首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L-alanine hydroxamate derivatives were obtained by reaction of alkyl/arylsulfonyl halides with L-alanine, followed by treatment with benzyl chloride, and conversion of the COOH moiety to the CONHOH group with hydroxylamine in the presence of carbodiimides. Other derivatives were obtained by reaction of N-benzyl-alanine with aryl isocyanates, arylsulfonyl isocyanates or benzoyl isothiocyanate, followed by a similar conversion of the COOH to the CONHOH moiety. The obtained compounds were assayed as inhibitors of Clostridium histolyticum collagenase, ChC (EC 3.4.24.3), a zinc enzyme which degrades triple helical collagen. The hydroxamate derivatives were generally 100-500 times more active than the corresponding carboxylates. In the series of synthesized derivatives, substitution patterns leading to the most potent ChC inhibitors were those involving perfluoroalkylsulfonyl- and substituted-arylsulfonyl moieties, such as pentafluorophenylsulfonyl, 3- and 4-protected-aminophenylsulfonyl-, 3- and 4-carboxy-phenylsulfonyl-, 3-trifluoromethyl-phenylsulfonyl-, or 1- and 2-naphthylsulfonyl among others. Similarly to the matrix metalloproteinase (MMP) hydroxamate inhibitors, ChC inhibitors of the type reported here must incorporate hydrophobic moieties at the P(2') and P(3') sites, in order to achieve tight binding to the enzyme.  相似文献   

2.
L-alanine hydroxamate derivatives were obtained by reaction of alkyl/arylsulfonyl halides with L-alanine, followed by treatment with benzyl chloride, and conversion of the COOH moiety to the CONHOH group with hydroxylamine in the presence of carbodiimides. Other derivatives were obtained by reaction of N-benzyl-alanine with aryl isocyanates, arylsulfonyl isocyanates or benzoyl isothiocyanate, followed by a similar conversion of the COOH to the CONHOH moiety. The obtained compounds were assayed as inhibitors of Clostridium histolyticum collage-nase, ChC (EC 3.4.24.3), a zinc enzyme which degrades triple helical collagen. The hydroxamate derivatives were generally 100-500 times more active than the corresponding carboxylates. In the series of synthesized derivatives, substitution patterns leading to the most potent ChC inhibitors were those involving perfluoroalkylsulfonyl-and substituted-arylsulfonyl moieties, such as pentafluorophenylsulfonyl, 3- and 4-protected-aminophenylsulfonyl-, 3- and 4-carboxy-phenylsulfonyl-, 3-trifluoromethyl-phenylsulfonyl-, or 1- and 2-naphthylsulfonyl among others. Similarly to the matrix metalloproteinase (MMP) hydroxamate inhibitors, ChC inhibitors of the type reported here must incorporate hydrophobic moieties at the P2, and P3 sites, in order to achieve tight binding to the enzyme.  相似文献   

3.
Novel matrix metalloproteinase (MMP)/bacterial collagenase inhibitors are reported, considering the sulfonylated amino acid hydroxamates as lead molecules. A series of compounds was prepared by reaction of arylsulfonyl isocyanates with N-(5H-dibenzo[a,d]cyclohepten-5-yl)- and N-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yl) methyl glycocolate, respectively, followed by the conversion of the COOMe to the carboxylate/hydroxamate moieties. The corresponding derivatives with methylene and ethylene spacers between the polycyclic moiety and the amino acid functionality were also obtained by related synthetic strategies. These new compounds were assayed as inhibitors of MMP-1, MMP-2, MMP-8 and MMP-9, and of the collagenase isolated from Clostridium histolyticum (ChC). Some of the new derivatives reported here proved to be powerful inhibitors of the four MMPs mentioned above and of ChC, with activities in the low nanomolar range for some of the target enzymes, depending on the substitution pattern at the sulfonylureido moiety and on the length of the spacer through which the dibenzosuberenyl/suberyl group is connected with the rest of the molecule. Several of these inhibitors also showed selectivity for the deep pocket enzymes (MMP-2, MMP-8 and MMP-9) over the shallow pocket ones MMP-1 and ChC.  相似文献   

