首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The assessment of lung mechanical function in small animals, particularly mice, is essential for investigations into the pathophysiology of pulmonary disease. The most accurate and specific methods for making this assessment are highly invasive and so provide data of questionable relevance to normality. By contrast, present noninvasive methods based on unrestrained plethysmography have no direct link to the mechanical properties of the lung. There is thus a need for a completely noninvasive method for determining lung mechanical function in small animals. In the present study, we demonstrate an extension of unrestrained plethysmography in which changes in lung volume are estimated via orthogonal video imaging of the thorax. These estimates are combined with the pressure swings recorded as mice breathe inside a heated and humidified chamber to yield an estimate of specific airway resistance (sRaw). We used this new technique, which we term "unrestrained video-assisted plethysmography" (UVAP), to measure sRaw in 11 BALB/c mice exposed to aerosols of saline, methacholine, and albuterol and obtained mean values of 0.71, 1.23 and 1.10 cmH(2)O x s, respectively. Mean breathing frequency was 4.3, 3.4, and 3.6 breaths/s, respectively, while the corresponding mean tidal volumes were 0.36, 0.44 and 0.37 ml, respectively. We conclude that UVAP, a noninvasive method, is able to provide usefully accurate estimates of sRaw and breathing pattern parameters in mice.  相似文献   

2.
We developed a method for measuring airway resistance (R(aw)) in mice that does not require a measurement of airway flow. An analysis of R(aw) induced by alveolar gas compression showed the following relationship for an animal breathing spontaneously in a closed box: R(aw) = A(bt)V(b)/[V(t) (V(e) + 0.5V(t))]. Here A(bt) is the area under the box pressure-time curve during inspiration or expiration, V(b) is box volume, V(t) is tidal volume, and V(e) is functional residual capacity (FRC). In anesthetized and conscious unrestrained mice, from experiments with both room temperature box air and body temperature humidified box air, the contributions of gas compression to the box pressure amplitude were 15 and 31% of those due to the temperature-humidity difference between box and alveolar gas. We corrected the measured A(bt) and V(t) for temperature-humidity and gas compression effects, respectively, using a sinusoidal analysis. In anesthetized mice, R(aw) averaged 4.3 cmH(2)O.ml(-1).s, fourfold greater than pulmonary resistance measured by conventional methods. In conscious mice with an assumed FRC equal to that measured in the anesthetized mice, the corrected R(aw) at room temperature averaged 1.9 cmH(2)O.ml(-1).s. In both conscious mice and anesthetized mice, exposure to aerosolized methacholine with room temperature box air significantly increased R(aw) by around eightfold. Here we assumed that in the conscious mice both V(t) and FRC remained constant. In both conscious and anesthetized mice, body temperature humidified box air reduced the methacholine-induced increase in R(aw) observed at room temperature. The method using the increase in A(bt) with bronchoconstriction provides a conservative estimate for the increase in R(aw) in conscious mice.  相似文献   

3.
The barometric method has recently been employed to detect airway constriction in small animals. This study was designed to evaluate the barometric method to detect mediator-induced central and peripheral airway constriction in BALB/c mice. First, the central airway constrictor carbachol and the peripheral airway constrictor histamine were employed to induce airway constriction, which was detected by both the conventional body plethysmography and the barometric method in anesthetized mice. Second, bronchoconstriction induced by aerosolized carbachol or other mediators was detected with the barometric plethysmography in conscious, unrestrained mice. Carbachol inhalation caused about four-fold increase in pulmonary resistance (RL) and about two-fold increase in enhanced pause (Penh) in anesthetized mice. In contrast, in the same preparation, histamine aerosol induced a decrease in dynamic compliance (Cdyn), with no alteration in RL or Penh. In awake mice, carbachol and methacholine caused increases in Penh, frequency, and tidal volume (VT). On the other hand, histamine, histamine + bradykinin, and prostaglandin-D2 did not alter Penh but decreased VT in conscious mice. These data suggest that there was no sufficient evidence to indicate that Penh could be a good indicator of bronchoconstriction for the whole airways.  相似文献   

