首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The relative motion between various vertebrae of multi-level cervical ligamentous spinal segments (C2-T2), using Bryant angles, is described. A three-dimensional sonic digitizer was utilized to study the motion in flexion, extension, right lateral bending and right axial rotation. Effects of a number of injuries and stabilization (interspinous wiring and acrylic cement, PMMA) on the motion behavior of C5-C6 (injured) and C4-C5 (superior to injured) levels were investigated. The data were normalized with respect to intact specimens. The injury to capsular ligaments at C5-C6 produced a significant increase in the relative motion at C4-C5. Although the interspinous wiring reduced the motion at C5-C6 the C4-C5 motion was still higher. The application of PMMA made the motion at C4-C5 comparable to the intact specimen.  相似文献   

2.
3.
The center of rotation (COR) of the upper cervical spine (UCS) is an important biomechanical landmark that is used to determine upper neck moment, particularly when evaluating injury risk in the automotive environment. However, neither the location of the UCS CORs nor the occipital condyles (OCs), which are frequently the referenced landmark for UCS CORs, have been measured with respect to known cranial landmarks. This study determines the CORs using pure bending (+/-3.5 N m), 3D digitization, and image analysis. Landmarks digitized included the OCs, external auditory meatus (EAM), infraorbital foramen, zygion, nasion, and the foramen magnum. The centroid of each occipital condylar surface (area 301+/-29.8 mm(2); length 25.4+/-3.2 mm) was located 18.4 mm posterior, 54.4 mm medial, and 31.0 mm inferior of the EAM. The UCS CORs were distinct: On average, OC-C1 CORs (22.5 mm posterior and 22.6 mm inferior to the left EAM) were superior and more posterior of OCs; C1-C2 CORs (7.4 mm posterior and 46.7 mm inferior to the left EAM) were inferior and more anterior of OC; and OC-C2 CORs (17.0 mm posterior and 33.1 mm inferior to the left EAM) were aligned with OC. There was a statistically significant difference between the percentage of UCS rotation in C1-C2 and OC-C1; 45% of the flexion and 71% of the extension occurred in OC-C1. Details of an anatomical variant with two pairs of distinct condylar surfaces are also presented.  相似文献   

4.
Mateika, J. H., and R. F. Fregosi. Long-termfacilitation of upper airway muscle activities in vagotomized andvagally intact cats. J. Appl. Physiol.82(2): 419-425, 1997.The primary purpose of the presentinvestigation was to determine whether long-term facilitation (LTF) ofupper airway muscle activities occurs in vagotomized and vagally intactcats. Tidal volume and diaphragm, genioglossus, and nasal dilatormuscle activities were recorded before, during, and after one carotidsinus nerve was stimulated five times with 2-min trains of constantcurrent. Sixty minutes after stimulation, nasal dilator andgenioglossus muscle activities were significantly greater than controlin the vagotomized cats but not in the vagally intact cats. Tidalvolume recorded from the vagotomized and vagally intact cats wassignificantly greater than control during the poststimulation period.In contrast, diaphragm activities were not significantly elevated inthe poststimulation period in either group of animals. We conclude that1) LTF of genioglossus and nasaldilator muscle activities can be evoked in vagotomized cats;2) vagal mechanisms inhibit LTF inupper airway muscles; and 3) LTF canbe evoked in accessory inspiratory muscles because LTF of inspiredtidal volume was greater than LTF of diaphragm activity.

  相似文献   

5.
Calcium sparks in frog intact skeletal muscle fibers were modeled as stereotypical events that arise from a constant efflux of Ca(2+) from a point source for a fixed period of time (e.g., 2.5 pA of Ca(2+) current for 4.6 ms; 18 degrees C). The model calculates the local changes in the concentrations of free Ca(2+) and of Ca(2+) bound to the major intrinsic myoplasmic Ca(2+) buffers (troponin, ATP, parvalbumin, and the SR Ca(2+) pump) and to the Ca(2+) indicator (fluo-3). A distinctive feature of the model is the inclusion of a binding reaction between fluo-3 and myoplasmic proteins, a process that strongly affects fluo-3's Ca(2+)-reaction kinetics, its apparent diffusion constant, and hence the morphology of sparks. DeltaF/F (the change in fluo-3's fluorescence divided by its resting fluorescence) was estimated from the calculated changes in fluo-3 convolved with the microscope point-spread function. To facilitate comparisons with measured sparks, noise and other sources of variability were included in a random repetitive fashion to generate a large number of simulated sparks that could be analyzed in the same way as the measured sparks. In the initial simulations, the binding of Ca(2+) to the two regulatory sites on troponin was assumed to follow identical and independent binding reactions. These simulations failed to accurately predict the falling phase of the measured sparks. A second set of simulations, which incorporated the idea of positive cooperativity in the binding of Ca(2+) to troponin, produced reasonable agreement with the measurements. Under the assumption that the single channel Ca(2+) current of a ryanodine receptor (RYR) is 0.5-2 pA, the results suggest that 1-5 active RYRs generate an average Ca(2+) spark in a frog intact muscle fiber.  相似文献   

