA. During exposure of the alveolar macrophages to increasing levels of zymosan, there is an increase in the amount of superoxide released as well as an increase in the magnitude of the depolarization. Incubation of the cells in medium containing 150 mM K+, a medium which causes membrane depolarization, leads to superoxide release from resting cells and a decrease in the amount of superoxide released from cells exposed to zymosan. These results indicate that release of superoxide anion from rat alveolar macrophages is related to membrane depolarization and suggest that the transmembrane potential change may act as a signal to initiate the phagocytotic responses of the cells.  相似文献   

2.
Although various tissue macrophages possess high glucose-6-phosphate dehydrogenase (G6PD) activity, which is reported to be closely associated with their phagocytotic/bactericidal function, the fine subcellular localization of this enzyme in liver resident macrophages (Kupffer cells) has not been determined. We have investigated the subcellular localization of G6PD in Kupffer cells in rat liver, using a newly developed enzyme-cytochemical (copper-ferrocyanide) method. Electron-dense precipitates indicating G6PD activity were clearly visible in the cytoplasm and on the cytosolic side of the endoplasmic reticulum of Kupffer cells. Cytochemical controls ensured specific detection of the enzymatic activity. Rat Kupffer cells abundantly possessed enzyme-cytochemically detectable G6PD activity. Kupffer cell G6PD may play a role in liver defense by delivering NADPH to NADPH-dependent enzymes. G6PD enzyme-cytochemistry may be a useful tool for the study of Kupffer cell functions.  相似文献   

3.
Dexamethasone inhibited the stimulus-induced prostaglandin E2 formation by rat Kupffer cells in primary culture, e.g. after treatment with zymosan, phorbol ester, calcium ionophore A23187, platelet-activating factor or lipopolysaccharide. Prostaglandin E2 production from added free arachidonic acid was not influenced by the hormone. The time course, as well as the partial inhibition of the hormone effect by actinomycin D and cycloheximide, point to the hormone-induced formation of a protein which regulates phospholipase A2. The hormone did not affect the phagocytotic activity of the Kupffer cells. The quantity of [3H]arachidonic acid incorporated into phospholipids was also not altered by dexamethasone. After stimulation with zymosan, [3H]arachidonic acid was liberated from phosphatidylcholine only. Superoxide generation by rat Kupffer cells was induced by zymosan, phorbol ester and, to a much smaller extent, by platelet-activating factor. A23187 and lipopolysaccharide were without effect. In contrast to prostaglandin formation, the generation of superoxide was not influenced by dexamethasone. These results indicate that in cultured rat Kupffer cells prostaglandin formation and superoxide generation are independently triggered processes.  相似文献   

4.
Morphological characteristics of the interaction of low density lipoproteins (LDL) and acetylated low density lipoproteins (AcLDL) with rat liver cells are described. These liver cell types are mainly responsible for the catabolism of these lipoproteins in vivo. Isolated rat liver Kupffer, endothelial, and parenchymal cells were incubated with LDL or AcLDL conjugated to 20 nm colloidal gold. LDL was mainly internalized by Kupffer cells, whereas AcLDL was predominantly found in endothelial cells. Kupffer and endothelial cells displayed different morphological characteristics in the processing of these lipoproteins. Kupffer cells bound LDL at uncoated regions of the plasma membrane often at the base of pseudopodia, and internalized the particles via small smooth vesicles. These uptake characteristics differ from the classical LDL uptake pathway, as described for other cell types, and may be related to the unique recognition properties of the receptor of Kupffer cells as observed in biochemical studies. Liver endothelial cells bound AcLDL in coated pits, followed by rapid uptake. Uptake proceeded through small coated vesicles, and after 5 min of incubation large (600-1200 nm) electron-lucent vacuoles (endosomes) with AcLDL-gold particles arranged along the membrane region were present. The endosomes were often associated closely with the cell membrane which might enable direct recycling of AcLDL receptors. These observations might explain the high efficiency of these cells in the processing of modified LDL in vivo.  相似文献   

