首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growing cultures of Streptococcus faecalis at temperatures above 30 C have activation energies for both rates of growth and glycolysis of 10.3 kcal mole(-1), and a constant growth yield; when growth takes place below this temperature, the growth yield decreases and the activation energy for growth increases to 21.1 kcal mole(-1), but the activation energy for glycolysis is unchanged. The adenosine triphosphate pool in the organisms behaves differently above and below 30 C, suggesting that the energetic coupling between anabolism and catabolism is less effective below 30 C. Washed suspensions of S. faecalis have repressed glycolytic activity and an activation energy for glycolysis of 15.6 kcal mole(-1) over the whole temperature range studied. Growing cultures of Zymomonas mobilis below 33 C have a constant growth yield of 8.3 g (dry weight) of organisms per mole of glucose degraded, and activation energies for both glycolysis and growth of 11.1 kcal mole(-1); above this temperature, the growth yield falls, the activation energy for growth changes to -6.9 kcal mole(-1), but the activation energy for glycolysis is unchanged, so that the coupling between anabolism and catabolism is less effective above 33 C. The findings support the view that energy turnover in these bacteria is not well regulated.  相似文献   

2.
3.
Strains of Streptococcus faecalis and S. faecium are known to produce ammonia from arginine, but only S. faecalis couples the adenosine triphosphate (ATP) produced through the arginine dihydrolase pathway to growth processes. The specific activities of the arginine dihydrolase enzymes were found to be much lower in S. faecium (0.01 to 0.10) than in S. faecalis (0.24 to 1.60). Phosphatase activities in both strains were similar (up to 0.11), but equaled or exceeded the activities of the arginine dihydrolase enzymes in S. faecium. The failure of S. faecium to show increased growth in arginine media is explained on the basis of low activities of the arginine dihydrolase enzymes coupled with sufficient phosphatase activity to negate any benefit from ATP formed.  相似文献   

4.
Several lactic acid bacteria use homolactic acid fermentation for generation of ATP. Here we studied the role of the lactate dehydrogenase enzyme on the general physiology of the three homolactic acid bacteria Lactococcus lactis, Enterococcus faecalis, and Streptococcus pyogenes. Of note, deletion of the ldh genes hardly affected the growth rate in chemically defined medium under microaerophilic conditions. However, the growth rate was affected in rich medium. Furthermore, deletion of ldh affected the ability for utilization of various substrates as a carbon source. A switch to mixed acid fermentation was observed during glucose-limited continuous growth and was dependent on the growth rate for S. pyogenes and on the pH for E. faecalis. In S. pyogenes and L. lactis, a change in pH resulted in a clear change in Y(ATP) (cell mass produced per mole of ATP). The pH that showed the highest Y(ATP) corresponded to the pH of the natural habitat of the organisms.  相似文献   

5.
Streptococcus faecalis grown with glucose as the primary energy source contains a single, nicotinamide adenine dinucleotide phosphate (NADP)-specific 6-phosphogluconate dehydrogenase. Extracts of gluconate-adapted cells, however, exhibited 6-phosphogluconate dehydrogenase activity with either NADP or nicotinamide adenine dinucleotide (NAD). This was shown to be due to the presence of separate enzymes in gluconate-adapted cells. Although both enzymes catalyzed the oxidative decarboxylation of 6-phosphogluconate, they differed from one another with respect to their coenzyme specificity, molecular weight, pH optimum, K(m) values for substrate and coenzyme, and electrophoretic mobility in starch gels. The two enzymes also differed in their response to certain effector ligands. The NADP-linked enzyme was specifically inhibited by fructose-1,6-diphosphate, but was insensitive to adenosine triphosphate (ATP) and certain other nucleotides. The NAD-specific enzyme, in contrast, was insensitive to fructose-1,6-diphosphate, but was inhibited by ATP. The available data suggest that the NAD enzyme is involved primarily in the catabolism of gluconate, whereas the NADP enzyme appears to function in the production of reducing equivalents (NADPH) for use in various reductive biosynthetic reactions.  相似文献   

