首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
WWOX, the WW domain-containing oxidoreductase gene at chromosome region 16q23.3–q24.1, spanning chromosomal fragile site FRA16D, encodes the 46 kDa Wwox protein, a tumor suppressor that is lost or reduced in expression in a wide variety of cancers, including breast, prostate, ovarian, and lung. The function of Wwox as a tumor suppressor implies that it serves a function in the prevention of carcinogenesis. Indeed, in vitro studies show that Wwox protein interacts with many binding partners to regulate cellular apoptosis, proliferation, and/or maturation. It has been reported that newborn Wwox knockout mice exhibit nascent osteosarcomas while Wwox+/− mice exhibit increased incidence of spontaneous and induced tumors. Furthermore, absence or reduction of Wwox expression in mouse xenograft models results in increased tumorigenesis, which can be rescued by Wwox re-expression, though there is not universal agreement among investigators regarding the role of Wwox loss in these experimental models. Despite this proposed tumor suppressor function, the overlap of the human WWOX locus with FRA16D sensitizes the gene to protein-inactivating deletions caused by replication stress. The high frequency of deletions within the WWOX locus in cancers of various types, without the hallmark protein inactivation-associated mutations of “classical” tumor suppressors, has led to the proposal that WWOX deletions in cancers are passenger events that occur in early cancer progenitor cells due to fragility of the genetic locus, rather than driver events which provide the cancer cell a selective advantage. Recently, a proposed epigenetic cause of chromosomal fragility has suggested a novel mechanism for early fragile site instability and has implications regarding the involvement of tumor suppressor genes at chromosomal fragile sites in cancer. In this review, we provide an overview of the evidence for WWOX as a tumor suppressor gene and put this into the context of fragility associated with the FRA16D locus.  相似文献   

3.
While being devoid of the ability to recognize ligands itself, the WW2 domain is believed to aid ligand binding to the WW1 domain in the context of a WW1–WW2 tandem module of WW domain‐containing oxidoreductase (WWOX) tumor suppressor. In an effort to test the generality of this hypothesis, we have undertaken here a detailed biophysical analysis of the binding of WW domains of WWOX alone and in the context of the WW1–WW2 tandem module to an array of putative proline‐proline‐x–tyrosine (PPXY) ligands. Our data show that while the WW1 domain of WWOX binds to all ligands in a physiologically relevant manner, the WW2 domain does not. Moreover, ligand binding to the WW1 domain in the context of the WW1–WW2 tandem module is two‐to‐three‐fold stronger than when treated alone. We also provide evidence that the WW domains within the WW1–WW2 tandem module physically associate so as to adopt a fixed spatial orientation relative to each other. Of particular note is the observation that the physical association of the WW2 domain with WW1 blocks access to ligands. Consequently, ligand binding to the WW1 domain not only results in the displacement of the WW2 lid but also disrupts the physical association of WW domains in the liganded conformation. Taken together, our study underscores a key role of allosteric communication in the ability of the WW2 orphan domain to chaperone physiological action of the WW1 domain within the context of the WW1–WW2 tandem module of WWOX. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
5.
Genomic organization of a new candidate tumor suppressor gene, LRP1B   总被引:4,自引:0,他引:4  
  相似文献   

6.
7.
Hyperparathyroidism-jaw tumor (HPT-JT) syndrome is a familial multi-tumor syndrome resulting from inactivating mutations in the HRPT2 tumor suppressor gene, which encodes a protein product named parafibromin. Here, we will review recent advances in genetic and protein studies on parafibromin, and examine its biological functions.  相似文献   

8.
Polarity is a fundamental feature of all organisms both during development and in the adult. This reflects the key role of cell polarity during basic fundamental processes such as cell division, cell differentiation and cell migration. The control of cell polarity relies on functionally conserved proteins. Among these, Scribble, initially identified as a tumor suppressor gene in Drosophila, has been first involved in epithelial polarity. More recently Scribble function has been implicated in neuronal polarity and polarized cell migration. Scribble joins the growing family of tumor suppressors that play a key and conserved function in cell polarity. Scribble illustrates the more and more obvious link between regulation of cell polarity, cell transformation and tumor formation.  相似文献   

