首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
13C natural abundance variations were measured in peat soil and vegetation from two contrasting boreal forest wetlands: an upland watershed basin and a permanently saturated lowland mire. Evidence of methane oxidation was shown in the permanently saturated wetland with δ13C values as low as -97 ‰ in carbonate minerals found in floating peat mats. It is postulated that13C depleted CH4 is oxidized in the mat and reacts with calcium ions to form calcite (identified through x-ray diffraction). Methane flux measurements during the summer of 1992 showed much lower fluxes in areas with floating peat mats relative to open water. Secondary carbonates in the basin peat have isotope compositions close to the δ13C values of the peat organic carbon (-25 ‰), indicating their origin from fermentation and possibly from sulfate-reduction. In the upland basin peat deposits, the δ13CPDB values of organic C were constant with depth, while the permanently saturated mire had localities of13C enrichment in deeper layers of the peat. The13C enrichment may reflect areas of intense CH4 production in which13C enriched residual substrate is left behind during the production of highly13C depleted CH4.  相似文献   

2.
A study of the isotopic composition of organic matter was conducted in a freshwater marsh over seasonal and diel time scales to determine the sources of dissolved organic matter (DOM) and the processes leading to its formation. Bulk C and N isotopic compositions of the bacterial fraction (0.2–0.7 m) and particulate organic matter (POM; 0.7–10 m) were compared on a seasonal basis with the change in 13C of DOM. The bulk isotopic data support the idea that DOM was, in part, derived from the breakdown of larger organic matter fractions. The bacterial fraction and POM were compositionally similar throughout the year, based on a comparison of the 13C of individual amino acids in each fraction. Annual variation in the 13C of amino acids in DOM was greater relative to the variation in larger fractions indicating that microbial reworking was an important factor determining the proteinaceous component of DOM. The 13C enrichment of serine and leucine in each organic matter fraction suggested microbial reworking was an important factor determining organic matter composition during the most productive times of year. Changes in the bulk 13C of DOM were more significant over daily, relative to seasonal, time scales where values ranged by 6 and followed changes in chlorophyll a concentrations. Although bulk 13C values for POM ranged only from –29 to –28 during the same diel period, the 13C of alanine in POM ranged from –30 to –22. Alanine is directly synthesized from pyruvate and is therefore a good metabolic indicator. The 13C of individual amino acids in DOM revealed the diel change in the importance of autotrophic versus heterotrophic activity in influencing DOM composition. Diel changes in the 13C of phenylalanine, synthesized by common pathways in phytoplankton and bacteria, were similar in both DOM and POM. The diel change in 13C of isoleucine and valine, synthesized through different pathways in phytoplankton and bacteria, were distinctly different in DOM versus POM. This disparity indicated a decoupling of the POM and DOM pools, which suggests a greater source of bacterial-derived organic matter at night. The results of this study demonstrate the use of the isotopic composition of individual amino acids in determining the importance of microbial reworking and autotrophic versus heterotrophic contributions to DOM over both diel and seasonal time scales.  相似文献   

3.
Floating marshes occur over 70% of the western Terrebonne Basin, Louisiana, USA, freshwater coastal wetlands. They are of several types: A free-floating thick-mat (45–60 cm) marsh dominated by Panicum hemitomon and Sagittaria lancifolia; a thick mat marsh dominated by Panicum hemitomon and Sagittaria lancifolia that floats part of the year, but whose vertical floating range is damped compared to adjacent water; and an irregularly-floating thin mat (< 30 cm) dominated by Eleocharis spp. in the spring and Ludwigia leptocarpa and Bidens laevis in the summer and fall. Floating mats must be almost entirely organic in order to be buoyant enough to float. The western Terrebonne wetlands receive large winter/spring supplies of suspended sediments from the Atchafalaya River. Even though sediment concentrations in the adjacent bayou are as high as 100 mg l–1, the Panicum hemitomon/Sagittaria lancifolia free-floating marsh probably receives no over-surface sediments since it floats continuously. The bulk density data of the damped-floating marsh, however, suggest some mineral sediment input, probably during winter when this marsh is submerged. These two types of floating marsh could not have developed in the present sediment regime of the Atchafalaya River, but as long as they remain floating can continue to exist. Thin floating mats are found in areas receiving the least sediment (<20 mg 1–1 suspended sediment concentration in adjacent bayous). This low sediment environment probably made possible their formation within the past 20 years. They may represent a transitional stage in mat succession from (1) existing thick-mat floating marsh to a degrading floating marsh, or (2) a floating marsh developing in shallow open water.Corresponding editor: D. Whigham  相似文献   

