首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
John Gardiner  Jan Marc 《Protoplasma》2013,250(1):391-395
Both the cortical microtubule cytoskeleton and cellulose microfibrils are important for the anisotropic growth of plant cells. Although the two systems interact, the details of this interaction are far from clear. It has been shown the inhibitors of phospholipase D, phospholipase A2 and phospholipase C all cause disorganisation of the microtubule cytoskeleton. Since the phospholipases act on the plasma membrane, which links cortical microtubules to cellulose microfibrils in the cell wall, they may play a key role in the communication between the two structures. This communication may take various forms. Microtubule-linked phospholipase activity may cause the organisation of underlying cellulose microfibril liquid crystals. Alternatively, phospholipases may co-operate in the regulation of plasma membrane fluidity, affecting the movement of cellulose synthase complexes in the underlying plasma membrane. GPI-anchored proteins in the plasma membrane, which are cleaved by phospholipases, may possibly play a role.  相似文献   

3.
Lipid components in biological membranes are essential for maintaining cellular function. Phosphoinositides, the phosphorylated derivatives of phosphatidylinositol (PI), regulate many critical cell processes involving membrane signaling, trafficking, and reorganization. Multiple metabolic pathways including phosphoinositide kinases and phosphatases and phospholipases tightly control spatio-temporal concentration of membrane phosphoinositides. Metabolizing enzymes responsible for PI 4,5-bisphosphate (PI(4,5)P2) production or degradation play a regulatory role in Toll-like receptor (TLR) signaling and trafficking. These enzymes include PI 4-phosphate 5-kinase, phosphatase and tensin homolog, PI 3-kinase, and phospholipase C. PI(4,5)P2 mediates the interaction with target cytosolic proteins to induce their membrane translocation, regulate vesicular trafficking, and serve as a precursor for other signaling lipids. TLR activation is important for the innate immune response and is implicated in diverse pathophysiological disorders. TLR signaling is controlled by specific interactions with distinct signaling and sorting adaptors. Importantly, TLR signaling machinery is differentially formed depending on a specific membrane compartment during signaling cascades. Although detailed mechanisms remain to be fully clarified, phosphoinositide metabolism is promising for a better understanding of such spatio-temporal regulation of TLR signaling and trafficking. [BMB Reports 2014; 47(7): 361-368]  相似文献   

4.
Two types of cytosolic phospholipase C specific for phosphoinositides were purified from human platelets. The molecular masses of the purified enzymes were 440 and 290 kDa. These enzymes were concluded to be respectively a trimer and a dimer of homologous 146 kDa polypeptides. The 146 kDa polypeptide may be an immunologically novel isozyme among the 140-150 kDa PLC isozymes. Both enzymes hydrolyzed phosphatidylinositol and phosphatidylinositol 4,5-bisphosphate in a Ca2(+)-dependent manner.  相似文献   

5.
Two forms (mPLC-I, mPLC-II) of phosphoinositide-specific phospholipase C have been purified, 1494- and 1635-fold, respectively, from plasma membranes of human platelets. Purified mPLC-I and mPLC-II had estimated molecular weights by gel filtration and sodium dodecyl sulfate-polyacrylamide gels of 69,000 and 63,000, respectively. Two cytosolic forms (PLC-I and PLC-II) of phosphoinositide-specific phospholipase C were also resolved on a phenyl-Sepharose column. The major cytosolic form present in outdated platelets, PLC-II, was purified to homogeneity by chromatography on Fast Q-Sepharose, cellulose phosphate, heparin-agarose, phenyl-Sepharose, Superose 12, DEAE-5PW, and hydroxylapatite. Purified PLC-II had a molecular weight of 57,000 on sodium dodecyl sulfate-polyacrylamide gels. mPLC-I, mPLC-II, and PLC-II hydrolyzed both PI and PIP2. The Vmax for PIP2 hydrolysis was similar for all three forms of PLC and was approximately 5-fold greater than for PI hydrolysis. The Km for PIP2 hydrolysis was also similar for the three enzymes. In contrast, the Km for PI hydrolysis by PLC-II was 10-fold lower than by mPLC-I and mPLC-II. In addition, antibody prepared against PLC-II did not cross-react with either mPLC-I or mPLC-II. These data indicate that platelets contain membrane-associated phosphoinositide-specific phospholipases C that are distinct from at least one cytosolic form (PLC-II) of the enzyme.  相似文献   