5.
Superoxide release by zymosan-stimulated rat Kupffer cells in vitro   总被引:9,自引:0,他引:9  
Kupffer cells were isolated from pronase-perfused rat livers and were maintained as a monolayer culture in a state of high purity and viability. Immediately after contact with zymosan particles, O2 uptake of the Kupffer cells increased fivefold; about 50% of the net oxygen consumed was accounted for as superoxide released into the medium. Concomitantly, a transient burst of luminol-dependent chemiluminescence, an increased activity of NAD(P)H oxidase and a stimulation of the flow of glucose through the hexose monophosphate shunt were observed. Chemiluminescence and O2- production were almost completely inhibited by superoxide dismutase and iodoacetate. Zymosan-induced chemiluminescence was not inhibited in the presence of the non-penetrating thiol reagents, 5,5'-dithio-bis-2-nitrobenzoate and iodoacetyl-sepharose. Iodoacetate acted on the cytosolic glucose-6-phosphate dehydrogenase rather than on NAD(P)H oxidase of the cell membrane.  相似文献   

6.
The objective of this study was to determine whether Kupffer cells contribute to parenchymal and endothelial cell damage induced by ischemia-reperfusion in perfused rat livers. Parenchymal and endothelial cell injury were determined by measuring activities of lactate dehydrogenase (LDH) and purine nucleoside phosphorylase (PNP), respectively, in the effluent perfusate of livers subjected to 60 min of low flow ischemia followed by 30 min of reperfusion. Upon reperfusion, LDH and PNP activities increased significantly within the first 10 min of reperfusion and remained elevated over control values throughout the duration of reperfusion. Pretreatment with gadolinium chloride, an inhibitor of Kupffer cell function, significantly decreased LDH and PNP efflux during reperfusion by approximately 60% and 50%, respectively. When Kupffer cells were stimulated by vitamin A pretreatment, PNP efflux was doubled during reperfusion. Vitamin E pretreatment attenuated LDH and PNP release by approximately 70% during reperfusion compared to enzyme release in untreated livers. Moreover, the water-soluble antioxidants superoxide dismutase and desferrioxamine reduced reperfusion injury, whereas catalase had no effect on enzyme release. These results demonstrate that superoxide anions released from Kupffer cells are involved in oxidative damage to endothelial cells as well as hepatocytes during the early stages of hepatic reperfusion.  相似文献   

7.
Direct ferritin immunoelectron microscopy was applied to visualize the distribution of the hepatocyte cell surface of the asialoglycoprotein receptor which is responsible for the rapid clearance of serum glycoproteins and lysosomal catabolism. For this purpose, rabbit antibody against the purified hepatic binding protein specific for asialoglycoproteins was prepared and coupled to ferritin by glutaraldehyde. The specific antibody conjugates were incubated with the hepatocytes, which were isolated from rat liver homogenate after fixation by glutaraldehyde perfusion. These cells preserved well the original polygonal shape and polarity, and it was easy to identify the sinusoidal, lateral, and bile canalicular faces. The surface density of the ferritin particles bound to the sinusoidal face was about four times higher than that of particles bound to the lateral face, while the bile canalicular face was hardly labeled and almost at the control level. Using the surface area of hepatocyte measured by morphometrical analyses, it was estimated that approximately 90% of bound ferritin particles were at the sinusoidal face, approximately 10% at the lateral face, and approximately 1% at the bile canalicular face. Nonhepatic cells such as endothelial and Kupffer cells had no receptor specific for asialoglycoproteins.  相似文献   

