共查询到20条相似文献,搜索用时 15 毫秒
1.
Conditions for studying protein phosphorylation in intact pancreatic islets were developed in order to study the effects of glucose and other effectors. Islets were incubated in Krebs-Ringer bicarbonate buffer containing 5 mM malate and 5 mM pyruvate (metabolic fuels that are not insulin secretagogues) for 150 min to permit incorporation of 32Pi into islet phosphate pools. Glucose or other effectors were then added, and the incubation was terminated after 10 to 30 min. Glucose increased phosphorylation of four islet peptides with molecular weights of 20,000, 33,000, 43,000 and 57,000. The calcium channel blockers, verapamil and D-600, inhibited phosphorylation of each of the four proteins, and trifluoperazine inhibited phosphorylation of the proteins with molecular weights of 20,000 and 57,000. The results indicate that glucose-induced insulin release may be mediated in part by protein phosphorylation, and that calcium may act as an intracellular messenger in coupling the glucose stimulus to the secretory process. 相似文献
2.
Seiji Suzuki Hiroshi Oka Hiroko Yasuda Masahiro Ikeda Po Yuan Cheng Toshitsugu Oda 《Biochemical and biophysical research communications》1981,99(3):987-993
Isolated rat pancreatic islets, incubated in the presence of extracellular 32Pi to steady state 32P incorporation into cellular phosphopeptides, were exposed to glucose for 10 min. Glucose (16.7 mM) significantly stimulated the phosphorylation of six phosphoproteins with molecular weights of 15,000, 35,000, 49,000, 64,000, 93,000 and 138,000. Mannoheptulose (16.7 mM) markedly inhibited glucose-stimulated phosphorylation of these six phosphoproteins. This protein phosphorylation might be important in mediating glucose-stimulated insulin release. 相似文献
3.
Kowluru A 《American journal of physiology. Endocrinology and metabolism》2003,285(3):E498-E503
We recently described novel regulatory roles for protein histidine phosphorylation of key islet proteins (e.g., nucleoside diphosphate kinase and succinyl thiokinase) in insulin secretion from the islet beta-cell (Kowluru A. Diabetologia 44: 89-94, 2001; Kowluru A, Tannous M, and Chen HQ. Arch Biochem Biophys 398: 160-169, 2002). In this context, we also characterized a novel, ATP- and GTP-sensitive protein histidine kinase in isolated beta-cells that catalyzed the histidine phosphorylation of islet (endogenous) proteins as well as exogenously added histone 4, and we implicated this kinase in the activation of islet endogenous G proteins (Kowluru A. Biochem Pharmacol 63: 2091-2100, 2002). In the present study, we describe abnormalities in ATP- or GTP-mediated histidine phosphorylation of nucleoside diphosphate kinase in islets derived from the Goto-Kakizaki (GK) rat, a model for non-insulin-dependent diabetes. Furthermore, we provide evidence for a marked reduction in the activities of ATP- or GTP-sensitive histidine kinases in GK rat islets. On the basis of these observations, we propose that alterations in protein histidine phosphorylation could contribute toward insulin-secretory abnormalities demonstrable in the diabetic islet. 相似文献
4.
According to the glucose toxicity hypothesis, hyperglycemia contributes to defective beta-cell function in type 2, non-insulin-dependent diabetes mellitus. This concept is supported by substantial data in rodent models of diabetes. However, the ability of glucose to stimulate the accumulation of insulin mRNA, a critical feature of normal beta-cell physiology, has not been investigated in in vivo models of chronic hyperglycemia. The aim of this study was to determine whether glucose-induced insulin mRNA accumulation is impaired in the neonatal streptozotocin-treated rat (n0-STZ rat), a model of non-obese, non-insulin-dependent diabetes mellitus. Islets of Langerhans isolated from n0-STZ and control rats were cultured for 24 h in the presence of 2.8 or 16.7 mmol/L glucose, and insulin mRNA levels were measured by Northern analysis. Insulin mRNA levels were increased more than twofold by glucose in control islets. In contrast, no significant effect of glucose was found on insulin mRNA levels in n0-STZ islets. We conclude that insulin gene regulation by glucose is impaired in n0-STZ rat islets. 相似文献
5.
