首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
2.
Abstract Short-chain complexed poly-β-hydroxybutyrate, 130–170 monomer units, is a ubiquitous constituent of cells, wherein it is usually associated with other macromolecules by multiple coordinate bonds, or by hydrogen bonding and hydrophobic interactions. This conserved PHB has been isolated from the plasma membranes of bacteria, from a variety of plant tissues, and from the plasma membranes, mitochondria, and microsomes of animal cells. In bacterial membranes, PHB has been found complexed to the calcium salts of inorganic polyphosphates, and to single-stranded DNAs. The ability of PHB to solvate salts, consisting of cations having high solvation energies and large delocalized anions, is in accordance with its molecular characteristics, that of a flexible linear molecule possessing a large number of electron-donating ester oxygens suitably spaced to replace the hydration shell of cations. In turn, PHB may be rendered soluble in aqueous media by complexation to water-soluble proteins, such as serum lipoproteins and albumin. Such solvates are highly resistant to hydrolytic enzymes. These findings suggest that the physiological roles of this unique biopolymer may include the solvation of salts of polymeric anions to facilitate their movement through hydrophobic barriers, and the protection of cellular polymers from enzymatic degradation.  相似文献   

3.
Abstract The effect of carbon starvation on growth and poly-β-hydroxybutyrate (PHB) utilization in oxygen-limited chemostat cultures of Rhizobium ORS571 was studied. Under oxygen-limited growth conditions PHB was not degraded. When in a nitrogen-fixing oxygen-limited culture, after stopping the medium supply, the dissolved oxygen concentration was maintained at 10 μM, a slow breakdown of PHB was observed. Addition of ammonia and air to a nitrogen-fixing oxygen-limited culture after the medium supply had been stopped, resulted in the simultaneous utilization of PHB and succinate. The possible use of the energy derived from PHB degradation in Rhizobia bacteria and bacteroids is discussed.  相似文献   

4.
Abstract Poly-β-hydroxybutyrate biosynthesis was studied in Alcaligenes eutrophus under various nutrient-limiting conditions. When the cells were cultivated in nitrogen-limited media, both the levels of NAD(P)H and the ratios of NAD(P)H/NAD(P) were higher than those under nitrogen-sufficient conditions. The specific poly-β-hydroxybutyrate production rate was found to increase with the values of both NADH/NAD and NADPH/NADP, indicating that poly-β-hydroxybutyrate synthesis is directly regulated by the ratios of nicotinamide nucleotides. The effects of nicotinamide nucleotides on poly-β-hydroxybutyrate biosynthesis was investigated with regard to enzyme kinetics. Citrate synthase activity was significantly inhibited by NADH and NADPH, indicating that poly-β-hydroxybutyrate accumulation could be enhanced by facilitating the metabolic flux of acetyl-CoA to poly-β-hydroxybutyrate synthetic pathway. It was also found that cellular NADPH was a limiting substrate for NADPH-linked reductase, controlling the overall biosynthetic activity of poly-/3-hydroxybutyrate in this strain.  相似文献   

5.
Abstract Staphylococci—chemoorganotrophic bacteria whose main habitats are human and animal organisms—can accumulate poly-β-hydroxybutyrate (PHB) in their cells. The polymer is metabolized in endogenous turnovers preceding degradation of aminoacids, proteins and RNA. PHB depolymerase was not found in staphylococci but β-hydroxybutyrate dehydrogenase was estimated, purified and characterized.  相似文献   

6.
7.
Cells containing polyphosphate 71 micrograms P (mg protein)-1 and no poly-beta-hydroxybutyrate showed metachromatic granules but no lipid granules; cells containing poly-beta-hydroxybutyrate (15% of dry weight) showed fluorescence lipid granules but no metachromatic granules; whereas cells containing both polyphosphate and poly-beta-hydroxybutyrate showed both types of granules. These observations, together with a critical review of the literature, show a clear distinction between metachromatic (or volutin) granules and lipid granules.  相似文献   

8.
We report here on the occurrence and quantities of poly-beta-hydroxybutyric acid (PHB) in natural populations of the marine cyanobacterium Trichodesmium thiebautii. A diurnal variation in the shape and size of PHB granules and in PHB content was observed. The highest PHB levels (2.3 +/- 0.8 mg g-1 dry wt) were recorded in the early morning and the values decreased thereafter with a minimum at night (1.6 +/- 0.9 mg g-1 dry wt). Our data suggest that PHB is a prominent cell constituent in T. thiebautii and that its synthesis takes place in the early morning whereas it is utilized during the rest of the day.  相似文献   

9.
Purple non-sulfur phototrophic bacteria, exemplifed byRhodobacter capsulatus andRhodobacter sphaeroides, exhibit a remarkable versatility in their anaerobic metabolism. In these bacteria the photosynthetic apparatus, enzymes involved in CO2 fixation and pathways of anaerobic respiration are all induced upon a reduction in oxygen tension. Recently, there have been significant advances in the understanding of molecular properties of the photosynthetic apparatus and the control of the expression of genes involved in photosynthesis and CO2 fixation. In addition, anaerobic respiratory pathways have been characterised and their interaction with photosynthetic electron transport has been described. This review will survey these advances and will discuss the ways in which photosynthetic electron transport and oxidation-reduction processes are integrated during photoautotrophic and photoheterotrophic growth.  相似文献   

10.
Abstract Azospirillum brasilense is a rhizosphere microorganism which has potential use for promoting plant growth in economically important crops. Its ability to survive the adverse conditions imposed by nutrient starvation and competition in the rhizosphere is of great importance. A. brasilense accumulates up to 70% of its cell dry weight with poly-β-hydroxybutyrate (PHB). In the presence of stress factors such as ultraviolet radiation, desiccation and osmotic stress, PHB-rich cells survived better than PHB-poor cells. Polymer-rich cells of Azospirillum fixed N2 in the absence of exogenous carbon and combined nitrogen. The enzymes of the PHB cycle in both the synthesis and degradation processes as well as during starvation were more active in PHB-rich cells. After 24 h of starvation there was a peak of activity of d (−)β-hydroxybutyrate dehydrogenase, β-ketothiolase and thiophorase due to PHB degradation. Additionally, acetoacetyl-CoA reductase dropped to a minimum level because PHB could not be synthesized. The possible utilization of PHB as a sole carbon and energy source by A. brasilense and other bacteria during establishment, proliferation and survival in the rhizosphere will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号