4.
A series of hydroxamates was obtained by the reaction of N-(4-nitrobenzyl)-L-alanine with alkyl/arylsulfonyl halides, followed by conversion of the COOH group into CONHOH. Structurally-related compounds were prepared similarly by using arylsulfonyl isocyanates, aryl isocyanates or arylsulfenyl halides instead of the sulfonyl halides. Many of the new compounds showed nanomolar affinity for the bacterial collagenase isolated from the pathogen Clostridium histolyticum.  相似文献   

5.
Matrix metalloproteinase (MMP)/bacterial collagenase inhibitors incorporating 5-amino-2-mercapto-1,3,4-thiadiazole zinc binding functions are reported. A series of compounds was prepared by reaction of arylsulfonyl isocyanates or arylsulfonyl halides with phenylalanyl-alanine, followed by coupling with 5-amino-2-mercapto-1,3,4-thiadiazole in the presence of carbodiimides. These new compounds were assayed as inhibitors of human MMP-1, MMP-2, MMP-8 and MMP-9, and of the collagenase isolated from the anaerobe Clostridium histolyticum (ChC). The new derivatives proved to be powerful inhibitors of these metalloproteases, with activities in the low micromolar range for some of the target enzymes, depending on the substitution pattern at the arylsulfonyl(ureido) moieties.  相似文献   

6.
A series of succinyl hydroxamates/bishydroxamates as well as a new structural type of matrix metalloproteinase (MMP)/bacterial protease (BP) inhibitors, incorporating iminodiacetic (IDA) hydroxamate/bishydroxamate moieties, has been synthesized and tested for interaction with four vertebrate proteases, MMP-1, MMP-2, MMP-8 and MMP-9, and a BP, the collagenase isolated from Clostridium histolyticum (ChC). The new derivatives generally showed inhibition constants in the range of 8-62 nM against the five proteases mentioned above.  相似文献   

7.
A series of succinyl hydroxamates/bishydroxamates as well as a new structural type of matrix metalloproteinase (MMP)/bacterial protease (BP) inhibitors, incorporating iminodiacetic (IDA) hydroxamate/bishydroxamate moieties, has been synthesized and tested for interaction with four vertebrate proteases, MMP-1, MMP-2, MMP-8 and MMP-9, and a BP, the collagenase isolated from Clostridium histolyticum (ChC). The new derivatives generally showed inhibition constants in the range of 8-62 nM against the five proteases mentioned above.  相似文献   

8.
A series of N-benzoyl 4-aminobutyric acid hydroxamate analogs were synthesized and evaluated as matrix metalloproteinase inhibitors. Synthetic work was focused on the chemical modification of the 4-aminobutyric acid part using easily available starting materials. As such, chemical modification was carried out using commercially available starting materials such as 4-aminobutyric acid, (+)- and (-)-malic acid, and D- and L-glutamic acid derivatives. Among the compounds tested, N-[4-(benzofuran-2-yl)benzoyl] 4-amino-4S-hydroxymethylbutyric acid hydroxamates derived from L-glutamic acid demonstrated more potent inhibitory activity against MMP-2 and MMP-9 compared with the corresponding 2S-hydroxy analogs or 3S-hydroxy analogs, respectively, which were derived from (-)-malic acid. Structure-activity relationship study is presented.  相似文献   

9.
Histone deacetylase (HDAC) inhibitors induce the hyperacetylation of nucleosomal histones in carcinoma cells resulting in the expression of repressed genes that cause growth arrest, terminal differentiation, and/or apoptosis. In vitro selectivity of several novel hydroxamate HDAC inhibitors including succinimide macrocyclic hydroxamates and the non-hydroxamate alpha-ketoamide inhibitors was investigated using isolated enzyme preparations and cellular assays. In vitro selectivity for the HDAC isozymes (HDAC1/2, 3, 4/3, and 6) was not observed for these HDAC inhibitors or the reference HDAC inhibitors, MS-275 and SAHA. In T24 and HCT116 cells these compounds caused the accumulation of acetylated histones H3 and H4; however, the succinimide macrocyclic hydroxamates and the alpha-ketoamides did not cause the accumulation of acetylated alpha-tubulin. These data suggest "selectivity" can be observed at the cellular level with HDAC inhibitors and that the nature of the zinc-chelating moiety is an important determinant of activity against tubulin deacetylase.  相似文献   