According to the "glucose toxicity" hypothesis, hyperglycemia contributes to defective beta-cell function in type 2, non-insulin-dependent diabetes mellitus. This concept is supported by substantial data in rodent models of diabetes. However, the ability of glucose to stimulate the accumulation of insulin mRNA, a critical feature of normal beta-cell physiology, has not been investigated in in vivo models with chronic hyperglycemia. The aim of this study was to determine whether glucose-induced insulin mRNA accumulation is impaired in the neonatal streptozotocin-treated rat (n0-STZ rat), a model of non-obese, non-insulin-dependent diabetes mellitus. Islets of Langerhans isolated from n0-STZ and control rats were cultured for 24 h in the presence of 2.8 or 16.7 mmol/l glucose, and insulin mRNA levels were measured by Northern analysis. Insulin mRNA levels were increased more than twofold by glucose in control islets. In contrast, no significant effect of glucose was found on insulin mRNA levels in n0-STZ islets. We conclude that insulin gene regulation by glucose is impaired in n0-STZ rat islets. 相似文献
6.
Differential regulation by fatty acids of protein histidine phosphorylation in rat pancreatic islets
Kowluru A 《Molecular and cellular biochemistry》2004,266(1-2):175-182
Long-chain fatty acids (e.g. arachidonic acid) have been implicated in physiological control of insulin secretion. We previously reported histidine phosphorylation of at least two islet proteins (e.g., NDP kinase and the beta subunit of trimeric G-proteins), and suggested that such a signalling step may have regulatory roles in beta cell signal transduction, specifically at the level of G-protein activation. Since our earlier findings also indicated potential regulation by long-chain fatty acids of islet G-proteins, we undertook the current study to verify putative regulation, by fatty acids, of protein histidine phosphorylation of NDP kinase and Gbeta subunit in normal rat islets. The phosphoenzyme formation of NDP kinase was stimulated by various fatty acids in the following rank order: linoleic acid > arachidonic acid > oleic acid > palmitic acid = stearic acid = control. Furthermore, the catalytic activity of NDP kinase was stimulated by these fatty acids in the rank order of: oleic acid > arachidonic acid > linoleic acid > palmitic acid = stearic acid = control. Arachidonic acid methyl ester, an inactive analog of arachidonic acid, did not significantly affect either the phosphoenzyme formation or the catalytic activity of NDP kinase. Interestingly, arachidonic acid exerted dual effects on the histidine phosphorylation of beta subunit; it significantly stimulated the phosphorylation at 33 microM beyond which it was inhibitory. Together, these findings identify additional loci (e.g., NDP kinase and Gbeta subunit) at which unsaturated, but not saturated, fatty acids could exert their intracellular effects leading to exocytotic secretion of insulin. 相似文献
7.
The analysis of the 100 000 X g supernatant fraction of cultured rat glomerular mesangial cells with DEAE-cellulose ion-exchange chromatography revealed a large peak showing the activity of a protein kinase (protein kinase C) which depended on phospholipid and diolein as well as Ca2+. Furthermore, it was shown that angiotensin II (AII) (10(-6)M) induced rapid hydrolysis of phosphatidylinositol 4,5-bisphosphate, leading to production of diacylglycerol rich in arachidonic acid, in the cultured rat mesangial cells. These results suggest that activation of protein kinase C resulting from enhancement of phosphoinositide metabolism may be important as an intracellular regulatory mechanism of AII upon cultured mesangial cells. 相似文献
8.
Glucose-induced changes in cytosolic ATP content in pancreatic islets 总被引:11,自引:0,他引:11
The cytosolic and mitochondrial contents in ATP, ADP and AMP were measured in islets incubated for 45 min at increasing concentrations of D-glucose and then exposed for 20 s to digitonin. The latter treatment failed to affect the total islet ATP/ADP ratio and adenylate charge. D-Glucose caused a much greater increase in cytosolic than mitochondrial ATP/ADP ratio. In the cytosol, a sigmoidal pattern characterized the changes in ATP/ADP ratio at increasing concentrations of D-glucose. These findings are compatible with the view that cytosolic ATP participates in the coupling of metabolic to ionic events in the process of nutrient-induced insulin release. 相似文献
9.