4.
Mechanism of action of ozone on the human lung   总被引:3,自引:0,他引:3  
Fourteen healthy normal volunteers were randomly exposed to air and 0.5 ppm of ozone (O3) in a controlled exposure chamber for a 2-h period during which 15 min of treadmill exercise sufficient to produce a ventilation of approximately 40 l/min was alternated with 15-min rest periods. Before testing an esophageal balloon was inserted, and lung volumes, flow rates, maximal inspiratory (at residual volume and functional residual capacity) and expiratory (at total lung capacity and functional residual capacity) mouth pressures, and pulmonary mechanics (static and dynamic compliance and airway resistance) were measured before and immediately after the exposure period. After the postexposure measurements had been completed, the subjects inhaled an aerosol of 20% lidocaine until response to citric acid aerosol inhalation was abolished. All of the measurements were immediately repeated. We found that the O3 exposure 1) induced a significant mean decrement of 17.8% in vital capacity (this change was the result of a marked fall in inspiratory capacity without significant increase in residual volume), 2) significantly increased mean airway resistance and specific airway resistance but did not change dynamic or static pulmonary compliance or viscous or elastic work, 3) significantly reduced maximal transpulmonary pressure (by 19%) but produced no changes in inspiratory or expiratory maximal mouth pressures, and 4) significantly increased respiratory rate (in 5 subjects by more than 6 breaths/min) and decreased tidal volume.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Sleep is associated with marked alterations in ventilatory control that lead to perturbations in respiratory timing, breathing pattern, ventilation, pharyngeal collapsibility, and sleep-related breathing disorders (SRBD). Mouse models offer powerful insight into the pathogenesis of SRBD; however, methods for obtaining the full complement of continuous, high-fidelity respiratory, electroencephalographic (EEG), and electromyographic (EMG) signals in unrestrained mice during sleep and wake have not been developed. We adapted whole body plethysmography to record EEG, EMG, and respiratory signals continuously in unrestrained, unanesthetized mice. Whole body plethysmography tidal volume and airflow signals and a novel noninvasive surrogate for respiratory effort (respiratory movement signal) were validated against simultaneously measured gold standard signals. Compared with the gold standard, we validated 1) tidal volume (correlation, R(2) = 0.87, P < 0.001; and agreement within 1%, P < 0.001); 2) inspiratory airflow (correlation, R(2) = 0.92, P < 0.001; agreement within 4%, P < 0.001); 3) expiratory airflow (correlation, R(2) = 0.83, P < 0.001); and 4) respiratory movement signal (correlation, R(2) = 0.79-0.84, P < 0.001). The expiratory airflow signal, however, demonstrated a decrease in amplitude compared with the gold standard. Integrating respiratory and EEG/EMG signals, we fully characterized sleep and breathing patterns in conscious, unrestrained mice and demonstrated inspiratory flow limitation in a New Zealand Obese mouse. Our approach will facilitate studies of SRBD mechanisms in inbred mouse strains and offer a powerful platform to investigate the effects of environmental and pharmacological exposures on breathing disturbances during sleep and wakefulness.  相似文献   

6.
Respiratory inductance plethysmography (RIP) has been widely used to measure ventilation during sleep, but its accuracy in this role has not been adequately tested. We have thus examined the accuracy of the RIP by comparing tidal volume measured with RIP with that measured by a pneumotachograph in eight unrestrained normal subjects during sleep. We have also studied the effect of posture on the accuracy of the RIP. In all sleep stages the correlation between RIP tidal volume measurements and expired volume showed relatively poor correlations (mean r = 0.49-0.60), and the bias of the measurements varied widely. Changes in posture altered the correlations between the two measurements, with no systematic differences between positions. When the subjects resumed a position, the 95% confidence intervals of tidal volume measurement did not overlap the original confidence limits in that posture on 13 of 25 occasions. This study shows that the RIP does not accurately measure tidal volume during sleep in unrestrained subjects and should only be used for semiquantitative assessment of ventilation during sleep.  相似文献   