6.
Eighty-three percent of polyphosphoinositide-specific phospholipase C activity was recovered in a cytosolic fraction after nitrogen cavitation of turkey erythrocytes. This activity has been purified approximately 50,000-fold when compared to the starting cytosol with a yield of 1.7-5.0%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the phospholipase C preparation revealed a major polypeptide of 150 kDa. The specific activity of the purified enzyme was 6.7-14.0 mumol/min/mg of protein with phosphatidylinositol 4,5-bisphosphate or phosphatidylinositol 4-phosphate as substrate. Phospholipase C activity was markedly dependent on the presence of Ca2+. The phospholipase C showed an acidic pH optimum (pH 4.0). At neutral pH, noncyclic inositol phosphates were the major products formed by the phospholipase C, while at pH 4.0, substantial formation of inositol 1:2-cyclic phosphate derivatives occurred. Properties of the purified 150-kDa turkey erythrocyte phospholipase C were compared with the approximately 150-kDa phospholipase C-beta and -gamma isoenzymes previously purified from bovine brain (Ryu, S. H., Cho, K. S., Lee, K. Y., Suh, P. G., and Rhee, S. G. (1987) J. Biol. Chem. 262, 12511-12518). The turkey erythrocyte phospholipase C differed from the two mammalian phospholipases with respect to the effect of sodium cholate on the rate of polyphosphoinositide hydrolysis observed. Moreover, when presented with dispersions of pure inositol lipids, phospholipases C-beta and -gamma displayed comparable maximal rates of polyphosphoinositide and phosphatidylinositol hydrolysis. By contrast, the turkey erythrocyte phospholipase C displays a marked preference for polyphosphoinositide substrates.  相似文献   

7.
Phosphoinositide-specific phospholipase C (PI-PLC) activities are involved in mediating plant cell responses to environmental stimuli. Two variants of PI-PLC have been partially purified from the roots of oat seedlings; one cytosolic and one particulate. Although the cytosolic enzyme was significantly purified, the activity still co-migrated with a number of other proteins on heparin HPLC and also on size-exclusion chromatography. The partially purified PI-PLC was tested by Western blotting, and we found that actin and actin-binding proteins, profilin and tropomyosin, co-purified with cytosolic phospholipase C. After a non-ionic detergent (Triton X-100) treatment, PI-PLC activities still remained with the actin cytoskeleton. The effects of phalloidin and F-buffer confirmed this association; these conditions, which favor actin polymerization, decreased the release of PI-PLC from the cytoskeleton. The treatments of latrunculin and G-buffer, the conditions that favor actin depolymerization, increased the release of PI-PLC from the cytoskeleton. These results suggest that oat PI-PLC associates with the actin cytoskeleton.  相似文献   

8.
The phospholipases A2 (PLA2) belong to a large family of enzymes involved in the generation of several second messengers that play an important role in signal transduction processes associated with normal brain function. The phospholipase A2 family includes secretory phospholipase A2, cytosolic phospholipase A2, calcium-independent phospholipase A2, plasmalogen-selective phospholipase A2 and many other enzymes with phospholipase A2 activity that have not been classified. Few attempts have been made purify and characterize the multiple forms of PLA2 and none have been fully characterized and cloned from brain tissue. A tight regulation of phospholipase A2 isozymes is necessary for maintaining physiological levels of free fatty acids including arachidonic acid and its metabolites in the various types of neural cells. Under normal conditions, phospholipase A2 isozymes may be involved in neurotransmitter release, long-term potentiation, growth and differentiation, and membrane repair. Under pathological conditions, high levels of lipid metabolites generated by phospholipase A2 are involved in neuroinflammation, oxidative stress, and neural cell injury.  相似文献   