4.
Interdunal seasonal wetlands, known as dune slack wetlands, were mapped and their vegetation surveyed across a large region of dunes within the Cape Cod National Seashore. Wetland sizes and ages were estimated from digitized, georeferenced aerial photographs available from 1938, 1947, 1960, 1986, 1994, and 2001, and from LIDAR elevation data. A total of 346 sites were found, covering an area of ∼45.4 ha., in which 97 species of vascular plants were identified. Vegetation structure and composition exhibited a distinct sequence of development with age, following a pattern of succession from herbaceous, graminoid-dominated communities to shrub- and tree-dominated communities. Floristic variables were not related to proximity to the coast and although wetland size appeared to have some bearing on species richness, the correlation was statistically weak. Soil organic matter determined for a subset of 60 wetlands was positively correlated with age and woody cover but showed no relationship with water depth. The results suggest that vegetation development is primarily driven by the internal mechanisms of succession. Notwithstanding, any changes in the environment that alter the process of succession will collectively influence these wetlands. In addition, stabilization of the dunes resulting in a reduction in the formation of new wetlands, may translate into permanent loss of early and mid-successional dune slack communities. Maintenance of these communities will depend on succession being periodically reset by disturbance or active management.  相似文献   

5.
1. Methanogenic carbon can be incorporated by methane‐oxidising bacteria, leading to a 13C‐depleted stable carbon isotopic composition (δ13C) of chironomids that feed on these microorganisms. This has been shown for the chironomid tribe Chironomini, but very little information is available about the δ13C of other abundant chironomid groups and the relationship between chironomid δ13C and methane production in lakes. 2. Methane flux was measured at the water surface of seven lakes in Sweden. Furthermore, fluxes from the sediments to the water column were measured in transects in two of the lakes. Methane fluxes were then compared with δ13C of chitinous chironomid remains isolated from the lake surface sediments. Several different chironomid groups were examined (Chironomini, Orthocladiinae, Tanypodinae and Tanytarsini). 3. Remains of Orthocladiinae in the seven study lakes had the highest δ13C values (?31.3 to ?27.0‰), most likely reflecting δ13C of algae and other plant‐derived organic matter. Remains of Chironomini and Tanypodinae had lower δ13C values (?33.2 to ?27.6‰ and ?33.6 to ?28.0‰, respectively). A significant negative correlation was observed between methane fluxes at the lake surface and δ13C of Chironomini (r = ?0.90, P = 0.006). Methane release from the sediments was also negatively correlated with δ13C of Chironomini (r = ?0.67, P = 0.025) in the transect samples obtained from two of the lakes. The remains of other chironomid taxa were only weakly or not correlated with methane fluxes measured in our study lakes (P > 0.05). 4. Selective incorporation of methane‐derived carbon can explain the observed correlations between methane fluxes and δ13C values of Chironomini. Remains of this group might therefore have the potential to provide information about past changes in methane availability in lakes using sediment records. However, differences in productivity, algal δ13C composition and the importance of allochthonous organic matter input between the studied lakes may also have influenced Chironomini δ13C. More detailed studies with a higher number of analysed samples and detailed measurement of δ13C of different ecosystem components (e.g. methane, dissolved inorganic carbon) will be necessary to further resolve the relative contribution of different carbon sources to δ13C of chironomid remains.  相似文献   