Effects of dehydrouramil on protein phosphorylation and insulin secretion in rat islets of Langerhans. 下载免费PDF全文
Dehydrouramil hydrate hydrochloride (DHU), a stable analogue of alloxan, inhibited the phosphorylation of an endogenous protein of Mr 53,000 catalysed by a Ca2+-calmodulin-dependent protein kinase in extracts of islets of Langerhans. The concentration of DHU required for 50% inhibition was 0.09 mM. DHU did not inhibit islet cyclic AMP-dependent protein kinase and caused only slight inhibition of Ca2+-phospholipid-dependent protein kinase. Inhibition of Ca2+-calmodulin-dependent protein kinase was neither prevented nor reversed by dithiothreitol. DHU did not affect the ability of calmodulin to activate cyclic AMP phosphodiesterase. In intact islets, pre-exposure to DHU impaired the insulin-secretory response to glucose and blocked the potentiatory effect on insulin secretion of forskolin, an activator of adenylate cyclase, and of tetradecanoylphorbol acetate (TPA), an activator of Ca2+-phospholipid-dependent protein kinase. The increase in islet cyclic AMP elicited by forskolin was not affected by DHU. The data are consistent with the hypothesis that protein phosphorylation catalysed by a Ca2+-calmodulin-dependent protein kinase may play a central role in the regulation of insulin secretion. 相似文献
10.
11.
K Sakai T Kobayashi T Komuro S Nakamura K Mizuta Y Sakanoue E Hashimoto H Yamamura 《Biochemistry international》1987,14(1):63-70
Phosphorylation of clupeine sulfate by purified rat brain calcium-activated, phospholipid-dependent protein kinase (protein kinase C) was studied. In the absence of Ca2+, phosphatidylserine and diolein markedly stimulated its phosphorylation. However Ca2+ did not stimulate but inhibit this phosphorylation about 30% in the presence of phospholipids. Random polymer (Arg, Ser) 3:1 and (Lys, Ser) 3:1 could be phosphorylated by protein kinase C. In the presence of phospholipids Ca2+ is not needed for the phosphorylation of polymer (Arg, Ser) 3:1, while Ca2+ is necessary for polymer (Lys, Ser) 3:1. Non-requirement of Ca2+ on clupeine phosphorylation by protein kinase C is briefly discussed. 相似文献
12.
Substrate specificity of rat brain calcium-activated and phospholipid-dependent protein kinase 总被引:3,自引:0,他引:3
K F Chan G L Stoner G A Hashim K P Huang 《Biochemical and biophysical research communications》1986,134(3):1358-1364
A synthetic peptide ArgThrProProProSerGly with sequence similar to the threonine sites of phosphorylation in both myelin basic protein and simian virus 40 T antigen could be phosphorylated in vitro by a purified rat brain Ca2+-activated and phospholipid-dependent protein kinase, protein kinase C. The apparent Km and Vm values of this heptapeptide for the enzyme were determined to be 240 microM and 60 nmol/min/mg, respectively. Up to 0.8 mol 32P could be incorporated into the peptide, mainly at the threonine residue. Substitution of the L-threonine residue in the heptapeptide by its D-enantiomer abolished the phosphorylatability of the peptide by protein kinase C. However, this (D)Thr-containing peptide could act as a competitive inhibitor for the kinase with an apparent Ki value of approximately 320 microM. These findings suggest that a triprolyl sequence may act as a recognition site for protein kinase C. 相似文献
13.