9.
The susceptibility of partially peroxidized liposomes of 2-[1-14C] linoleoylphosphatidylethanolamine ([14C]PE) to hydrolysis by cellular phospholipases was examined. [14C]PE was peroxidized by exposure to air at 37 degrees C, resulting in the formation of more polar derivatives, as determined by thin-layer chromatographic analysis. Hydrolysis of these partially peroxidized liposomes by lysosomal phospholipase C associated with cardiac sarcoplasmic reticulum, and by rat liver lysosomal phospholipase C, was greater than hydrolysis of non-peroxidized liposomes. By contrast, hydrolysis of liposomes by purified human synovial fluid phospholipase A2 or bacterial phospholipase C was almost completely inhibited by partial peroxidation of PE. Lysosomal phospholipase C preferentially hydrolyzed the peroxidized component of the lipid substrate which had accumulated during autoxidation. The major product recovered under these conditions was 2-monoacylglycerol, indicating sequential degradation by phospholipase C and diacylglycerol lipase. Liposomes peroxidized at pH 7.0 were more susceptible to hydrolysis by lysosomal phospholipases C than were liposomes peroxidized at pH 5.0, in spite of greater production of polar lipid after peroxidation at pH 5.0. Sodium bisulfite, an antioxidant and an inhibitor of lysosomal phospholipases, prevented: (1) lipid autoxidation, (2) hydrolysis of both non-peroxidized and peroxidized liposomes by sarcoplasmic reticulum and (3) loss of lipid phosphorus from endogenous lipids when sarcoplasmic reticulum was incubated at pH 5.0. These studies show that lipid peroxidation may modulate the susceptibility of phospholipid to attack by specific phospholipases, and may therefore be an important determinant in membrane dysfunction during injury. Preservation of membrane structural and functional integrity by antioxidants may result from inhibition of lipid peroxidation, which in turn may modulate cellular phospholipase activity.  相似文献   

10.
There is much evidence that G-proteins transduce the signal from receptors for Ca2+-mobilizing agonists to the phospholipase C that catalyzes the hydrolysis of phosphoinositides. However, the specific G-proteins involved have not been identified. We have recently purified a 42 kDa protein from liver that activates phosphoinositide phospholipase C and cross-reacts with antisera to a peptide common to G-protein -subunits. It is proposed that this protein is the a-subunit of the G-protein that regulates the phospholipase in this tissue.Ca2+-mobilizing agonists and certain growth factors also promote the hydrolysis of phosphatidylcholine through the activation of phospholipases C and D in many cell types. This yields a larger amount of diacylglycerol for a longer time than does the hydrolysis of inositol phospholipids. Consequently phosphatidylcholine breakdown is probably a major factor in long-term regulation of protein kinase C. The functions of phosphatidic acid produced by phospholipase D are speculative, but there is evidence that it is a major source of diacylglycerol in many cell types. The regulation of phosphatidylcholine phospholipases is multiple and involves direct activation by G-proteins, and regulation by Ca2+ protein kinase C and perhaps growth factor receptor tyrosine kinases.  相似文献   

11.
Phospholipase activities of the P388D1 macrophage-like cell line   总被引:3,自引:0,他引:3  
The murine macrophage (M phi) cell line, P388D1, was employed as a source of M phi phospholipases in order to characterize the enzymatic properties and subcellular localization of these enzymes because of their importance for prostaglandin biosynthesis. Phospholipase activity was assessed with dipalmitoylphosphatidylcholine (DPPC) as substrate. Phospholipases were characterized with respect to divalent cation dependence, pH optima, and localization in subcellular compartments using linear sucrose gradients. By these criteria a number of different phospholipases were identified. Most importantly, a single Ca2+-dependent activity with a pH optimum of 8.8 was identified in membrane-rich fractions (plasma membrane, mitochondria, and endoplasmic reticulum) and could be clearly separated from the remaining activities, which are Ca2+ independent and exhibit pH optima of 7.5, 5.1, and 4.2. The phospholipases with acidic pH optima may be associated with subcellular components containing lysosomal enzymes and both phospholipase A1 and phospholipase A2 activities are observed. In contrast, the phospholipase activity with a pH optimum of 7.5 sediments with the cytosolic proteins and is inhibited by 5 mM Ca2+. No significant phospholipase C activity was detected in assays performed with or without added Ca2+ at pH's 4.2, 5.1, 7.5, or 8.8 using DPPC as substrate. However, the P388D1 cells do contain a lysophospholipase that is at least 20 times more active than the phospholipase A activities identified. Its presence must be taken into account in evaluating the positional specificities and properties of the macrophage phospholipases.  相似文献   