6.
Synchronous mitoses occur in Physarum polycephalum in the absence of cell division. Nucleoside and nucleotide profiles were prepared from synchronously growing P. polycephalum at intervals throughout the growth cycle. Comparison of these profiles demonstrates that the pool of adenosine triphosphate decreases from a high level at prophase to a minimum through mitosis and increases again in the postmitotic period. These events appear to coincide with changes in the pools of adenosine diphosphate and adenosine but not with that of adenosine monophosphate. This observed decrease in the pool of adenosine triphosphate during mitosis was confirmed by direct enzymatic assay. These results presumably reflect the energy demands of the cell during mitosis.  相似文献   

7.
M Nakamura  A M Dhople 《Microbios》1985,42(168):97-102
The intrinsic energy potential of the fastidious mycobacterium, Mycobacterium lepraemurium, essential for growth in axenic liquid medium was determined by ultraviolet irradiation of the inoculum. The growth potential in NC-5 medium of irradiated inocula was measured by an ultrasensitive method of adenosine triphosphate (ATP) using a luciferin-luciferase acceptor system. The results indicate that growth of bacilli ceased when more than one third of the ATP pool in 7 X 10(6) cells was lost. The residual level of ATP is roughly equivalent to that found in 10(5) non-irradiated cells.  相似文献   

8.
The ATP and GTP pools of Escherichia coli have recently been reported to increase approximately 10-fold with increasing growth rates in the range from 0.4 to 1.4 generations/hour (Gaal, T., Bartlett, M. S., Ross, W., Turnbough, C. L., and Gourse, R. L. (1997) Science 278, 2092-2097). Moreover, it was proposed that this variation of the nucleotide pools, particularly the ATP pool, might be responsible for the well known growth rate-dependent regulation of rRNA synthesis in E. coli. To test this hypothesis we have measured the nucleoside triphosphate pools as a function of growth rate for several E. coli strains. We found that the size of all four RNA precursor pools are essentially invariant with growth rate, in the range from 0.5 to 2.3 generations/hour. Nevertheless we observed the expected growth rate-dependent increase of RNA accumulation in these strains. In light of these results, it seems unlikely that nucleotide pool variations should be responsible for the growth rate-dependent regulation of rRNA synthesis.  相似文献   

9.
Streptococcus lactis metabolizes arginine by the arginine deiminase (ADI) pathway. Resting cells of S. lactis grown in the presence of galactose and arginine maintain a high intracellular ornithine pool in the absence of arginine and other exogenous energy sources. Addition of arginine results in a rapid release of ornithine concomitant with the uptake of arginine. Subsequent arginine metabolism results intracellularly in high citrulline and low ornithine pools. Arginine-ornithine exchange was shown to occur in a 1-to-1 ratio and to be independent of a proton motive force. The driving force for arginine uptake in intact cells is supplied by the ornithine and arginine concentration gradients formed during arginine metabolism. These results confirm studies of arginine and ornithine transport in membrane vesicles of S. lactis (A. J. M. Driessen, B. Poolman, R. Kiewiet, and W. N. Konings, Proc. Natl. Acad. Sci. USA, 84:6093-6097). The activity of the ADI pathway appears to be affected by the internal concentration of (adenine) nucleotides. Conditions which lower ATP consumption (dicyclohexylcarbodiimide, high pH) decrease the ADI pathway activity, whereas uncouplers and ionophores which stimulate ATP consumption increase the activity. The arginine-ornithine exchange activity matches the ADI pathway most probably by adjusting the intracellular levels of ornithine and arginine. Regulation of the ADI pathway and the arginine-ornithine exchanger at the level of enzyme synthesis is exerted by glucose (repressor, antagonized by cyclic AMP) and arginine (inducer). An arginine/ornithine antiport was also found in Streptococcus faecalis DS5, Streptococcus sanguis 12, and Streptococcus milleri RH1 type 2.  相似文献   