8.
The objective of this study was to determine whether Kupffer cells contribute to parenchymal and endothelial cell damage induced by ischemia-reperfusion in perfused rat livers. Parenchymal and endothelial cell injury were determined by measuring activities of lactate dehydrogenase (LDH) and purine nucleoside phosphorylase (PNP), respectively, in the effluent perfusate of livers subjected to 60 min of low flow ischemia followed by 30 min of reperfusion. Upon reperfusion, LDH and PNP activities increased significantly within the first 10 min of reperfusion and remained elevated over control values throughout the duration of reperfusion. Pretreatment with gadolinium chloride, an inhibitor of Kupffer cell function, significantly decreased LDH and PNP efflux during reperfusion by approximately 60% and 50%, respectively. When Kupffer cells were stimulated by vitamin A pretreatment, PNP efflux was doubled during reperfusion. Vitamin E pretreatment attenuated LDH and PNP release by approximately 70% during reperfusion compared to enzyme release in untreated livers. Moreover, the water-soluble antioxidants superoxide dismutase and desferrioxamine reduced reperfusion injury, whereas catalase had no effect on enzyme release. These results demonstrate that superoxide anions released from Kupffer cells are involved in oxidative damage to endothelial cells as well as hepatocytes during the early stages of hepatic reperfusion.  相似文献   

9.
The release of the prostaglandins E2 and D2, induced by zymosan and phorbol ester in cultured rat Kupffer cells, was found to depend on the extracellular concentration of Na+. Eicosanoid formation following the administration of the Ca2+ ionophore A23187 or of arachidonic acid, however, did not require the presence of sodium ions in the medium. A half-maximal rate of prostaglandin release by zymosan-treated Kupffer cells was obtained between 4 mM and 5 mM Na+; and a Na+ concentration of greater than or equal to 30 mM was required to maximally stimulate prostaglandin E2 and D2 formation in the cultured liver macrophages. In contrast, the superoxide production following the administration of zymosan or of phorbol ester was quite independent of extracellular Na+. The zymosan and phorbol-ester-stimulated release of prostaglandins E2 and D2 was inhibited by amiloride. Artificial intracellular alkalization enhanced the prostanoid production of unstimulated and of zymosan-stimulated cells whereas artificial intracellular acidification inhibited the zymosan-elicited prostaglandin synthesis. In contrast, the superoxide formation was independent of the pH changes. The data presented here suggest that the prostaglandin production elicited by zymosan or phorbol ester in cultured rat Kupffer cells requires an activated Na+/H+ exchange.  相似文献   

10.
Mitogenic effect of augmenter of liver regeneration (ALR), a protein produced and released by hepatocytes, on hepatocytes in vivo but not in vitro suggests that the effect is mediated by nonparenchymal cells. Since mediators produced by Kupffer cells are implicated in hepatic regeneration, we investigated receptor for ALR and its functions in rat Kupffer cells. Kupffer cells were isolated from rat liver by enzymatic digestion and centrifugal elutriation. Radioligand ([125I] ALR) receptor binding, ALR‐induced GTP/G‐protein association, and nitric oxide (NO), tumor necrosis factor (TNF)‐α, and interleukin‐6 (IL‐6) synthesis were determined. High‐affinity receptor for ALR, belonging to the G‐protein family, with Kd of 1.25 ± 0.18 nM and Bmax of 0.26 ± 0.02 fmol/µg DNA was identified. ALR stimulated NO, TNF‐α, and IL‐6 synthesis via cholera toxin‐sensitive G‐protein, as well as p38‐MAPK activity and nuclear translocation of NFκB. While inhibitor of NFκB (MG132) inhibited ALR‐induced NO synthesis, MG132 and p38‐MAPK inhibitor (SB203580) abrogated ALR‐induced TNF‐α and IL‐6 synthesis. ALR also prevented the release of mediator(s) from Kupffer cells that cause inhibition of DNA synthesis in hepatocytes. Administration of ALR to 40% partially hepatectomized rats increased expression of TNF‐α, IL‐6, and inducible nitric oxide synthase (iNOS) and caused augmentation of hepatic regeneration. These results demonstrate specific G‐protein coupled binding of ALR and its function in Kupffer cells and suggest that mediators produced by ALR‐stimulated Kupffer cells may elicit physiologically important effects on hepatocytes. J. Cell. Physiol. 222: 365–373, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
The ability to elicit protective immune responses after intranasal immunization with rotavirus particles, either with or without the attenuated Escherichia coli heat-labile enterotoxin LT(R192G) as an adjuvant, was examined in the adult mouse model. BALB/c mice were administered one or two inoculations of psoralen/UV-inactivated, triple-layered (tl) or double-layered (dl) purified rotavirus particles. Four weeks after immunization, mice were challenged with the murine rotavirus strain EDIM, and the shedding of rotavirus antigen was quantified. Rotaviruses used for immunization included EDIM and heterotypic simian (RRV), bovine (WC3), and human (89-12) strains. tl EDIM stimulated both systemic and intestinal rotavirus antibody responses and complete protection with as little as one 1-microgram dose. Inclusion of LT(R192G) (10 micrograms) significantly increased rotavirus antibody responses and reduced antigen concentrations needed for full protection. Both dl EDIM and heterotypic dl and tl particles stimulated protection, but they did so less than tl EDIM at comparable concentrations, either with or without LT(R192G). When B-cell-deficient microMt mice were immunized with tl EDIM particles, protection was reduced to levels similar to those induced with dl EDIM and heterotypic particles in BALB/c mice. However, dl EDIM particles induced similar levels of protection in both mouse strains. The protection stimulated by tl or dl EDIM particles was not diminished by CD8 cell depletion prior to immunization in either strain of mice. These results indicate that tl EDIM induced immunity at least partially through responses to its outer capsid proteins, presumably by stimulation of serotype-specific neutralizing antibody. In contrast, the other particles stimulated protection primarily by an antibody-independent mechanism. Finally, depletion of CD8 cells had no effect on protection by either mechanism.  相似文献   