12.
Phospholipases are a diverse class of enzymes produced both by eukaryotic hosts and their pathogens. Major insights into action pathways of bacterial phospholipases have been provided during the last years. On the one hand bacterial phospholipases act as potent membrane destructors and on the other hand they manipulate and initiate host signalling paths, such as chemokine expression or the inflammatory cascade. Reaction products of bacterial phospholipases may potentially influence many more host cell processes, such as cell respreading, lamellopodia formation, cell migration and membrane traffic. Phospholipases play a dominant role in the biology of the lung pathogen Legionella pneumophila. So far, 15 different phospholipase A-encoding genes have been identified in the L. pneumophila genome. These phospholipases can be divided into three major groups, the GDSL, the patatin-like and the PlaB-like enzymes. The first two lipase families are also found in higher plants (such as flowering plants) and the second family shows similarities to eukaryotic cytosolic phospholipases A. Therefore, when those enzymes are injected or secreted by the bacterium into the host cell they may mimic eukaryotic phospholipases. The current knowledge on L. pneumophila phospholipases is summarised here with emphasis on their activity, mode of secretion, localisation, expression and importance for host cell infections.  相似文献   

13.
Two novel phospholipase activities have been identified in the cytosolic fraction of canine myocardium. Neutral active phospholipase C activity was partially purified by anion exchange, hydroxylapatite, chromatofocusing, and gel filtration chromatographies. The partially purified enzyme had similar maximum velocities (237 versus 241 nmol/mg X h) and apparent Michaelis constants (20 versus 14 microM) utilizing either plasmenylcholine or phosphatidylcholine as substrate. Myocardial phospholipase C had a pH optimum between 7 and 8, required divalent cations for maximal activity, and did not hydrolyze phosphatidylinositol or sphingomyelin. Myocardial cytosol contained a potent inhibitor of phospholipase C which masked enzymic activity until it was removed during the purification procedure. A plasmalogen selective phospholipase A2 activity was also identified in the cytosolic fraction of canine myocardium. The protein catalyzing this activity was partially purified by DEAE-Sephacel-hydroxylapatite tandem chromatography and exhibited a maximum velocity of 5 nmol/mg X h for plasmenylcholine but only 1 nmol/mg X h for phosphatidylcholine, had a pH optimum between 6 and 7 for both substrates, and did not require calcium ion for activity. These results constitute the first demonstration of a neutral active phospholipase C specific for choline and ethanolamine glycerophospholipids and a plasmalogen selective phospholipase A2 in mammalian tissue.  相似文献   

14.
Phosphatidylinositol-specific phospholipase C was purified from the culture medium of B. thuringiensis to high specific activity using a procedure we recently described for purification of PI-PLC from B. cereus (Volwerk et al. (1989) J. Cell. Biochem. 39, 315-325). The purified enzymes from B. thuringiensis and B. cereus have similar specific activities towards hydrolysis of the membrane lipid phosphatidylinositol, and also towards hydrolysis of the glycosyl-phosphatidylinositol-containing membrane anchor of bovine erythrocyte acetylcholinesterase. These results indicate very similar catalytic properties for the structurally homologous PI-specific phospholipases C secreted by these bacilli.  相似文献   