10.
Alkaloid biosynthesis in Claviceps paspali MG-6 was favored by unbalanced growth. A positive correlation between the rate of protein turnover and alkaloid formation was noted. The pattern of the orthophosphate content in the mycelium resembled that in the ripening sclerotia of the parasitic strains. Alkaloids were revealed as potentially effective in energy metabolism. Reduced adenosine triphosphate (ATP) utilization and an increase in the ATP pool were found to be favorable for alkaloid production. Acetyl-coenzyme A carboxylase activity and the level of cell lipids were directly related to the intensity of alkaloid biosynthesis. An inverse relationship was observed between the activities of the tricarboxylic acid and glycoxylate cycles and the rate of alkaloid formation.  相似文献   

11.
Glutamate and aspartate showed the highest rate of catabolism in oxygenated isolated rat heart with the formation of glutamine, asparagine and alanine. Under anoxia, the catabolism of branch chained amino acids and that of lysine, proline, arginine and methionine was inhibited. However, glutamate and aspartate catabolized at a higher rate as compared with oxygenation. Alanine was the product of their excessive degradation. During oxygenation, 70% of ammonia were produced via deamination of amino acids. Under anaerobic conditions the participation of amino acids in ammoniagenesis decreased to 4%; the principal source of ammonia was the adenine nucleotide pool. The total pool of the tricarboxylic acid cycle intermediates increased 2.5-fold due to accumulation of succinate. The data obtained suggest that the constant influx of intermediates into the cycle from amino acids is supported by coupled transamination of glutamate and aspartate. This leads to the formation of ATP and GTP in the tricarboxylic acid cycle during blocking of aerobic energy production.  相似文献   

12.
The material budget of the adenylate pool deals with all processes which physically establish and maintain this pool, while the energy budget is concerned with the intracompartmental ATP recycling. Both budgets were analysed in Tetrahymena thermophila exposed to various energy and material demands. Some of the general conclusions are: at a maximum growth rate the overall ATP consumption during one cell cycle is 10(-10) mol ATP; the contribution of osmoregulation and ciliary motion to the budget is about 1% each; at zero net growth, energy is consumed because of a continuous recycling of matter between the monomer and the polymer compartment. The rate of ATP production is about 1000-fold greater than the rate of adenylate monomer influx. The residence time of adenylate monomers within the pool is about 30 min, but for ATP molecules it is only 2 sec.  相似文献   

13.
Studies with rat thymocytes labeled with [14C]adenine and fractionated by digitonin treatment revealed that the cytoplasm of these cells contains about 60% of the total adenine nucleotide pool with a higher ATP/ADP ratio and metabolic activity as compared with the structural components. The incorporation of [14C]adenine and [14C]adenosine into thymocyte adenine nucleotides results in predominant labeling of cytoplasmic ATP, in which the specific radioactivity of this nucleoside triphosphate is two and three times as high as in subcellular structures. Concanavalin A decreases the ATP level in thymocytes without changing its specific radioactivity. This compound does not influence the total content and amount labeled adenine nucleotides in the structural fraction. Papaverine accelerates the catabolism of ATP, mainly in thymocyte cytoplasm and, in a lesser degree, in its structural fraction. In each fraction the papaverine-induced catabolism of ATP is localized in the compartment which is more intensively labeled with [14C]adenine than the whole fractionation ATP pool. Adenosine markedly accelerates adenine nucleotide catabolism in the cytoplasmic and structural fractions of thymocytes; however, only in the first one of them this acceleration is due to ATP elevation. Papaverine and adenosine do not directly influence either the content or specific radioactivity of adenine nucleotides of the structural fraction isolated from [14C]adenine-labeled thymocytes.  相似文献   