6.
7.
The increasing success of invasive plant species in wetland areas can threaten their capacity to store carbon, nitrogen, and phosphorus (C, N, and P). Here, we have investigated the relationships between the different stocks of soil organic carbon (SOC), and total C, N, and P pools in the plant–soil system from eight different wetland areas across the South‐East coast of China, where the invasive tallgrass Spartina alterniflora has replaced the native tall grasses Phragmites australis and the mangrove communities, originally dominated by the native species Kandelia obovata and Avicennia marina. The invasive success of Spartina alterniflora replacing Phragmites australis did not greatly influence soil traits, biomass accumulation or plant–soil C and N storing capacity. However, the resulting higher ability to store P in both soil and standing plant biomass (approximately more than 70 and 15 kg P by ha, respectively) in the invasive than in the native tall grass communities suggesting the possibility of a decrease in the ecosystem N:P ratio with future consequences to below‐ and aboveground trophic chains. The results also showed that a future advance in the native mangrove replacement by Spartina alterniflora could constitute a serious environmental problem. This includes enrichment of sand in the soil, with the consequent loss of nutrient retention capacity, as well as a sharp decrease in the stocks of C (2.6 and 2.2 t C ha‐1 in soil and stand biomass, respectively), N, and P in the plant–soil system. This should be associated with a worsening of the water quality by aggravating potential eutrophication processes. Moreover, the loss of carbon and nutrient decreases the potential overall fertility of the system, strongly hampering the reestablishment of woody mangrove communities in the future.  相似文献   

8.
A vast ecosystem of wetlands and lakes once covered the Mesopotamian Plain of southern Iraq. Widespread drainage in the 1990s nearly obliterated both components of the landscape. This paper reports the results of a study undertaken in 1972–1975 on the vegetation of the wetlands prior to drainage and provides a unique baseline for gauging future restoration of the wetland ecosystems in Mesopotamia. Five representative study sites were used to assess the flora, three of which were wetlands. A total of 371 plant species were recorded in the five sites, of which approximately 40% represent obligate or facultative wetland species. The wetland vegetation was classified into five major physiognomic forms (submerged, floating, herbaceous tall emergent, herbaceous low emergent and woody low emergent), which was further subdivided into 24 fresh and halophytic communities. Water levels greatly fluctuated across the different types of wetlands, and mean surface water depth ranged from below to greater than 2 m above the sediment surface, reflecting permanently, seasonally or intermittently wet habitats. Aboveground biomass was also highly variable among the communities. The Phragmites australis community, which was the most extensive community type, had the greatest biomass with an average value of approximately 5,000 g m−2 in summer. Distribution and community composition were largely controlled by water levels and saline-freshwater gradients. Canonical correspondence analysis showed that salinity and water depth were the most important factors to explain species distribution. Environmental variables related to soil salinity separated halophytic species in woody low emergent and herbaceous low emergent forms (Tamarix galica, Cressa cretica, Alhagi mannifera, Aeluropus lagopoides, Juncus rigida, and Suaeda vermiculata) from other species. Their habitats were also the driest, and soil organic matter content was lower than those of other species. Habitats with deepest water were dominated by submerged aquatic and floating leaved species such as Nymphoides peltata, Ceratophyllum demersum, and Najas armata. Such diverse environmental conditions in the Mesopotamian wetland would be greatly affected by evapotranspiration, river water inputs from north, ground water inputs, local soil conditions, and a tide or seiche-controlled northward transgression of water from the Gulf. These environmental conditions should be considered in restoration plans if plant communities existed in the mid-1970s are to be part of the desired restoration goals. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
This study reports on the response of a tidal, freshwater forested wetland ecosystem to long-term input of secondarily treated municipal effluent from the City of Mandeville, LA. Measurements of hydrology, nutrients, and aboveground net primary productivity were made from September 1998 through March 2002. Accretion measurements were made in October 2000 and October 2004. The major hydrologic inputs to the system were the effluent, precipitation, and back water flooding from Lake Pontchartrain. Nutrient levels were generally low except in the immediate vicinity of the outfall. Mean net primary production of the freshwater forest system was significantly higher downstream of the effluent discharge (1202 g m−2 yr−1) compared to the control site (799 g m−2 yr−1). Downstream of the outfall, accretion rates were double the rate of relative sea level rise in the area. Removal efficiencies of N and P were as high as 75% and 95%, respectively. The relatively constant flow of secondarily treated municipal effluent buffered the downstream area from salinity intrusion during a region-wide drought. Re-direction of nutrient-enhanced effluents from open water bodies to wetland ecosystems can maintain plant productivity, sequester carbon, and maintain coastal wetland elevations in response to sea-level rise in addition to improving overall surface water quality, reducing energy use, and increasing financial savings.  相似文献   