15.
Sheep seminal vesicles contain two immunologically distinct phospholipase C (PLC) enzymes that can hydrolyze phosphatidylinositol (PI) (Hofmann, S.L., and Majerus, P.W. (1982) J. Biol. Chem. 257, 6461-6469). One of these enzymes (PLC-I) has been purified to homogeneity; the second (PLC-II) has been purified 2600-fold from a crude extract of seminal vesicles. In the present study we have compared the ability of these purified enzymes to hydrolyze PI, phosphatidylinositol 4-phosphate (PI-4-P), and phosphatidylinositol 4,5-diphosphate (PI-4,5-P2). Using radiolabeled substrates in small unilamellar phospholipid vesicles of defined composition, the two enzymes were found to hydrolyze all three of the phosphoinositides. Hydrolysis of all three phosphoinositides by both enzymes was stimulated by Ca2+; however, in the presence of EGTA only the polyphosphoinositides were hydrolyzed. The two enzymes displayed substrate affinities in the order PI greater than PI-4-P greater than PI-4,5-P2, and maximum hydrolysis rates in the order PI-4,5-P2 greater than PI-4-P greater than PI. When present in the same vesicles, PI and the polyphosphoinositides competed for a limiting amount of either enzyme. Inclusion of phosphatidylcholine into vesicles containing the phosphoinositides resulted in greater inhibition of PI hydrolysis than polyphosphoinositide hydrolysis. When all three phosphoinositides were present in vesicles mimicking the cytoplasmic leaflet of cell membranes, there was preferential hydrolysis of the polyphosphoinositides over PI. We conclude that a single phospholipase C can account for the hydrolysis of all three phosphoinositides seen during agonist-induced stimulation of secretory cells. The cytoplasmic Ca2+ concentration and phospholipid composition of the membrane, however, may influence the relative rate of hydrolysis of the three phosphoinositides.  相似文献   

16.
Rho GTPases have two interconvertible forms and two cellular localizations. In their GTP-bound conformation, they bind to the cell membrane and are activated. In the inactive GDP-bound conformation, they associate with a cytosolic protein called GDP dissociation inhibitor (GDI). We previously reported that the RhoA component of the RhoA/Rho-GDI complex was not accessible to the Clostridium botulinum C3 ADP-ribosyl transferase, unless the complex had been incubated with phosphoinositides. We show here that PtdIns, PtdIns4P, PtdIns3,4P2, PtdIns4,5P2 and PtdInsP3 enhance not only the C3-dependent ADP-ribosylation, but also the GDP/GTP exchange in the RhoA component of the prenylated RhoA/Rho-GDI complex. In contrast, in the nonprenylated RhoA/Rho-GDI complex, the levels of ADP-ribosylation and GDP/GTP exchange are of the same order as those measured on free RhoA and are not modified by phosphoinositides. In both cases, phosphoinositides partially opened, but did not fully dissociate the complex. Upon treatment of the prenylated RhoA/Rho-GDI complex with phosphoinositides, a GTP-dependent transfer to neutrophil membranes was evidenced. Using an overlay assay with the prenylated RhoA/Rho-GDI complex pretreated with PtdIns4P and labeled with [alpha32P]GTP, three membrane proteins with molecular masses between 26 and 32 kDa were radiolabeled. We conclude that in the presence of phosphoinositides, the prenylated RhoA/Rho-GDI complex partially opens, which allows RhoA to exchange GDP for GTP. The opened GTP-RhoA/Rho-GDI complex acquires the capacity to target specific membrane proteins.  相似文献   

17.
Membranes from human placenta contain proteins which inhibit the activity of phospholipases A2 by binding to phospholipid thus impeding substrate availability. We used unilamellar mixed liposomes and a partially purified cytosolic phospholipase A2 from placenta for characterizing this substrate-depleting activity. A major portion of these inhibitory proteins was released by extracting washed membranes with a Ca+(+)-chelator. Biochemical fractionation and systematic analysis resulted in the unequivocal identification of a series of annexin proteins. We describe a straightforward procedure which allows to obtain 8 annexins from placenta either in pure form or as a mixture of two annexins. One of them was obtained in two forms which had the same molecular mass of 68 kDa but differed in charge. We also present suggestive evidence for a novel annexin I-related polypeptide of Mr 45,000 which is an excellent in vitro substrate for protein kinase C. We estimate that about 2% of the total placental membrane proteins are annexins. For achieving half inhibition of phospholipase A2 activity with pure annexins, up to a 6.5-fold difference in the amounts of protein was observed when calculated on a molar basis. This suggests specificity of individual annexin species.  相似文献   