14.
Growth of Streptococcus faecalis in complex media with various fuel sources appeared to be limited by the rate of supply of adenosine-5' -triphosphate (ATP) at 1 atm and also under 408 atm of hydrostatic pressure. Growth under pressure was energetically inefficient, as indicated by an average cell yield for exponentially growing cultures of only 10.7 g (dry weight) per mol of ATP produced compared with a 1-atm value of 15.6. Use of ATP for pressure-volume work or for turnover of protein, peptidoglycan, or stable ribonucleic acid (RNA) did not appear to be significant causes of growth inefficiency under pressure. In addition, there did not seem to be an increased ATP requirement for ion uptake because cells growing at 408 atm had significantly lower internal K(+) levels than did those growing at 1 atm. Pressure did stimulate the membrane adenosine triphosphatase (ATPase) or S. faecalis at ATP concentrations greater than 0.5 mM. Intracellular ATP levels were found to vary during the culture cycle from about 2.5 mumol/ml of cytoplasmic water for lag-phase or stationary-phase cells to maxima for exponentially growing cells of about 7.5 mumol/ml at 1 atm and 5.5 mumol/ml at 408 atm. N,N'-dicyclohexylcarbodiimide at a 10 muM concentration improved growth efficiency under pressure, as did Mg(2+) or Ca(2+) ions at 50 mM concentration. These agents also enhanced ATP pooling, and it seemed that at least part of the growth inefficiency under pressure was due to increased ATPase activity. In all, it appeared that S. faecalis growing under pressure has somewhat reduced ATP supply but significantly increased demand and that the inhibitory effects of pressure can be interpreted largely in terms of ATP supply and demand.  相似文献   

15.
The energy requirements for the uptake and retention of arginine by vacuoles of Neurospora crassa have been studied. Exponentially growing mycelial cultures were treated with inhibitors of respiration or glycolysis or an uncoupler of respiration. Catabolism of arginine was monitored as urea production in urease-less strains. The rationale was that the rate and extent of such catabolism was indicative of the cytosolic arginine concentration. No catabolism was observed in cultures treated with an inhibitor or an uncoupler of respiration, but cultures treated with inhibitors of glycolysis rapidly degraded arginine. These differences could not be accounted for by alterations in the level or activity of arginase. Mycelia growing in arginine-supplemented medium and treated with an inhibitor or uncoupler of respiration degraded an amount of arginine equivalent to the cytosolic fraction of the arginine pool. The inhibitors and the uncoupler of respiration reduced the ATP pool and the energy charge. The inhibitors of glycolysis reduced the ATP pool but did not affect the energy charge. The results suggest that metabolic energy is required for the transport of arginine into the vacuoles but not for its retention. The latter is affected by inhibitors of glycolysis. The form of energy and the nature of the vacuolar transport mechanism(s) are discussed.  相似文献   

16.
C P Bowden  A M James 《Microbios》1985,43(173):93-105
A parallel study has been made of the variation of the ATP pool and the specific power of cells of Klebsiella aerogenes during aerobic growth in glucose-limited medium under carefully defined conditions of growth and test. During the early part of exponential growth there was a marked increase in both the ATP pool and the specific power to near constant values during the later stages of growth; oscillations about the mean values were observed for each parameter. With the exhaustion of glucose and the cessation of growth both and ATP pool and the specific power decreased rapidly, the ATP pool to a low constant value and the specific power to zero. Changes in the values of these parameters during growth are discussed and it is concluded that the specific power is more dependent on the rate of catabolism rather than on the degree of coupling while the opposite is true for the ATP pool. Both parameters are, however, indicators of similar metabolic processes.  相似文献   

17.
Alterations in the biochemistry of mitochondria have been associated with cell transformation and the acquisition of drug resistance to certain chemotherapeutic agents, suggesting that mitochondria may play a supportive role for the cancer cell phenotype. Mitochondria are multifunctional organelles that contribute to the cellular adenosine triphosphate (ATP) pool and cellular redox balance through the production of reactive oxygen intermediates (ROI). Our laboratory has focused on these mitochondrial functions in the context of cancer cell physiology to evaluate the potential role of mitochondria as controllers of tumour cell proliferation. Low concentrations of ROI have been implicated as messengers in intracellular signal transduction mechanisms; thus an imbalance of ROI production from the mitochondria may support cancer cell growth. In addition, suppression of mitochondrial ATP production can halt cell cycle progression at two energetic checkpoints, suggesting that the use of tumor-selective agents to reduce ATP production may offer a therapeutic target for cancer growth control.  相似文献   