10.
To better understand carbon (C) cycling in arctic tundra we measureddissolved C production and export rates in mesocosms of three tundra vegetationtypes: tussock, inter-tussock and wet sedge. Three flushing frequencies wereused to simulate storm events and determine potential mass export of dissolved Cunder increased soil water flow scenarios. Dissolved C production and exportrates differed between vegetation types (inter-tussock < tussock < wetsedge). In the absence of flushing, dissolved organic C (DOC) dominatedproduction in tussock and inter-tussock soils but was consumed in wet sedgesoils (8.3, 32.7, and –0.4 g C g soil–1day–1). Soil water dissolved C concentrations declined over time when flushedat high and medium frequencies but were variable at low flushing frequency.Total yield of dissolved C and DOC increased with increased flushing frequency.The ratio of DOC to dissolved inorganic C exported dropped with increasedflushing under tussock but not inter-tussock or wet sedge vegetation. Massexport per liter of water added declined as flushing frequency increased intussock and inter-tussock mesocosms. Export and production of dissolved C werestrongly correlated with above ground biomass, but not with photosynthetic ratesor below ground biomass. DOC quality was examined by measuring production ofToolik Lake bacteria fed mesocosm soil water. When normalized for DOCconcentration, wet sedge soil water supported significantly higher bacterialproduction. Our results indicate that arctic tundra soils have high potentialsfor dissolved C export, that water flow and vegetation type mainly controldissolved C export, and that responses of aquatic microbes to terrestrial inputsdepend on the vegetation type in the watershed.  相似文献   

11.
稳定同位素分析技术近年来发展为复原古代民族饮食结构、社会经济模式的有效手段。本文应用该技术首次对俄罗斯远东地区特罗伊茨基靺鞨墓地出土人骨中的C、N同位素比值进行了测定。结果显示,特罗伊茨基墓地古代靺鞨居民日常饮食习惯中保持着较高比例的动物性食物摄入,植物类食物的摄入中C3类植物的比重较高。结合其他相关资料,初步推测该组靺鞨居民已经有一定农业,渔猎业和饲养业在经济生活中占据重要地位,黑水靺鞨和粟末靺鞨的经济类型有所差别。本文的研究结果可以为复原古代民族的经济模式研究提供有益的线索。  相似文献   

12.
The mean annual rainfall in southern Africa is found to explain over half of the observed variance in the stable nitrogen (N) isotopic signatures of C3 vegetation in southern Africa (r2=0.54, P<0.01). The inverse relationship between the stable N isotopic signatures of foliar samples from C3 vegetation and long‐term southern African rainfall is found on a scale larger than previously observed. A modest relationship is found between stable carbon (C) isotopic signatures of C3 vegetation and rainfall across the region (r2=0.20, P<0.01). No such relationship is found between stable C and N isotopic signatures of C4 vegetation and rainfall. The explanation of the relationship between 15N in C3 vegetation and the mean annual rainfall presented here is that nutrient availability varies inversely with water availability. This suggests that water‐limited systems in southern Africa are more open in terms of nutrient cycling and therefore the resulting natural abundance of foliar 15N in these systems is enriched. The use of this relationship may be of value to those researchers modeling both the dynamics of vegetation and biogeochemistry across this region. The use of the isotopic enrichment in C3 vegetation as a function of rainfall may provide an insight into nutrient cycling across the semi‐arid and arid regions of southern Africa. This finding has implications for the study of global change, especially as it relates to vegetation responses to changing regional rainfall regimes over time.  相似文献   