6.
Muscle paths in musculoskeletal models have been modeled using several different methods; however, deformation of soft tissue with changes in posture is rarely accounted for, and often only the neutral posture is used to define a muscle path. The objective of this study was to model curved muscle paths in the cervical spine that take into consideration soft tissue deformation with changes in neck posture. Two subject-specific models were created from magnetic resonance images (MRI) in 5 different sagittal plane neck postures. Curved paths of flexor and extensor muscles were modeled using piecewise linear lines-of-action in two ways; (1) using fixed via points determined from muscle paths in the neutral posture and (2) using moving muscle points that moved relative to the bones determined from muscle paths in all 5 postures. Accuracy of each curved modeled muscle path was evaluated by an error metric, the distance from the anatomic (centroid) muscle path determined from the MRI. Error metric was compared among three modeled muscle path types (straight, fixed via and moving muscle point) using a repeated measures one-way ANOVA (α=0.05). Moving muscle point paths had 21% lower error metric than fixed via point paths over all 15 pairs of neck muscles examined over 5 postures (3.86 mm vs. 4.88 mm). This study highlights the importance of defining muscle paths in multiple postures in order to properly define the changing curvature of a muscle path due to soft tissue deformation with posture.  相似文献   

7.
The biomechanics of whiplash is often studied using cadaveric cervical spine specimens. One of the most important points in this kind of study is to create realistic loading conditions. The aim of the present project therefore was to develop an acceleration apparatus, which allows the study of whiplash with human cadaveric cervical spine specimens under as realistic loading conditions as possible. The new acceleration apparatus mainly consisted of a sled, a pneumatic acceleration unit and a railtrack and offered several unique features to create more realistic loading conditions. Among these features, the possibility to simulate the passive movements of the trunk is of capital importance. In this new apparatus, first, the general feasibility of whiplash experiments was studied, second, the reproducibility of the impacts was quantified and third, the effect of simulated movements of the trunk on accelerations and loads was examined. In the new acceleration apparatus various types of collisions could reproducibly be simulated. Simulated passive movements of the trunk strongly influenced the loading pattern of the neck. Without pivoting a steep increase of all loading parameters could be observed. This increase was less pronounced if pivoting was allowed. In conclusion, biomechanical aspects of whiplash could reproducibly be examined in the new acceleration apparatus. Due to its significant effects on the loading of the neck, pivoting of the trunk should always be taken into account in future experiments on the biomechanics of whiplash in which isolated cervical spine specimens are used.  相似文献   

8.
The distal radius fracture (DRF) is a particularly dominant injury of the wrist, commonly resulting from a forward fall on an outstretched hand. In an attempt to reduce the prevalence, costs, and potential long-term pain/deformities associated with this injury, in vivo and in vitro investigations have sought to classify the kinematics and kinetics of DRFs. In vivo forward fall work has identified a preparatory muscle contraction that occurs in the upper extremity prior to peak impact force. The present investigation constitutes the first attempt to systematically determine the effect of static muscle forces on the fracture threshold of the distal radius in vitro. Paired human cadaveric forearm specimens were divided into two groups, one that had no muscle forces applied (i.e., right arms) and the other that had muscle forces applied to ECU, ECRL, FCU and FCR (i.e., left arms), with magnitudes based on peak muscle forces and in vivo lower bound forward fall activation patterns. The specimens were secured in a custom-built pneumatic impact loading device and subjected to incremental impacts at pre-fracture (25 J) and fracture (150  J) levels. Similar fracture forces (6565 (866) N and 8665 (5133) N), impulses (47 (6) Ns and 57 (30) Ns), and energies (152 (38) J and 144 (45) J) were observed for both groups of specimens (p>0.05). Accordingly, it is suggested that, at the magnitudes presently simulated, muscle forces have little effect on the way the distal radius responds to forward fall initiated impact loading.  相似文献   