7.
Given the environmental forcing by extremes in hypoxia-reoxygenation, there might be no genetic effect on posthypoxic short-term potentiation of ventilation. Minute ventilation (VE), respiratory frequency (f), tidal volume (VT), and the airway resistance during chemical loading were assessed in unanesthetized unrestrained C57BL/6J (B6) and A/J mice using whole body plethysmography. Static pressure-volume curves were also performed. In 12 males for each strain, after 5 min of 8% O2 exposure, B6 mice had a prominent decrease in VE on reoxygenation with either air (-11%) or 100% O2 (-20%), due to the decline of f. In contrast, A/J animals had no ventilatory undershoot or f decline. After 5 min of 3% CO2-10% O2 exposure, B6 exhibited significant decrease in VE (-28.4 vs. -38.7%, air vs. 100% O2) and f (-13.8 vs. -22.3%, air vs. 100% O2) during reoxygenation with both air and 100% O2; however, A/J mice showed significant increase in VE (+116%) and f (+62.2%) during air reoxygenation and significant increase in VE (+68.2%) during 100% O2 reoxygenation. There were no strain differences in dynamic airway resistance during gas challenges or in steady-state total respiratory compliance measured postmortem. Strain differences in ventilatory responses to reoxygenation indicate that genetic mechanisms strongly influence posthypoxic ventilatory behavior.  相似文献   

8.
A single-projection X-ray technique showed an increase in functional residual capacity (FRC) in conscious mice in response to aerosolized methacholine (MCh) with little change in airway resistance (Raw) measured using barometric plethysmography (Lai-Fook SJ, Houtz PK, Lai Y-L. J Appl Physiol 104: 521-533, 2008). The increase in FRC presumably prevented airway constriction by offsetting airway contractility. We sought a more direct measure of airway constriction. Anesthetized Balb/c mice were intubated with a 22-G catheter, and tantalum dust was insufflated into the lungs to produce a well-defined bronchogram. After overnight recovery, the conscious mouse was placed in a sealed box, and bronchograms were taken at maximum and minimum points of the box pressure cycle before (control) and after 1-min exposures to 25, 50, and 100 mg/ml MCh aerosol. After overnight recovery, each mouse was studied under both room and body temperature box air conditions to correct for gas compression effects on the control tidal volume (Vt) and to determine Vt and Raw with MCh. Airway diameter (D), FRC, and Vt were measured from the X-ray images. Compared with control, D decreased by 24%, frequency decreased by 35%, FRC increased by 120%, and Raw doubled, to reach limiting values with 100 mg/ml MCh. Vt was unchanged with MCh. The limiting D occurred near zero airway elastic recoil, where the maximal contractility was relatively small. The conscious mouse adapted to MCh by breathing at a higher lung volume and reduced frequency to reach a limit in constriction.  相似文献   

9.
We studied the changes in functional residual capacity (FRC), thoracoabdominal volume (Vw), and chest wall configuration in five normal subjects seated in an aircraft flying parabolic trajectories resulting in 20-s periods of microgravity. We measured vital capacity (VC), inspiratory capacity, and tidal volume by integrating airflow at the mouth and changes in rib cage and abdominal volume (delta Vrc and delta Vab, respectively, where delta Vrc + delta Vab = delta Vw) using induction plethysmography. During microgravity (0 Gz) FRC decreased by 413 +/- 70 (SE) ml and VC by 0.37 liter. The decrease in Vw did not differ from that in FRC and was entirely the result of reduction of Vab, the Vrc showing no significant change. During tidal breathing the abdominal contribution (delta Vab/delta Vw) increased from 0.39 +/- 0.08 at 1 Gz to 0.57 +/- 0.08 at 0 Gz. During brief periods of hypergravity (approximately 1.8 Gz) all changes were opposite in sign and relatively smaller. Limited data during "roller coaster" flight patterns suggested that, in contrast to configurational changes, the temporal pattern of breathing was uninfluenced by changes in Gz. We conclude that at the onset of weightlessness there are substantial changes in lung volume and thoracoabdominal configuration. Abdominal contribution to tidal excursions increases but the temporal pattern of breathing is unchanged.  相似文献   