12.
Chemically cross-linking alpha-1,4-glucosidase, homologous albumin and antibody (immunoglobulin G, IgG) molecules raised against isolated rat hepatocytes yields an active and stable soluble enzyme-polymer complex of mol.wt. approx. 10(6). After intravenous injection, the 125I-labelled complex is seen to be preferentially associated with hepatocytes when compared with labelled free alpha-1,4-glucosidase, enzyme-albumin polymers without IgG or polymer linked to a non-specific IgG molecule, all of which are associated to a much larger extent with the Kupffer cells. The procedure offers several advantages for targeting of enzymes to specific tissues and cells and for the possible lowering of hepatocyte glycogen content in Type II glycogenesis (Pompe's disease).  相似文献   

13.
The interaction of ceruloplasmin with Kupffer cells   总被引:1,自引:0,他引:1  
The binding and uptake of ceruloplasmin was studied with rat liver cells using gold-labeled probes. Ceruloplasmins from either rat or sheep were used, in which different molecular conformations had been induced according to established biochemical criteria. The native protein from either species could bind not only to the endothelium, but also to Kupffer cells, at variance with previous findings. The proteins which had been converted to the conformation typical of stored molecules--which can be considered aged, but not denatured, according to standard activity and spectroscopic assays--were bound by endothelium irrespective of species, while only rat ceruloplasmin was able to bind to rat Kupffer cells. Internalization of sheep ceruloplasmin occurred with either endothelium or Kupffer cells. This property was lost with isolated suspended Kupffer cells. These findings suggest the presence of receptors for ceruloplasmin on Kupffer cells which are different from those present on endothelial cells.  相似文献   

14.
The ability of murine Kupffer cells to function in several in vitro immunologic systems was investigated. These cells have been shown previously to function as accessory cells in antigen-stimulated T cell proliferation in response to protein antigens. In the present study it has been demonstrated that murine Kupffer cells also are competent as accessory cells in in vitro primary antibody responses to TNP-KLH and for T cell proliferative responses to concanavalin A. In addition, murine Kupffer cells were found to be potent stimulators of mixed lymphocyte responses. These studies extend previous observations by demonstrating that Kupffer cells are competent accessory cells in several distinct in vitro correlates of in vivo immune responses. The role of Kupffer cells in in vivo immune responses, particularly those to enterically derived antigens, may require re-evaluation in the light of these findings.  相似文献   