10.
Four primary zinc-binding pharmacophores (thiols, carboxylates, phosphorus acids, and hydroxamates) have been utilized in generating inhibitors of zinc metalloproteases such as ACE, NEP, the MMPs, and ECE. Although compounds which inhibit the activity of both ACE and NEP (vasopeptidase inhibitors, VPIs) have been reported which incorporate a thiol, carboxylate, or phosphorus acid pharmacophore, the generation of hydroxamate based vasopeptidase inhibitors has remained elusive. Herein we report the first potent vasopeptidase inhibitors which were generated from the incorporation of conformationally restricted dipeptide mimetics to an N-formyl hydroxylamine zinc-binding group. Compounds such as 13c and 13d are among the most potent in this series, exhibiting in vitro activity comparable to other classes of inhibitors.  相似文献   

11.
A quantitative structure-activity relationship (QSAR) study is made on the inhibition of a few isozymes of carbonic anhydrase (CA) and some matrix metalloproteinases (MMPs), both zinc containing families of enzymes, by sulfonylated amino acid hydroxamates. For both enzymes, the inhibition potency of the hydroxamates is found to be well correlated with Kier's first-order valence molecular connectivity index 1chi(v) of the molecule and electrotopological state indices of some atoms. From the results, it is suggested that while hydroxamate-CA binding may involve mostly polar interactions, hydroxamate-MMP and hydroxamate-ChC (ChC: Clostridium histolyticum collagenase, another zinc enzyme related to MMPs) bindings may involve some hydrophobic interactions. Both MMPs and ChC also possess some electronic sites of exactly opposite nature to the corresponding sites in CAs. A group such as C6F5 present in the sulfonyl moiety is shown to be advantageous in both CA and MMP (also ChC) inhibitions, which is supposed to be due to the interaction of this group with Zn2+ ion present in the catalytic site of both families of enzymes.  相似文献   

12.
Recently, an X-ray co-crystal structure of our hydroxamate inhibitor IK682 and TACE [Niu, X.; Umland, S.; Ingram, R.; Beyer, B. M.; Liu, Y.-H.; Sun, J.; Lundell, D.; Orth, P. Arch. Biochem. Biophys. 2006, 451, 43-50] was published that explicitly shows the orientation of the hydroxamate and the TACE-selective 4-[(2-methyl-4-quinolinyl)methoxy]phenyl P1' group in the S1' and S3' sites. The preceding paper described a novel series of potent and TACE-selective hydantoins and we previously described pyrimidinetrione (barbiturate) inhibitors of TACE, both of which contain the same P1' group as IK682. Using this TACE-selective P1' group as an anchor, stereochemical and conformational constraints in the inhibitors, and restrictions to the active site Zn coordination geometry, we developed a highly plausible and predictive pharmacophore model that rationalizes the observed TACE activity of all three inhibitors.  相似文献   

13.
A series of sulfonylated hydroxamates were synthesized and evaluated as dual inhibitors of both human carbonic anhydrases (hCAs) and matrix metalloproteinases (MMPs), two metalloenzyme families involved in carcinogenesis and tumor invasion processes. The new derivatives were tested on three CA isozymes, the cytosolic isozymes I and II, and the transmembrane, tumor-associated isozyme IX, and also on human gelatinases (MMP-2 and MMP-9). Some of the new derivatives proved to be potent and selective inhibitors of CA II, but only compounds 3b and 6b, devoid of the arylsulfonyl moiety, proved to have a better inhibitory activity on hCA IX than on hCA I and II, in the micromolar range.  相似文献   

14.
Anti-succinate hydroxamates with cyclic P1 motifs were synthesized as aggrecanase inhibitors. The N-methanesulfonyl piperidine 23 and the N-trifluoroacetyl azetidine 26 were the most potent aggrecanase inhibitors both having an IC(50)=3nM while maintaining >100-fold selectivity over MMP-1, -2, and -9. The cyclic moieties were also capable of altering in vivo metabolism, hence delivering low clearance compounds in both rat and dog studies as shown for compound 14.  相似文献   

15.
A new series of beta-N-biaryl ether sulfonamide hydroxamates as novel gelatinase inhibitors is described. These compounds exhibit good potency for MMP-2 and MMP-9 without inhibiting MMP-1. The structure-activity relationships (SAR) reveal the biaryl ether type P1' moiety together with methanesulfonamide is the optimal combination that provides inhibitory activity of MMP-9 in the single-digit nanomolar range.  相似文献   