13.
Baboons are dietary generalists, consuming a wide range of food items in varying proportions. It is thus difficult to quantify and explain the dietary behavior of these primates. We present stable carbon (delta(13)C) and nitrogen (delta(15)N) isotopic data, and percentage nitrogen (%N), of feces from chacma baboons (Papio ursinus) living in two savanna environments of South Africa: the mountainous Waterberg region and the low-lying Kruger National Park. Baboons living in the more homogeneous landscapes of the Waterberg consume a more isotopically heterogeneous diet than their counterparts living in Kruger Park. Grasses and other C(4)-based foods comprise between approximately 10-20% (on average) of the bulk diet of Kruger Park baboons. Carbon isotopic data from the Waterberg suggest diets of approximately 30-50% grass, which is higher than generally reported for baboons across the African savanna. Based on observations of succulent-feeding, we propose that baboons in the Waterberg consume a mix of C(4) grasses and CAM-photosynthesizing succulents in combined proportions varying between approximately 5-75% (average, approximately 35%). Fecal delta(15)N of baboons is lower than that of sympatric ungulates, which may be due to a combination of low levels of faunivory, foraging on subterranean plant parts, or the use of human foods in the case of Kruger Park populations. Fecal N levels in baboons are consistently higher than those of sympatric ungulate herbivores, indicating that baboons consume a greater proportion of protein-rich foods than do other savanna mammals. These data suggest that chacma baboons adapt their dietary behavior so as to maximize protein intake, regardless of their environment.  相似文献   

14.
Sediment traps were used to investigate the settling, resuspension, and decomposition of particulate organic matter in Lake Itasca, MN (USA). Traps were deployed in the epilimnion and hypolimnion of the deepest basin during June, 1988, sampled twice during stratified conditions (August, September) and once after the lake had mixed (October). The downward flux of particulate material increased from summer to fall. The net sedimentation of organic matter ranged from 0.6 to 2.3 g m–2 d–1 at 4 m and increased to 2.1 to 3.2 g m–2 d–1 two meters above the bottom sediment indicating that resuspended sediment was at least 33% of the settling mass during all periods. The C:N ratios of captured particles (6.8–9.5) were between the ratios of plankton (5.8 to 6.8) and the sediments (9.9 to 10.2) but smaller than the ratios of terrestrial organic materials (13.5 to 222). The monosaccharide compositions of the entrapped particles were similar to plankton samples and different from the distinct composition of the sediments. Capture of rebound particles similar to the primary flux and not decomposition may have been responsible for this similarity. Total monosaccharide concentrations were lower in the sediments than in entrapped particles. Individual sugars exhibited different patterns of accumulation in the sediments. Glucose was lowest in sediments when the relative concentrations were compared to those in source materials and entrapped particles. In contrast, sediments had the highest rhamnose and fucose concentrations. Bacterial biomass could only account for small portions of these sugars in the sediment. The distinct monosaccharide composition of resuspended sediments was not strongly recorded in materials captured by the sediment traps even after the lake had mixed.  相似文献   

15.
基于林业清查资料的桂西北植被碳空间分布及其变化特征   总被引:1,自引:0,他引:1  
基于2005-2010年林业资源清查数据,采用材积源生物量法,运用地理信息系统技术,估算和分析了桂西北植被碳密度及其储量的空间分布及其变化。结果显示:(1) 研究区域从2005年到2010年呈现碳汇变化趋势,植被碳储量由4.19×104t增加到4.27×104t(增幅为1.84%),植被碳密度从29.04t/hm2增加到29.57 t/hm2。(2) 从治理措施、林种起源方式及林种类型来看,自然保护区的植被碳密度最大,超过40 t/hm2。2005-2010年,人工植苗、直播、飞播和萌生方式植被碳密度增加,退耕还林工程的植被碳密度均呈明显增长(增加3.00 t/hm2),所有林种碳密度都呈不同程度的增长。 (3)植被碳密度空间分布上,大致表现为西部高、中东部低,北部高、南部低。西部区植被碳密度均值超过40 t/hm2,中东部区植被碳密度均值低于25 t/hm2。植被碳密度变化在空间分布上表现为无论是非喀斯特区还是喀斯特区的植被碳密度都有增长趋势,其中有7个县市植被碳密度升级为更高等级。研究表明,随着退耕还林、生态移民等治理措施的实施,区域植被碳密度显著增加,生态环境好转。  相似文献   