9.
The purpose of this study is to test the hypothesis that the upper cervical spine is weaker than the lower cervical spine in pure flexion and extension bending, which may explain the propensity for upper cervical spine injuries in airbag deployments. An additional objective is to evaluate the relative strength and flexibility of the upper and lower cervical spine in an effort to better understand injury mechanisms, and to provide quantitative data on bending responses and failure modes. Pure moment flexibility and failure testing was conducted on 52 female spinal segments in a pure-moment test frame. The average moment at failure for the O-C2 segments was 23.7+/-3.4Nm for flexion and 43.3+/-9.3Nm for extension. The ligamentous upper cervical spine was significantly stronger in extension than in flexion (p=0.001). The upper cervical spine was significantly stronger than the lower cervical spine in extension. The relatively high strength of the upper cervical spine in tension and in extension is paradoxical given the large number of upper cervical spine injuries in out-of-position airbag deployments. This discrepancy is most likely due to load sharing by the active musculature.  相似文献   

10.
11.
12.
Whiplash injuries continue to have significant societal cost; however, the mechanism and location of whiplash injury is still under investigation. Recently, the upper cervical spine ligaments, particularly the alar ligament, have been identified as a potential whiplash injury location. In this study, a detailed and validated explicit finite element model of a 50th percentile male cervical spine in a seated posture was used to investigate upper cervical spine response and the potential for whiplash injury resulting from vehicle crash scenarios. This model was previously validated at the segment and whole spine levels for both kinematics and soft tissue strains in frontal and rear impact scenarios. The model predicted increasing upper cervical spine ligament strain with increasing impact severity. Considering all upper cervical spine ligaments, the distractions in the apical and alar ligaments were the largest relative to their failure strains, in agreement with the clinical findings. The model predicted the potential for injury to the apical ligament for 15.2 g frontal or 11.7 g rear impacts, and to the alar ligament for a 20.7 g frontal or 14.4 g rear impact based on the ligament distractions. Future studies should consider the effect of initial occupant position on ligament distraction.  相似文献   

13.
Traumatic cervical facet dislocation (CFD) is often associated with devastating spinal cord injury. Facet fractures commonly occur during CFD, yet quantitative measures of facet deflection, strain, stiffness and failure load have not been reported. The aim of this study was to determine the mechanical response of the subaxial cervical facets when loaded in directions thought to be associated with traumatic bilateral CFD – anterior shear and flexion. Thirty-one functional spinal units (6 × C2/3, C3/4, C4/5, and C6/7, 7 × C5/6) were dissected from fourteen human cadaver cervical spines (mean donor age 69 years, range 48–92; eight male). Loading was applied to the inferior facets of the inferior vertebra to simulate the in vivo inter-facet loading experienced during supraphysiologic anterior shear and flexion motion. Specimens were subjected to three cycles of sub-failure loading (10–100 N, 1 mm/s) in each direction, before being failed in a randomly assigned direction (10 mm/s). Facet deflection, surface strains, stiffness, and failure load were measured. Linear mixed-effects models (α = 0.05; random effect of cadaver) accounted for variations in specimen geometry and bone density. Specimen-specific parameters were significantly associated with most outcome measures. Facet stiffness and failure load were significantly greater in the simulated flexion loading direction, and deflection and surface strains were higher in anterior shear at the non-destructive analysis point (47 N applied load). The sub-failure strains and stiffness responses differed between the upper and lower subaxial cervical regions. Failure occurred through the facet tip during anterior shear loading, while failure through the pedicles was most common in flexion.  相似文献   

14.
15.
The purpose of this study was to explore the effects of fall type and fall height on the kinematics, kinetics, and muscle activation of the upper extremity during simulated forward falls using a novel fall simulation method.Twenty participants were released in a prone position from a Propelled Upper Limb Fall ARrest Impact System. Impacts occurred to the hands from two fall heights (0.05 m and 0.10 m) and three fall types (straight-arm, bent-arm, self-selected). Muscle activation from six muscles (biceps brachii, brachioradialis, triceps brachii, anconeus, flexor carpi radialis and extensor carpi radialis) was collected and upper extremity joint kinematics were calculated.Peak Fx (medio-lateral), as well as Fx and Fz (inferior–superior) load rate increased between the 0.05 m and 0.10 m heights. With respect to fall type, the straight-arm falls resulted in significantly greater Fy (anterior–posterior) impulse and Fy and Fz load rates. The change in elbow flexion angle was greater during the self-selected and bent-arm falls compared to the straight-arm falls; a pattern also seen in the wrist flexion/extension angles. All muscles experienced peak % MVIC prior to the time of the peak force.The results of this study suggest that, to some extent, individuals are capable of selecting an upper extremity posture that allows them to minimize the effects of an impact and it has confirmed the presence of a preparatory muscle activation response.  相似文献   