10.
The evaluation of airway resistance (R(aw)) in conscious mice requires both end-expiratory (V(e)) and tidal volumes (V(t)) (Lai-Fook SJ and Lai YL. J Appl Physiol 98: 2204-2218, 2005). In anesthetized BALB/c mice we measured lung area (A(L)) from ventral-to-dorsal x-ray images taken at FRC (V(e)) and after air inflation with 0.25 and 0.50 ml (DeltaV(L)). Total lung volume (V(L)) described by equation: V(L) = DeltaV(L) + V(FRC) = KA(L)(1.5) assumed uniform (isotropic) inflation. Total V(FRC) averaged 0.55 ml, consisting of 0.10 ml tissue, 0.21 ml blood and 0.24 ml air. K averaged 1.84. In conscious mice in a sealed box, we measured the peak-to-peak box pressure excursions (DeltaP(b)) and x-rays during several cycles. K was used to convert measured A(L)(1.5) to V(L) values. We calculated V(e) and V(t) from the plot of V(L) vs. cos(alpha - phi). Phase angle alpha was the minimum point of the P(b) cycle to the x-ray exposure. Phase difference between the P(b) and V(L) cycles (phi) was measured from DeltaP(b) values using both room- and body-temperature humidified box air. A similar analysis was used after aerosol exposures to bronchoconstrictor methacholine (Mch), except that phi depended also on increased R(aw). In conscious mice, V(e) (0.24 ml) doubled after Mch (50-125 mg/ml) aerosol exposure with constant V(t), frequency (f), DeltaP(b), and R(aw). In anesthetized mice, in addition to an increased V(e), repeated 100 mg/ml Mch exposures increased both DeltaP(b) and R(aw) and decreased f to apnea in 10 min. Thus conscious mice adapted to Mch by limiting R(aw), while anesthesia resulted in airway closure followed by diaphragm fatigue and failure.  相似文献   

11.
The mouse is the most extensively studied animal species in respiratory research, yet the technologies available to assess airway function in conscious mice are not universally accepted. We hypothesized that whole body plethysmography employing noninvasive restraint (RWBP) could be used to quantify specific airway resistance (sRaw-RWBP) and airway responsiveness in conscious mice. Methacholine responses were compared using sRaw-RWBP vs. airway resistance by the forced oscillation technique (Raw-FOT) in groups of C57, A/J, and BALB/c mice. sRaw-RWBP was also compared with sRaw derived from double chamber plethysmography (sRaw-DCP) in BALB/c. Finally, airway responsiveness following allergen challenge in BALB/c was measured using RWBP. sRaw-RWBP in C57, A/J, and BALB/c mice was 0.51 +/- 0.03, 0.68 +/- 0.03, and 0.63 +/- 0.05 cm/s, respectively. sRaw derived from Raw-FOT and functional residual capacity (Raw*functional residual capacity) was 0.095 cm/s, approximately one-fifth of sRaw-RWBP in C57 mice. The intra- and interanimal coefficients of variations were similar between sRaw-RWBP (6.8 and 20.1%) and Raw-FOT (3.4 and 20.1%, respectively). The order of airway responsiveness employing sRaw-RWBP was AJ > BALBc > C57 and for Raw-FOT was AJ > BALB/c = C57. There was no difference between the airway responsiveness assessed by RWBP vs. DCP; however, baseline sRaw-RWBP was significantly lower than sRaw-DCP. Allergen challenge caused a progressive decrease in the provocative concentration of methacholine that increased sRaw to 175% postsaline values based on sRaw-RWBP. In conclusion, the technique of RWBP was rapid, reproducible, and easy to perform. Airway responsiveness measured using RWBP, DCP, and FOT was equivalent. Allergen responses could be followed longitudinally, which may provide greater insight into the pathogenesis of chronic airway disease.  相似文献   