C. Lal Kapoor Gerald J. Chader 《Biochemical and biophysical research communications》1984,122(3):1397-1403
A calcium phospholipid-dependent protein kinase (C-kinase) activity was detected in the soluble fraction of rod outer segments (ROS) of the bovine retina. The enzyme required calcium, phosphatidylserine (PS) and diacylglycerol for maximal activity. In the presence of calcium and PS, C-kinase endogenously phosphorylated proteins with molecular weights of 95,000, 91,000, 31,000, 21,000, 19,000, 18,000, 16,000, 14,000 and 11,000. Addition of diolein in the reaction mixture further enhanced the endogenous phosphorylation of these proteins. Retinal was found to inhibit the phosphorylation of endogenous proteins by C-kinase in a concentration dependent manner. Half-maximal inhibition of enzyme activity was obtained at a retinal concentration of about 12μM. These results suggest that calcium, phospholipids and the C-kinase enzyme may play an important role in the functional regulation of rod photoreceptors and, with retinal, perhaps in the visual process as well. 相似文献
14.
Ca2+-activated, phospholipid-dependent protein kinase catalyzes the phosphorylation of actin-binding proteins 总被引:8,自引:0,他引:8
Chicken gizzard vinculin and filamin were found to be phosphorylated by Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C). These two actin-binding proteins serve as substrates for protein kinase C specifically in the free form, whereas they are little phosphorylated by protein kinase C in the presence of F-actin. In contrast, alpha-actinin from chicken gizzard is less susceptible to phosphorylation by protein kinase C, either in the presence or in the absence of F-actin. In light of these data, the possibility that Ca2+ and phospholipid-dependent phosphorylation by protein kinase C may modulate the function of actin-binding proteins has to be considered. 相似文献
15.
Protein kinase C (PKC)-dependent phosphorylation of endogenous substrates was measured in electrically permeabilised rat islets of Langerhans. The PKC-activating phorbol ester, 4 beta-phorbol myristate acetate (PMA), caused a slow but prolonged increase in insulin secretion from permeabilised islets, which was accompanied by increased 32P incorporation into several islet proteins of apparent M.W. 30-50 kDa. Depletion of islet PKC by prolonged exposure to PMA abolished subsequent secretory and phosphorylating responses to the phorbol ester. However, PKC-depleted islets did not show diminished responses to glucose, suggesting that PKC-mediated phosphorylation of these proteins is not essential for nutrient-induced insulin secretion. 相似文献
16.
Glucose-induced degradation of yeast fructose-1,6-bisphosphatase requires additional triggering events besides protein phosphorylation 总被引:2,自引:0,他引:2
Glucose addition to yeast cells stimulates a cAMP overshoot with concomitant activation of cAMP-dependent protein kinase, which in turn rapidly phosphorylates fructose-1,6-bisphosphatase. The phosphorylated enzyme subsequently undergoes a slow proteolytic breakdown. Also, it has been proposed that phosphorylation represents the mechanism that initiates proteolysis. Here we present experiments carried out on a yeast mutant defective in adenylate cyclase [(1982) Proc. Natl. Acad. Sci. USA 79, 2355-2359] in which extracellular cAMP triggers full enzyme phosphorylation but a scanty proteolysis, whereas glucose plus cAMP provoke both phosphorylation and complete proteolytic breakdown. Thus, besides a glucose-induced cAMP peak, which results in enzyme phosphorylation, other effects evoked by the sugar are indispensable for its proteolytic degradation. 相似文献
17.
Effects of a phorbol ester and clomiphene on protein phosphorylation and insulin secretion in rat pancreatic islets. 总被引:1,自引:2,他引:1 下载免费PDF全文
The potentiation of glucose-stimulated insulin release induced by 100 nM-12-O-tetradecanoylphorbol 13-acetate (TPA) was inhibited by clomiphene, an inhibitor of protein kinase C (PK C), in a dose-dependent manner. Clomiphene at concentrations up to 50 microM had a modest inhibitory action (27%) on insulin release stimulated by 10 mM-glucose alone, but had no effect on the potentiation of insulin release induced by forskolin. Islet PK C activity, associated with a particulate fraction, was stimulated maximally by 100 nM-TPA. This stimulation was blocked by clomiphene in a dose-dependent manner, with 50% inhibition at 30 microM. Incubation of intact islets with TPA after preincubation with [32P]Pi and 10 mM-glucose to label intracellular ATP resulted primarily in enhanced phosphorylation of a 37 kDa protein (mean value, +/- S.E.M., 36,700 +/- 600 Da; n = 7). This increased phosphorylation was blocked by the simultaneous inclusion of clomiphene. Subcellular fractionation revealed the presence of the 37 kDa phosphoprotein in a 24,000 g particulate fraction of islet homogenates. Neither clomiphene nor TPA affected the rate of glucose oxidation by islets. These results show that the phosphorylation state of a 37 kDa membrane protein parallels the modulation of insulin release induced by TPA and clomiphene and support a role for PK C in the insulin-secretory mechanism. 相似文献
18.