15.
Posner RG  Paar JM  Licht A  Pecht I  Conrad DH  Hlavacek WS 《Biochemistry》2004,43(35):11352-11360
Aggregation of FcepsilonRI, the high-affinity cell-surface receptor for IgE antibody, is required for degranulation of basophils and mast cells, but not all receptor aggregates elicit this cellular response. The stereochemical constraints on clusters of FcepsilonRI that are able to signal cellular responses, such as degranulation, have yet to be fully defined. To improve our understanding of the properties of FcepsilonRI aggregates that influence receptor signaling, we have studied the interaction of 23G3, a rat IgG(1)(kappa) IgE-specific monoclonal antibody, with IgE-FcepsilonRI complexes on rat mucosal-type mast cells (RBL-2H3 line). We find that 23G3 is a potent secretagogue. This property and the structural features of 23G3 (two symmetrically arrayed IgE-specific binding sites) make 23G3 a potentially valuable reagent for investigating the relationship between FcepsilonRI clustering and FcepsilonRI-mediated signaling events. To develop a mathematical model of 23G3-induced aggregation of FcepsilonRI, we used fluorimetry and flow cytometry to quantitatively monitor equilibrium binding of FITC-labeled 23G3 intact Ab and its Fab' fragment to cell-surface IgE. The results indicate that IgE bound to FcepsilonRI expresses two epitopes for 23G3 binding; that 23G3 binds IgE resident on the cell surface with negative cooperativity; and that 23G3 appears to induce mostly but not exclusively noncyclic dimeric aggregates of FcepsilonRI. There is no simple relationship between receptor aggregation at equilibrium and the degranulation response. Further studies are needed to establish how 23G3-induced aggregation of IgE-FcepsilonRI correlates with cellular responses.  相似文献   

16.
The release of the prostanoids prostaglandin D2 (PGD2), prostaglandin E2 (PGE2) and thromboxane induced by zymosan and phorbol ester in cultured rat Kupffer cells was found to depend on the extracellular concentration of Ca2+ to some extent. Prostanoid formation following the addition of the calcium ionophore A 23187 was totally inhibited when calcium ions were withdrawn from the medium whereas the prostanoid synthesis from added arachidonic acid was independent of Ca2+. A half-maximal rate of PGE2 release by cells treated with zymosan, phorbol ester or A23187 was obtained at 0.6-0.7 microM free extracellular Ca2+ and greater than or equal to 100 microM free Ca2+ was required to stimulate PGE2 formation maximally. The calmodulin antagonist R24571 partially inhibited the release of PGE2 elicited by zymosan and A23187 but not by phorbol ester or arachidonic acid. Verapamil and nifedipine, two calcium channel blockers, had no effect on the formation of PGE2 irrespective of the stimulus. TMB 8 [3,4,5-trimethoxybenzoic acid 8-(diethylamino)-octyl ester] an intracellular calcium antagonist, inhibited the synthesis of PGE2 induced by zymosan and phorbol ester. The superoxide formation following the addition of zymosan and phorbol ester was not influenced by removal of calcium ions from the medium or by addition of the various calcium antagonists. The data presented here suggest that Ca2+-dependent reactions are involved in the synthesis of prostanoids induced by zymosan and phorbol ester and that both extracellular Ca2+ and mobilization of Ca2+ from intracellular stores are needed to induce maximally the production of prostanoids in cultured rat Kupffer cells.  相似文献   

17.
Endotoxin is a well established elicitor of cytokine production in mononuclear cells. Nevertheless, the path of signal transduction between the crucial contact of the cells with endotoxin (lipopolysaccharide) and the synthesis and release of the mediators is yet poorly understood. In particular, the involvement of Ca2+ and protein kinase C in this process is still a matter of controversy. Here, it will be demonstrated that removal of extracellular Ca2+ by EGTA does not have a significant effect on the endotoxin-stimulated production of tumor necrosis factor-alpha (TNF-alpha) and on total protein synthesis in rat Kupffer cells. However, the release of prostaglandin E2 could not be raised above the basal level under these conditions. Treatment with inhibitors of protein kinase C such as the isoquinoline derivative, H-7, or staurosporin is without influence on TNF-alpha synthesis. The depletion of protein kinase C through preincubation of rat Kupffer cells with phorbol 12-myristate 13-acetate for 24 h was also without effect on TNF-alpha production. The effectiveness of these inhibitors under the conditions used was ascertained by measurement of the O2- release from the same cell batches. Superoxide production known as protein kinase C-dependent in Kupffer cells (Dieter et al. (1986) Eur. J. Biochem. 86, 451-457) was suppressed in a dose-dependent manner by staurosporin or after prolonged pretreatment with the phorbol ester. H-7 decreased superoxide production only slightly in high doses that severely harm the Kupffer cells. Prostaglandin E2 release, although clearly protein-kinase C-dependent in phagocytosing rat Kupffer cells, is not decreased following exposure to lipopolysaccharide in the presence of protein kinase C inhibitors.  相似文献   