12.
Allen et al. (J. Clin. Invest. 76: 620-629, 1985) reported that during oscillatory forcing the base of isolated canine lungs distends preferentially relative to the apex as frequency and tidal volume increase. The tendency toward such nonuniform phasic lung distension might influence phasic displacement of the rib cage (RC) relative to the abdomen (ABD). To test this hypothesis we measured RC and ABD displacement in four anesthetized dogs during forced oscillation. Sinusoidal volume changes were delivered through a tracheostomy at 1-32 Hz and measured by body plethysmography. RC and ABD displacements were measured by inductive plethysmography. During oscillation with air at fixed tidal volumes (10-80 ml) RC, normalized to unity at 1 Hz, increased to 2.06-2.22 at 8 Hz (P less than 0.001) and then decreased to 1.06-1.35 (P less than 0.0025) at 32 Hz. ABD, normalized to unity at 1 Hz, was 1.12-1.16 at 4 Hz (P less than 0.001) and decreased to 0.12-0.14 at 32 Hz (P less than 0.001). Displacement of ABD relative to RC did not increase systematically with increasing tidal volume during sinusoidal forcing at any frequency. Thus we found no discernible influence of nonuniform phasic lung distension on chest wall behavior. We infer that in the dog the nonuniform mechanical behavior of the chest wall dominates the nonuniform (but opposing) mechanical tendency of the lung.  相似文献   

13.
Effect of airway closure on ventilation distribution   总被引:1,自引:0,他引:1  
We examined the effect of airway closure on ventilation distribution during tidal breathing in six normal subjects. Each subject performed multiple-breath N2 washouts (MBNW) at tidal volumes of 1 liter over a range of preinspiratory lung volumes (PILV) from functional residual capacity (FRC) to just above residual volume. All subjects performed washouts at PILV below their measured closing capacity. In addition five of the subjects performed MBNW at PILV below closing capacity with end-inspiratory breath holds of 2 or 5 s. We measured the following two independent indexes of ventilation maldistribution: 1) the normalized phase III slope of the final breaths of the washout (Snf) and 2) the alveolar mixing efficiency of those breaths of the washout where 80-90% of the initial N2 had been cleared. Between a mean PILV of 0.28 liter above closing capacity and that 0.31 liter below closing capacity, mean Snf increased by 132% (P less than 0.005). Over the same volume range, mean alveolar mixing efficiency decreased by 3.3% (P less than 0.05). Breath holding at PILV below closing capacity resulted in marked and consistent decreases in Snf and increases in alveolar mixing efficiency. Whereas inhomogeneity of ventilation decreases with lung volume when all airways are patent (J. Appl. Physiol. 66: 2502-2510, 1989), airway closure increases ventilation inequality, and this is substantially reduced by short end-inspiratory breath holds. These findings suggest that the predominant determinant of ventilation distribution below closing capacity is the inhomogeneous closure of airways subtending regions in the lung periphery that are close together.  相似文献   

14.
Neonatal maternal separation (NMS) is a form of stress that exerts persistent, sex-specific effects on the hypoxic ventilatory response. Adult male rats previously subjected to NMS show a 25% increase in the response, whereas NMS females show a response 30% lower than controls (8). To assess the extent to which NMS affects ventilatory control development, we tested the hypothesis that NMS alters the ventilatory response to hypercapnia in awake, unrestrained rats. Pups subjected to NMS were placed in a temperature- and humidity-controlled incubator 3 h/day for 10 consecutive days (P3 to P12). Control pups were undisturbed. At adulthood (8 to 10 wk old), rats were placed in a plethysmography chamber for measurement of ventilatory parameters under baseline and hypercapnic conditions (inspired CO(2) fraction = 0.05). After 20 min of hypercapnia, the minute ventilation response measured in NMS males was 47% less than controls, owing to a lower tidal volume response (22%). Conversely, females previously subjected to NMS showed minute ventilation and tidal volume responses 63 and 18% larger than controls respectively. Although a lower baseline minute ventilation contributes to this effect, the higher minute ventilation/CO(2) production response observed in NMS females suggests a greater responsiveness to CO(2)/H(+) in this group. We conclude that NMS exerts sex-specific effects on the hypercapnic ventilatory response and that the neural mechanisms affected by NMS likely differ from those involved in the hypoxic chemoreflex.  相似文献   