18.
The ability of bovine corpus luteum plasma membranes to bind 125I-choriogonadotropin has been examined after prior treatment of the membranes with phospholipases A, C, and D. Treatment of the purified membranes with low concentrations of phospholipases A and C resulted in the inhibition of the binding of 125I-choriogonadotropin to its receptors, whereas phospholipase D had no effect. Receptor activity was decreased by low concentrations of phospholipase A from either bee venom, Vipera russelli or Crotalus terrificus terrificus. Similarly, low concentrations of phospholipase C from Clostridium perfringens and Clostridium welchii also inhibited the binding activity while comparatively higher concentrations of phospholipase C from Bacillus cereus were required to achieve comparable inhibition. The time required to produce 50% inhibition of in vitro binding by phospholipases A and C was found to be 6 and 23 min, respectively. Upon either removal or chelation of calcium ions by ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) both enzymes were completely inhibited as evidenced by the complete retention of the membrane binding activity. The decrease in the specific binding of choriogonadotropin to membranes after phospholipase digestion resulted in a decrease in the number of binding sites and was not accompanied by a change in the affinity of the hormone-receptor complex. The rates of association and dissociation of the 125I-choriogonadotropin-receptor complex and the equilibrium dissociation constant (Kd) were nearly identical in untreated and phospholipase-treated membranes. Phospholipases did not have any effect on the preformed hormone-receptor complex or on solubilized receptor. Filtration through Sepharose 6B of solubilized 125I-choriogonadotropin-receptor complex from untreated membranes or membranes which had been pretreated with phospholipase C prior to carrying out hormone binding did not alter the profile (Kav 0.38). Gel filtration of membranes treated with phospholipase A showed two peaks of bound radioactivity with distribution coefficients (Kav) of 0.08 and 0.35, respectively.  相似文献   

19.
Phospholipase D.     
Phospholipase D catalyses the hydrolysis of the phosphodiester bond of glycerophospholipids to generate phosphatidic acid and a free headgroup. Phospholipase D activities have been detected in simple to complex organisms from viruses and bacteria to yeast, plants, and mammals. Although enzymes with broader selectivity are found in some of the lower organisms, the plant, yeast, and mammalian enzymes are selective for phosphatidylcholine. The two mammalian phospholipase D isoforms are regulated by protein kinases and GTP binding proteins of the ADP-ribosylation and Rho families. Mammalian and yeast phospholipases D are also potently stimulated by phosphatidylinositol 4,5-bisphosphate. This review discusses the identification, characterization, structure, and regulation of phospholipase D. Genetic and pharmacological approaches implicate phospholipase D in a diverse range of cellular processes that include receptor signaling, control of intracellular membrane transport, and reorganization of the actin cytoskeleton. Most ideas about phospholipase D function consider that the phosphatidic acid product is an intracellular lipid messenger. Candidate targets for phospholipase-D-generated phosphatidic acid include phosphatidylinositol 4-phosphate 5-kinases and the raf protein kinase. Phosphatidic acid can also be converted to two other lipid mediators, diacylglycerol and lyso phosphatidic acid. Coordinated activation of these phospholipase-D-dependent pathways likely accounts for the pleitropic roles for these enzymes in many aspects of cell regulation.  相似文献   

20.
Phospholipids containing the inositol headgroup (phosphoinositides) serve as membrane storage forms of a family of messenger molecules that transmit signals in cells. In this study a general synthesis of myo-inositol phosphate derivatives in which the phosphorus oxygen bond is replaced with a phosphorus carbon bond (i.e. phosphonates) is presented. Four specific examples of phosphonate analogs of phosphatidylinositol (PI) are prepared which have a single alkyl chain in place of the diacylglycerol. These derivatives are stable in neutral and alkaline solutions and are designed for use in biochemical studies of PI-specific phospholipases C and other enzymes involved in the phosphoinositide signal transduction pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号