18.
The endocytosis pathways of particles with terminal beta-D-galactosyl groups were studied in isolated rat Kupffer cells by electron microscopy. Colloidal gold particles of sizes 5, 17 and 50 nm were coated with asialofetuin (ASF) and isolated liver macrophages were allowed to bind (at 4 degrees C) or take up (at 37 degrees C) these ligands. Particles of all three sizes were bound via the galactose-particle receptor as shown by carbohydrate inhibition experiments and were ingested effectively. But, whereas ASF-gold particles of sizes 5 and 17 nm are taken up via the coated pit/coated vesicle pathway, the 50 nm particles are not. These enter the cell via non-coated endocytic vacuoles. All three particle sizes are transported to the same lysosomal compartment. These observations demonstrate that at least in macrophages one receptor is capable to mediate endocytosis via two different pathways depending on ligand size and/or valency.  相似文献   

19.
Release of peptide leukotrienes from rat Kupffer cells   总被引:1,自引:0,他引:1  
Kupffer cells isolated from the normal rat liver were incubated with calcium ionophore A23187, and the levels of peptide leukotrienes (LTC4, LTD4, and LTE4) contained in the culture supernatant were determined by the combined technique of reverse-phase high-performance liquid chromatography and radioimmunoassay. In response to A23187, Kupffer cells released LTC4, LTD4, and LTE4. After 10 min-preincubation of Kupffer cells with AA861, a 5-lipoxygenase inhibitor, the generation of LTC4, LTD4, and LTE4 from A23187-stimulated Kupffer cells was significantly suppressed. Platelet activating factor (PAF), a phospholipid mediator, significantly enhanced the release of LTC4, LTD4, and LTE4 from Kupffer cells stimulated with A23187. These results suggested that Kupffer cells may participate in inflammatory and immunologic events in the liver tissue by the release of peptide leukotrienes.  相似文献   

20.
Sinusoidal cells in the rat liver were studied in vivo and in vitro using the original vital staining with lithium carmine, which has contributed much to the development of the concept of the reticulo-endothelial system. Immunohistochemical and electron-microscopic studies revealed that the dye-incorporating cells were sinusoidal endothelial cells, Kupffer cells, and monocytes. The endothelial cells took up much more dye than did the Kupffer cells and bulged largely into the sinusoidal lumen. Electron microscopy revealed that small particles of lithium carmine were associated with coated vesicles of endothelial cells and ruffled membranes of Kupffer cells. In the endothelial cells, these particles were present in various concentrations within vacuolated structures and condensed in the lysosomes forming large aggregates of lithium carmine lumps. These lumps showed crystalline structures, within which the size of the individual particle was up to 30 nm in width and 50 nm in length. A few endothelial cells containing abundant dye underwent degeneration, and some were taken up by Kupffer cells. Liver endothelial cells isolated from lithium carmine-administered rats endocytosed fluorescence-labeled collagen. Isolated endothelial cells from normal rat liver, when cultured with lithium carmine, did not take up any dye, and their endocytosis of formaldehyde-treated albumin was inhibited dose-dependently. We conclude that in the liver, endothelial cells, but not Kupffer cells, predominantly take up lithium carmine. Furthermore, we propose the existence of a generalized cell system based on its vital staining capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号