16.
Cinclodes nigrofumosus and C. oustaleti are two closely related songbirds that inhabit the northern Chilean coast during the austral fall and winter.This stretch spans a dramatic north to south latitudinal gradient in rainfall and temperature. Whereas C. nigrofumosus lives exclusively on coastal environments, C. oustaleti shifts seasonally from coastal environments to inland freshwater ones. We used the δ13C of these two species’ tissues to investigate whether the reliance on marine versus terrestrial sources varied from the hyper-arid north to the wet south. We also investigated latitudinal variation in the renal traits that mediate how these birds cope with dehydration and a salty marine diet. Both species increased the incorporation of terrestrial carbon, as measured by δ13C, as terrestrial productivity increased southwards. However, C. nigrofumosus had consistently more positive (i.e. more marine) and less variable δ13C values than C. oustaleti. The osmoregulatory traits of both species varied with latitude as well. Urine osmolality decreased from extremely high values in the north to moderate values in the south, while C. nigrofumosus produced more concentrated urine than C. oustaleti. In both species, the proportion of kidney devoted to medullary tissue decreased from north to south, and kidney size increased significantly with latitude. Cinclodes nigrofumosus had larger kidneys with larger proportions of medullary tissue than C. oustaleti. C. nigrofumosus and C. oustaleti are terrestrial organisms subsidized by a rich marine environment where it is adjacent to an unproductive terrestrial. Variation in the reliance on marine food sources seems to be accompanied by adjustments in the osmoregulatory mechanisms used by these birds to cope with salt and dehydration.  相似文献   

17.
In two montane watersheds that receive minimal deposition of atmospheric nitrogen, 15–71% of dissolved organic nitrogen (DON) was bioavailable in stream water over a 2-year period. Discharge-weighted concentrations of bulk DON were between 102 and 135 μg/l, and the C:N ratio differed substantially between humic and non-humic fractions of DON. Approximately 70% of DON export occurred during snowmelt, and 40% of that DON was biologically available to microbes in stream sediments. Concentrations of bioavailable DON in stream water were 2–16 times greater than dissolved inorganic nitrogen (DIN) during the growing season, and bioavailable DON was depleted within 2–14 days during experimental incubations. Uptake of DON was influenced by the concentration of inorganic N in stream water, the concentration of non-humic DON in stream water, and the C:N ratio of the non-humic fraction of dissolved organic matter (DOM). Uptake of DON declined logarithmically as the concentration of inorganic N in stream water increased. Experimental additions of inorganic N also caused a decline in uptake of DON and net production of DON when the C:N ratio of non-humic DOM was high. This study indicates that the relative and absolute amount of bioavailable DON can vary greatly within and across years due to interactions between the availability of inorganic nutrients and composition of DOM. DOM has the potential to be used biotically at a high rate in nitrogen-poor streams, and it may be generated by heterotrophic microbes when DIN and labile DOM with low relative nitrogen content become abundant.  相似文献   