15.
We performed single-breath washout (SBW) tests in which He and sulfur hexafluoride (SF6) were inspired throughout the vital capacity inspirations or were inhaled as discrete boluses at different points in the inspiration. Tests were performed in normal gravity (1 G) and in up to 27 s of microgravity (microG) during parabolic flight. The phase III slope of the SBW could be accurately reconstructed from individual bolus tests when allowance for airways closure was made. Bolus tests showed that most of the SBW phase III slope results from events during inspiration at lung volumes below closing capacity and near total lung capacity, as does the SF6-He phase III slope difference. Similarly, the difference between 1 G and microG in phase III slopes for both gases was entirely accounted for by gravity-dependent events at high and low lung volumes. Phase IV height was always larger for SF6 than for He, suggesting at least some airway closure in close proximity to airways that remain open at residual volume. These results help explain previous studies in microG, which show large changes in gas mixing in vital capacity maneuvers but only small effects in tidal volume breaths.  相似文献   

16.
摘要 目的:探讨体描箱评估婴幼儿急性下呼吸道感染(ALRTI)肺功能改变的价值。方法:收集2020年10月至2021年6月于我院收治的76例ALRTI婴幼儿,根据感染部位分为肺炎组与支气管炎组,根据有无喘息症状分为喘息性组和非喘息性组,采用体描箱测量潮气呼吸参数、体描箱特有指标,分别进行两组间肺功能比较,分析各参数之间相关性,采用受试者工作特征(ROC)曲线评估体描特有指标在婴幼儿ALRTI中的诊断价值。结果:肺炎组与支气管炎组比较,各潮气呼吸参数及功能残气量(FRCp)无明显差异(P>0.05),而有效气道阻力(Reff)和特殊有效气道阻力(sReff)有明显差异(P<0.05);对于喘息性组与非喘息性组,sReff有显著差异(P<0.05);76例ALRTI患儿潮气量(VT)与每公斤体质量潮气量(VT/kg)呈正相关(P<0.05),VT、VT/kg均与呼吸频率(RR)、达峰时间比(TPTEF/TE)呈负相关(P<0.05), TPTEF/TE与达峰容积比(VPTEF/VE)呈正相关(P<0.05),sReff与FRCp、Reff均呈正相关(P<0.05);ROC曲线显示,sReff在诊断肺炎与支气管炎、喘息性和非喘息性的价值最高,ROC曲线下面积分别为0.704、0.688。结论:对于ALRTI患儿,体描箱参数Reff和sReff可帮助判断感染部位,且sReff可直接反映小气道阻塞情况,诊断价值较高,值得临床推广应用。  相似文献   

17.
The predictions of a single-path trumpet-bell numerical model of steady-state CO2 and infused He and sulfur hexafluoride (SF6) washout were compared with experimental measurements on healthy human volunteers. The mathematical model used was a numerical solution of the classic airway convention-diffusion equation with the addition of a distributed source term at the alveolar end. In the human studies, a static sampling technique was used to measure the exhaled concentrations and phase III slopes of CO2, He, and SF6 during the intravenous infusion of saline saturated with a mixture of the two inert gases. We found good agreement between the experimentally determined normalized slopes (phase III slope divided by mixed expired concentration) and the numerically determined normalized slopes in the model with no free parameters other than the physiological ones of upper airway dead space, tidal volume, breathing frequency, and breathing pattern (sinusoidal). We conclude 1) that the single-path (Weibel) trumpet-bell anatomic model used in conjunction with the airway convection-diffusion equation with a distributed source term is adequate to describe the steady-state lung washout of CO2 and infused He and SF6 in normal lungs and 2) that the interfacial area separating the tidal volume fron from the functional residual capacity gas, through which gas diffusion into the moving tidal volume occurs, exerts a major effect on the normalized slopes of phase III.  相似文献   