《Journal of Physiology》1998,92(1):31-35
Perifused rat pancreatic islets, prelabelled with 45Ca, were exposed for 90 min to a medium containing 30 mM K+, 0.25 mM diazoxide and 0.5 mM EGTA, but deprived of CaCl2. Either verapamil (0.05 mM) or Cd2+ (0.05 mM) were also present in the perifusate. Under these conditions a rise in D-glucose concentrations from either 2.8 to 16.7 mM or zero to 8.3 mM increased both 45Ca outflow and insulin release, after an initial and transient decrease in effluent radioactivity. These findings suggest that, in islets depolarised by exposure to a high extracellular concentration of K+, D-glucose provokes an intracellular redistribution of Ca2+ ions and subsequent stimulation of insulin release. The functional response to D-glucose is apparently not attributable to either the closing of ATP-sensitive K+ channels, which were actually activated by diazoxide, or stimulation of Ca2+ influx, which was prevented by the absence of extracellular Ca2+. The present experimental design thus reveals a novel component of the glucose-induced remodelling of Ca2+ fluxes in islet cells. Such an effect might also be operative under physiological conditions, when the hexose leads to depolarisation of the islet B-cells. 相似文献
19.
Treatment of human promyelocytic (HL60) cells with retinoic acid for at least 48 h causes differentiation to more mature myeloid forms. Prior to commitment of cells to the myeloid pathway there is a marked increase in cytosolic calcium-activated, phospholipid-dependent protein kinase activity. This increase does not result from an intracellular redistribution of the enzyme. Concomitant with the increased enzyme activity there is enhanced phospholipid-dependent phosphorylation of proteins of 29, 49, 52, 58, 68, 69, 120, 170, 200 and 245 kDa. 相似文献
20.
Autophosphorylation of rat brain Ca2+-activated and phospholipid-dependent protein kinase 总被引:11,自引:0,他引:11
K P Huang K F Chan T J Singh H Nakabayashi F L Huang 《The Journal of biological chemistry》1986,261(26):12134-12140
Ca2+-activated and phospholipid-dependent protein kinase (protein kinase C) isolated from rat brain cytosol undergoes autophosphorylation in the presence of Mg2+, ATP, Ca2+, phosphatidylserine, and diolein. Approximately 2-2.5 mol of phosphate were incorporated per mol of the kinase. After sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography, the phosphorylated kinase showed a single protein band of Mr = 82,000 compared to the Mr = 80,000 of the nonphosphorylated enzyme. Analysis of the 32P-labeled tryptic peptides derived from the autophosphorylated kinase by peptide mapping revealed that multiple sites were phosphorylated. Both serine and threonine residues were found to be labeled with 32P. Limited proteolysis of the autophosphorylated kinase with trypsin resulted in the conversion of the kinase into a phospholipid- and Ca2+-independent form. Two major 32P-labeled fragments, Mr = 48,000 and 38,000, were formed as a result of proteolysis, suggesting that the catalytic domain and possibly the Ca2+- and phospholipid-binding region were both phosphorylated. Protein kinase C autophosphorylation has a Km for ATP (1.5 microM) about 10-fold lower than that for phosphorylation of exogenous substrates. The kinetically preferred autophosphorylation appears to be an intramolecular reaction. The autophosphorylated protein kinase C, unlike the protease-degraded enzyme, still depends on Ca2+ and phospholipid for maximal activity. However, the autophosphorylated form of the kinase has a lower Ka for Ca2+ and a higher affinity for the binding of [3H]phorbol-12, 13-dibutyrate. These findings suggest that autophosphorylation of protein kinase C may be important in the regulation of the enzymic activity subsequent to signal transduction. 相似文献