18.
We investigated the variability of tree-ring width, wood density and 13C/12C in beech tree rings (Fagus sylvatica L.), and analyzed the influence of climatic variables and carbohydrate storage on these parameters. Wood cores were taken from dominant beech trees in three stands in Germany and Italy. We used densitometry to obtain density profiles of tree rings and laser-ablation-combustion-GC-IRMS to estimate carbon isotope composition (δ 13C) of wood. The sensitivity of ring width, wood density and δ 13C to climatic variables differed; with tree-ring width responding to environmental conditions (temperature or precipitation) during the first half of a growing season and maximum density correlated with temperatures in the second part of a growing season (July–September). δ 13C variations indicate re-allocation and storage processes and effects of drought during the main growing season. About 20% of inter-annual variation of tree-ring width was explained by the tree-ring width of the previous year. This was confirmed by δ 13C of wood which showed a contribution of stored carbohydrates to growth in spring and a storage effect that competes with growth in autumn. Only mid-season δ 13C of wood was related to concurrent assimilation and climate. The comparison of seasonal changes in tree-ring maximum wood density and isotope composition revealed that an increasing seasonal water deficit changes the relationship between density and 13C composition from a negative relation in years with optimal moisture to a positive relationship in years with strong water deficit. The climate signal, however, is over-ridden by effects of stand density and crown structure (e.g., by forest management). There was an unexpected high variability in mid season δ 13C values of wood between individual trees (−31 to −24‰) which was attributed to competition between dominant trees as indicated by crown area, and microclimatological variations within the canopy. Maximum wood density showed less variation (930–990 g cm−3). The relationship between seasonal changes in tree-ring structure and 13C composition can be used to study carbon storage and re-allocation, which is important for improving models of tree-ring growth and carbon isotope fractionation. About 20–30% of the tree-ring is affected by storage processes. The effects of storage on tree-ring width and the effects of forest structure put an additional uncertainty on using tree rings of broad leaved trees for climate reconstruction.  相似文献   

19.
Undisturbed, highland wetlands in the northeastern USA are unique habitats which maintain ecological integrity in this region. These ecosystems may be threatened by a changing environment. To protect, restore, and create these wetlands, an understanding of the relationship between vegetation composition, environmental regime, and the underlying hydrogeomorphology is needed. Using a hydrogeomorphic (HGM) classification scheme, we analyzed the environmental regime and vegetation in groundwater and small-order, stream-fed wetlands in the Adirondacks and Catskills of New York, the Appalachians of Pennsylvania and of Virginia and West Virginia. The similarity of environmental regime and then species composition between wetlands across and within regions were analyzed using ordination and cluster analysis. Plant associations and distinguishing factors were determined. Within a region, wetlands with similar environmental regime or species composition were often grouped by HGM subclass. Beaver influence and groundwater sources may account for discrepancies between HGM and community composition. Similarly structured plant associations across regions included Acer/herbaceous wetlands, Acer/Fraxinus slopes, and Acer/Tsuga/herbaceous wetlands. Plant associations were primarily distinguished by soils in the Adirondacks, soils and hydrology in the Catskills, spatial location and disturbance in Pennsylvania, and spatial location in Virginia. Regional differences and non-environmental drivers of species composition will modify generalized relationships between hydrogeomorphology, environmental regime, and species composition and should be accounted for in wetland design and management activities.  相似文献   

20.
Vegetation dieback is an important component of wetland loss in low salinity marshes of coastal Louisiana. A field experiment was conducted to determine the factors responsible for vegetation dieback within oligohaline marshes of Louisiana. Sections of marsh, dominated by Sagittaria lancifolia L., were transplanted into one of four locations depending on the treatment: (1) increased submergence—sods were lowered 15 cm below the donor marsh surface, (2) increased salinity—sods were transplanted into a higher salinity marsh and adjacent dieback pond, (3) increased salinity and submergence—sods were transplanted into a higher salinity marsh and adjacent dieback pond at 15 cm below the marsh surface, and (4) control—sods were exhumed and replaced at the ambient elevation of the donor marsh. Plant biomass and edaphic characteristics were measured after 5 mo. An increase in submergence caused decreased plant growth of the S. lancifolia-dominated marsh community. An increase in salinities to 4–5 g/kg were not detrimental to plant growth. Although saltwater intrusion alone did not cause decreased growth of the S. lancifolia-dominnled plant community, the combination of saltwater intrusion and increased plant submergence caused the greatest decrease in plant growth due to increased toxic sulfides and a likely reduction in the uptake of NH4-N by the wetland vegetation. This illustrates that the dieback of oligohaline marsh vegetation can be alleviated by decreasing plant submergence even at salinities as high as 4.6 g/kg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号