9.
10.
11.
DLC-1(frequently deletedin liver cancer)基因是新发现的一个肿瘤抑制基因。它的失活有可能参与肿瘤的发生和发展。本文拟就DLC-1基因的结构功能及其在遗传和表遗传方面的失活机制作一综述。  相似文献   

12.
The PCAF acetylase complex as a potential tumor suppressor   总被引:6,自引:0,他引:6  
  相似文献   

13.
Our current definitions of the tumor suppressor gene (TSG) have been guided by the identification of the prototypical gene, RB1, a TSG that is implicated in the development of both the inherited and sporadic forms of retinoblastoma. The hallmark feature of this TSG is loss of function in tumoral cells, which can be restored by reintroduction of a normally functioning protein with concomitant reversion of tumorigenicity. Key to this discovery was that loss of function is often achieved by deletion of a normal copy of the TSG and retention of a mutated allele, which was either inherited or acquired. Suppression of tumorigenicity and the loss-of-function concept of TSGs was also demonstrated in early studies where normal cellular growth was achieved when tumorigenic cells were fused with normal cells. Thus loss of genetic content and restoration of gene function has guided studies aimed at the discovery of novel TSGs. Here we review the successes of TSG discovery using three approaches that are based on the genetic analysis of inherited predisposition to cancer, tumors that display chromosome loss, and tumorigenic cells that display a suppression of tumorigenicity as a result of transfer of normal chromosomes. Based on a review of the literature we conclude that the discovery of TSGs has been highly successful in the genetic analysis of inherited predisposition to cancer with a dominant mode of inheritance. In contrast, the latter two approaches have yielded a paucity of TSGs that exhibit features similar to the prototypical RB1 in that they are rarely inactivated by somatic mutations in tumors displaying LOH, although decreased gene expression is observed. Nevertheless, some of these genes have been shown to suppress tumorigenicity when normal function is restored in tumorigenic cells consistent with the loss-of-function concept. These observations continue to challenge our current definition of TSG.  相似文献   

14.
15.
16.
Diffuse-type gastric carcinomas show diminished cell-cell adhesion. A recent paper(1) reports that 50% of these carcinomas contain mutations in the E-cadherin gene, resulting in the destruction of the calcium-binding sites of E-cadherin, and providing strong in vivo evidence that alterations in E-cadherin play a major role in the development of this particular type of cancer and the short survival of the patients.  相似文献   

17.
p53 was originally considered to be a nuclear oncogene, but several convergent lines of research have indicated that the wild-type gene functions as a tumor suppressor gene negatively regulating the cell cycle. Mutations in the p53 gene have been detected in many tumor types and seem to be the most common genetic alterations in human cancer. In this preliminary study, sera of 92 patients (pts) with breast disease were analyzed for the presence of the mutant p53 protein (mp53) with a selective immunoenzyme assay employing a monoclonal antibody (PAb 240) specific for the majority of mammalian m p53 but not for the wild-type protein. Of the 10 patients with benign breast disease, only two (20%) showed detectable m p53 levels in the serum. In the breast cancer group, sera from 7 of the 30 pts (23%) without lymph node involvement were positive for m p53, as were 7 out of the 45 pts (15%) with metastatic lymph nodes and 1 out of the 7 pts (14%) with disseminated disease. The specifity of m p53 assay evaluated in 20 healthy controls was 100%. These preliminary results showed that serum positivity for m p53 is not related to breast disease extension. Further studies to assess the utility of m p53 as a possible prognosis factor in breast cancer are currently in progress.  相似文献   

18.
OVCA1, also known as DPH2L1, is a tumor suppressor gene associated with ovarian carcinoma and other tumors. Ovca1 homozygous mutant mice die at birth with developmental delay and cell-autonomous proliferation defects. Ovca1 heterozygous mutant mice are tumor-prone but rarely develop ovarian tumors. OVCA1 appears to be the homolog of yeast DPH2, which participates in the first biosynthetic step of diphthamide, by modification of histidine on translation elongation factor 2 (EF-2). Yeast dph2 mutants are resistant to diphtheria toxin, which catalyses ADP ribosylation of EF-2 at diphthamide. Thus, there appears to be growing evidence implicating alterations in protein translation with tumorigenesis.  相似文献   

19.
The von Hippel-Lindau tumor suppressor gene   总被引:15,自引:0,他引:15  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号