18.
Tidal volume measured by the barometric method is very sensitive to increases in compression and expansion of alveolar gas, such as would be expected to occur during airway narrowing or closure. By comparing a barometric method tidal volume signal (VT') with a reference tidal volume (VT) obtained with a head-out pressure plethysmograph, a simple index related to gas compressibility effects was calculated (VT/VT'). Changes in this index were compared with decreases in dynamic compliance (Cdyn) during histamine aerosol challenge of 15 Charles River Hartley guinea pigs. Decreases in VT/VT' occurred during all aerosol challenges and were correlated with decreases in Cdyn (r = 0.84, P less than 0.001). Decreases in VT/VT' were most marked at Cdyn values of less than 50% of base line. At Cdyn of less than 15% of base line, VT' was 3.1-4.8 times the VT reference signal. No increase in total pulmonary resistance was noted, and Cdyn and VT/VT' returned to base line after histamine exposure was stopped. We conclude that gas compressibility effects become substantial during histamine-induced airway constriction in the guinea pig and that the VT/VT' ratio appears to provide a simple noninvasive method of detecting these changes.  相似文献   

19.
Genome-wide screening and positional cloning have linked neuropeptide S receptor 1 (NPSR1) with asthma and airway hyperresponsiveness. However, the mechanism by which NPSR1 regulates pulmonary responses remains elusive. Because neuropeptide S and its receptor NPSR1 are expressed in brain regions that regulate respiratory rhythm, and Npsr1-deficient mice have impaired stress and anxiety responses, we aimed to investigate whether neuropeptide S and NPSR1 regulate respiratory function through a central-mediated pathway. After neuropeptide S intracerebroventricular administration, respiratory responses of wildtype and Npsr1-deficient mice were monitored by whole-body or invasive plethysmography with or without serial methacholine inhalation. Airway inflammatory and hyperresponsiveness were assessed in allergen-challenged (ovalbumin or Aspergillus fumigatus) Npsr1-deficient mice. Analysis of breathing patterns by whole-body plethysmography revealed that intracerebroventricular neuropeptide S, as compared with the artificial cerebral spinal fluid control, increased respiratory frequency and decreased tidal volume in an NPSR1-dependent manner but did not affect enhanced pause. Following serial methacholine inhalation, intracerebroventricular neuropeptide S increased respiratory frequency in wildtype mice, but not in Npsr1-deficient mice, and had no effect on tidal volume. Intracerebroventricular neuropeptide S significantly reduced airway responsiveness to methacholine as measured by whole-body plethysmography. Npsr1 deletion had no impact on airway inflammation or hyperresponsiveness in ovalbumin- or A. fumigatus-induced experimental asthma. Our results demonstrate that neuropeptide S and NPSR1 regulate respiratory function through a central nervous system-mediated pathway.  相似文献   

20.
R. Peslin et al. measured thoracic gas volume (TGV) in adults using a new method employing low-frequency ambient pressure changes (APC) (J. Appl. Physiol. 62: 359-363, 1987). We extended that methodology and then tested the hypothesis that this technique was applicable to small mammals. TGV [at functional residual capacity (FRC)] by APC and by conventional Boyle's law was compared in 12 rabbits. The rabbits were anesthetized, tracheostomized, intubated, and placed in a pressure plethysmograph. Although in the method of Peslin et al. box pressure was oscillated at a single frequency, in our extension box pressure was oscillated simultaneously at two frequencies (0.1 and 0.2 Hz). Flow at the airway opening consisted of rapid events due to spontaneous breathing, superposed on slower events due to the alveolar gas compression. The slower events were analyzed to yield alveolar gas compliance and, by Boyle's law, FRC. FRC by APC was highly correlated to FRC by conventional plethysmography (r = 0.85). Compared with the methodology of Peslin et al., our extension relaxes a key limitation and yields systematically higher estimates of FRC. We conclude that this method is applicable to small mammals, despite an inherently more compliant chest wall, and that the methodological extension improves the estimate of FRC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号