18.
Regulation of sugar transport and metabolism in lactic acid bacteria   总被引:6,自引:0,他引:6  
Abstract The phosphoenolpyruvate (PEP)-dependent lactose: phosphotransferase system (PTS), P-β-galactosidase, and enzymes of the d -tagatose-6P pathway, are prerequisite for rapid homolactic fermentation of lactose by Group N ('starter') streptococci. Moreover, the reactions of transport and catabolism constitute an open cycle in which ATP and lactic acid are metabolic products. The efficient and controlled operation of this cycle requires 'fine-control' mechanisms to ensure: (i) tight coupling between transport and energy-yielding reactions, (ii) co-metabolism of both glucose and galactose moieties of the disaccharide, and (iii) coordination of the rate of sugar transport to the rate of sugar catabolism. The elucidation of these fine-control mechanisms in intact cells of Streptococcus lactis has required the isolation of glucokinase (GK) and mannose-PTS defective mutants, the synthesis of novel lactose analogs, and the use of high resolution [31P]NMR spectroscopy. It has been established that PEP provides the crucial link between transport and energy-yielding reactions of the PTS: glycolysis cycle, and that both ATP-dependent glucokinase and PEP-dependent mannose-PTS can participate in the phosphorylation of intracellular glucose. Finally, evidence has been obtained in vivo, for modulation of pyruvate kinase activity in response to fluctuation in, concentrations of positive (FDP), and negative (Pi) effectors of the allosteric enzyme. Fine-control of pyruvate kinase activity may in turn regulate: (i) the distribution of PEP to either the PTS or ATP synthesis, (ii) overall activity of the PTS: glycolysis cycle, and (iii) the formation of the endogenous PEP-potential in starved organisms. The accumulation of non-metabolizable PTS sugars (e.g., 2-deoxy- d -glucose) by growing cells can perturb these fine-control mechanisms and, by establishment of a PEP-dissipating futile cycle, may result in bacteriostasis.  相似文献   

19.
The formation of the arginine deiminase pathway enzymes in Streptococcus faecalis ATCC 11700 was investigated. The addition of arginine to growing cells resulted in the coinduction of arginine diminase (EC 3.5.3.6), ornithine carbamoyltransferase (EC 2.1.3.3), and carbamate kinase (EC 2.7.2.3). Growth on glucose-arginine or on glucose-fumarate-arginine produced a decrease in the specific activity of the arginine fermentation system. Aeration had a weak repressing effect on the arginine deiminase pathway enzymes in cells growing on arginine as the only added substrate. By contrast, depending on the growth phase, a marked repression of the pathway by oxygen was observed in cells growing on glucose-arginine. We hypothesize that, in S. faecalis, the ATP pool is an important signal in the regulation of the arginine deiminase pathway. Mutants unable to utilize arginine as an energy source, isolated from the wild type, exhibited four distinct phenotypes. In group I the three enzymes of the arginine deiminase pathway were present and probably affected in the arginine uptake system. Group II mutants had no detectable arginine deiminase, whereas group III mutants had low levels of ornithine carbamoyltransferase. Group IV mutants were defective for all three enzymes of the pathway.  相似文献   

20.
Bioluminescence activity and ATP pool were investigated in the cells of psychrophilic bacteria Photobacterium phosphoreum collected from the exponential and stationary growth phases and immobilized in polyvinyl alcohol (PVA) cryogel. In liquid culture, ATP pool remained at an almost constant level throughout the luminescence cycle (over 100 h). The ATP pool in the stationary-phase and PVA-immobilized cells remained constant throughout their incubation in the medium (over 200 h) and in 3% NaCl solution (over 100 h). Quantitative assessment of integral photon yield and ATP pool indicated that bioluminescence decay in growing or stationary cells was not caused by limitation from the energy substrates of the luciferase reaction. Kinetic and quantitative parameters of emission activity and ATP pool excluded the possibility of formation of the aldehyde substrate for luciferase via reduction of the relevant fatty acids in NADPH and ATP-dependent reductase reaction and its oxidation in the monooxygenase reaction. Our results indicate that the aliphatic aldehyde is not utilized in the process of light emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号