16.
The purpose of this study was to determine whether lower body negative pressure (LBNP) treadmill exercise maintains lumbar spinal compressive properties, curvature, and back muscle strength after 28 days of 6 degrees head-down tilt (HDT) bed rest (BR). We hypothesize that LBNP treadmill exercise will maintain lumbar spine compressibility, lumbar lordosis and back muscle strength after 28 days of 6 degrees HDT bed rest. Fifteen healthy identical twin pairs (14 women and 16 men) participated in this study. One identical twin was randomly assigned to the nonexercise control (Con) group, and their sibling was assigned to the exercise (Ex) group. The lumbar spine was significantly more compressible Post-BR compared with Pre-BR in the Con (P=0.01). Lumbar spine compressibility Post-BR was not significantly different compared with Pre-BR in the Ex group (P=0.89). In both the Con and Ex groups, there were no significant changes Post-BR in lumbar lordosis compared with Pre-BR. Back muscle strength significantly decreased in the Con group Post-BR (P=0.002), whereas in the Ex group back muscle strength was not significantly different from Pre-BR values. A significant increase in lumbar spine compressibility in the Con group suggests that spinal deconditioning to gravity occurs during 28-day bed rest. Changes in the mechanical properties of the lumbar spine may be an early indicator of lumbar intervertebral disk degeneration. Supine LBNP treadmill exercise provides axial loads to the lumbar spine and may prevent lumbar spine deconditioning associated with HDT bed rest.  相似文献   

17.
A novel kinematics-based approach coupled with a non-linear finite element model was used to investigate the effect of changes in the load position and posture on muscle activity, internal loads and stability margin of the human spine in upright standing postures. In addition to 397 N gravity, external loads of 195 and 380 N were considered at different lever arms and heights. Muscle forces, internal loads and stability margin substantially increased as loads displaced anteriorly away from the body. Under same load magnitude and location, adopting a kyphotic posture as compared with a lordotic one increased muscle forces, internal loads and stability margin. An increase in the height of a load held at a fixed lever arm substantially diminished system stability thus requiring additional muscle activations to maintain the same margin of stability. Results suggest the importance of the load position and lumbar posture in spinal biomechanics during various manual material handling operations.  相似文献   

18.
A novel kinematics-based approach coupled with a non-linear finite element model was used to investigate the effect of changes in the load position and posture on muscle activity, internal loads and stability margin of the human spine in upright standing postures. In addition to 397 N gravity, external loads of 195 and 380 N were considered at different lever arms and heights. Muscle forces, internal loads and stability margin substantially increased as loads displaced anteriorly away from the body. Under same load magnitude and location, adopting a kyphotic posture as compared with a lordotic one increased muscle forces, internal loads and stability margin. An increase in the height of a load held at a fixed lever arm substantially diminished system stability thus requiring additional muscle activations to maintain the same margin of stability. Results suggest the importance of the load position and lumbar posture in spinal biomechanics during various manual material handling operations.  相似文献   

19.
C. C. Gunn  W. E. Milbrandt 《CMAJ》1976,114(9):803-809
The exact cause of tennis elbow, a common condition, is still obscure. While the condition may well be entirely due to a local disorder at the elbow, the results of a study of 50 patients whose condition was resistant to 4 weeks of treatment directed to the elbow suggest that the underlying condition may have been (at least in these patients) a reflex localization of pain from radiculopathy at the cervical spine. Clinical, radiologic and electromyographic findings supported this suggestion. The pain was demonstrated to be muscular tenderness, which was maximal and specific at motor points. Treatment directed to the cervical spine appeared to give relief in the majority of patients. The more resistant the condition, the more severe were the radiologic and electromyographic findings in the cervical spine.  相似文献   

20.
《The Journal of cell biology》1989,109(6):2879-2886
Antibodies with epitopes near the heavy meromyosin/light meromyosin junction distinguish the folded from the extended conformational states of smooth muscle myosin. Antibody 10S.1 has 100-fold higher avidity for folded than for extended myosin, while antibody S2.2 binds preferentially to the extended state. The properties of these antibodies provide direct evidence that the conformation of the rod is different in the folded than the extended monomeric state, and suggest that this perturbation may extend into the subfragment 2 region of the rod. Two antihead antibodies with epitopes on the heavy chain map at or near the head/rod junction. Magnesium greatly enhances the binding of these antibodies to myosin, showing that the conformation of the heavy chain in the neck region changes upon divalent cation binding to the regulatory light chain. Myosin assembly is also altered by antibody binding. Antibodies that bind to the central region of the rod block disassembly of filaments upon MgATP addition. Antibodies with epitopes near the COOH terminus of the rod, in contrast, promote filament depolymerization, suggesting that this region of the tail is important for assembly. The monoclonal antibodies described here are therefore useful both for detecting and altering conformational states of smooth muscle myosin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号