16.
The design, synthesis and structure-activity relationship (SAR) of a series of nonpeptidic 2-arylsulfonyl-1,2,3,4-tetrahydro-isoquinoline-3-carboxylates and-hydroxamates as inhibitors of the matrix metalloproteinase human neutrophil collagenase (MMP-8) is described here. Based on available X-ray structures of MMP-8/inhibitor complexes, our structure-based design strategy was directed to complement major protein-ligand interaction regions mainly in the S1' hydrophobic specificity pocket close to the catalytic zinc ion. Here, the rigid 1,2,3,4-tetrahydroisoquinoline scaffold (Tic) provides ideal geometry to combine hydroxamates and carboxylates as typical zinc complexing functionalities, with a broad variety of S1' directed mono- and biaryl substituents consisting of aromatic rings perfectly accommodated within this more hydrophobic region of the MMP-8 inhibitor binding site. The effect of different S1' directed substituents, zinc-complexing groups, chirality and variations of the tetrahydroisoquinoline ring-system is investigated by systematic studies. X-ray structure analyses in combination with 3D-QSAR studies provided an additional understanding of key determinants for MMP-8 affinity in this series. The hypothetical binding mode for a typical molecule as basis for our inhibitor design was found in good agreement with a 1.7 A X-ray structure of this candidate in complex with the catalytic domain of human MMP-8. After analysis of all systematic variations, 3D-QSAR and X-ray structure analysis, novel S1' directed substituents were designed and synthesized and biologically evaluated. This finally results in inhibitors, which do not only show high biological affinity for MMP-8, but also exhibit good oral bioavailability in several animal species.  相似文献   

17.
A quantitative structure-activity relationship (QSAR) study is made on some hydroxamic acid-based inhibitors of matrix metalloproteinases (MMPs) and a bacterial collagenase, namely Clostridium histolyticum collagenase (ChC), that also belongs to an MMP family, M-31, using Kier's valence molecular connectivity index (1)chi(v) of the substituents and electrotopological state (E-state) indices of some atoms. The results indicate that out of the four MMPs (MMP-1, MMP-2, MMP-8, and MMP-9) studied, MMP-2 and MMP-9 can be structurally quite similar, but widely differing from MMP-1 and MMP-8 and ChC. For MMP-2 and MMP-9, the inhibition activity of compounds is shown to depend on both (1)chi(v )and E-state indices, while for MMP-1 and MMP-8 it is shown to depend only on E-state indices and for ChC only on (1)chi(v). However, in all the cases, an aromatic group like C(6)F(5) or 3-CF(3)-C(6)H(4) attached to SO(2) moiety in the compounds is indicated to be equally beneficial, due to probably the involvement of fluorine atom(s) in charge-charge interactions with the Zn(2+) ion of the enzymes or in the formation of the hydrogen bonds with some sites of the receptors.  相似文献   

18.
A novel series of hydroxamate/urea-based inhibitors of gelatinases has been discovered via solid-phase combinatorial chemistry. SAR of P1', P2', and P3' has been exploited and structures different from traditional succinate-based MMP inhibitors have been found.  相似文献   

19.
The SAR of a series of potent sulfonamide hydroxamate TACE inhibitors bearing novel acetylenic P1' groups was explored. In particular, compound 4t bearing a butynyloxy P1' moiety has excellent in vitro potency against isolated TACE enzyme and in cells, good selectivity over MMP-1 and oral activity in an in vivo model of TNF-alpha production.  相似文献   

20.
One proposed mechanism of the inactivation of lipoxygenase by inhibitors is the reduction of the catalytically active ferric form of the enzyme to its ferrous form. Recent studies have shown that compounds containing the hydroxamate moiety are potent inhibitors of lipoxygenase. The hydroxamate portion of the inhibitor is thought to bind to iron at the catalytic site of the enzyme. We now report evidence that the NOH of the hydroxamate group of N-(4-chlorophenyl)-N-hydroxy-N'-(3-chlorophenyl)urea, N-[(E)-3-(3-phenoxyphenyl)prop-2-enyl]acetohydroxamic acid (BW A4C), and N-(1-benzo(b)thien-2-ylethyl)-N-hydroxyurea (Zileuton) is oxidized by lipoxygenase to form their corresponding nitroxides, which are directly detected by electron paramagnetic resonance spectroscopy. It is consistently found that the selected NOH-containing compounds, e.g. alkylhydroxylamines or N-hydroxyureas, are also oxidized by lipoxygenase to form their corresponding nitroxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号