首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I examined the intrinsic postzygotic incompatibilities between two pupfishes, Cyprinodon elegans and Cyprinodon variegatus. Laboratory hybridization experiments revealed evidence of strong postzygotic isolation. Male hybrids have very low fertility, and the survival of backcrosses into C. elegans was substantially reduced. In addition, several crosses produced female-biased sex ratios. Crosses involving C. elegans females and C. variegatus males produced only females, and in backcrosses involving hybrid females and C. elegans males, males made up approximately 25% of the offspring. All other crosses produced approximately 50% males. These sex ratios could be explained by genetic incompatibilities that occur, at least in part, on sex chromosomes. Thus, these results provide strong albeit indirect evidence that pupfish have XY chromosomal sex determination. The results of this study provide insight on the evolution of reproductive isolating mechanisms, particularly the role of Haldane's rule and the 'faster-male' theory in taxa lacking well-differentiated sex chromosomes.  相似文献   

2.
Background:Amenorrhea is defined as the absence of menstruation at the reproductive age of women. Amenorrhea caused by various etiological factors including genetic factors, intrauterine malformations, endocrine dysfunction, and environmental factors. Genetic factors particularly chromosomal abnormalities are the main cause of Amenorrhea. This study was performed to estimate the frequency and types of chromosomal abnormalities in patients with amenorrhea in the northeast of Iran.Methods:A total of 381 women with the history of amenorrhea participated in this study. Peripheral blood lymphocyte cultures were performed according to the standard GTG banding method.Results:296 (77%) of a total of all cases had a normal karyotype (46, XX) while 85 patients (23%) had abnormal karyotype. The numerical and structural abnormalities of X chromosome were observed in 52 (61%), the abnormalities of Y chromosome were observed in 23 (27.2%) and rearrangements between autosomal and/or sex chromosomes were observed in 10 (11.8%).Conclusion:The present study revealed that cytogenetic study is essential for early diagnosis and treatments of Amenorrhea.Key Words: Amenorrhea, Chromosomal Abnormalities, Cytogenetics  相似文献   

3.

BACKGROUND:

Primary amenorrhea is defined as the absence of menstruation and secondary sexual characteristics in phenotypic women aged 14 years or older. Hormonal disorders are main causes of primary amenorrhea. Common hormonal cause of primary amenorrhea includes pituitary dysfunction and absent ovarian function. The aim of this study was to estimate the incidence and types of chromosomal abnormalities in patients with primary amenorrhea in Egypt.

MATERIALS AND METHODS:

Chromosomal analysis and hormonal assay were carried out on 223 patients with primary amenorrhea that were referred from different parts of Egypt to Cytogenetic laboratory of Genetic Unit, Children Hospital Mansoura University, from July 2008 to December 2010. FISH technique was carried out in some of cases to more evaluation.

RESULTS:

The frequency of chromosomal abnormalities was 46 (20.63%) in primary amenorrhea patients. The chromosomal abnormalities can be classified into four main types. (1) The numerical abnormalities of the X chromosome were detected in 23 (50 %). (2) Structural abnormalities of the X chromosome were detected in 11 (23.91%). (3) Mosaicism of X chromosome was found in 10 (21.74%). (4) Male karyotype 46, XY was presented in 2 (4.35%).

CONCLUSION:

The present study showed that karyotype and FISH are necessary to detect the causes of primary amenorrhea. This study also revealed the incidence of chromosomal abnormalities in women with primary amenorrhea in Egypt is similar to that reported in previous literatures.  相似文献   

4.
The co-occurrence of two numerical chromosomal abnormalities in same individual (double aneuploidy) is relatively rare and its clinical presentations are variable depending on the predominating aneuploidy or a combination effect of both. Furthermore, double aneuploidy involving both autosomal and sex chromosomes is seldom described. In this study, we present three patients with double aneuploidy involving chromosome 21 and sex chromosomes. They all had the classical non disjunction trisomy 21; that was associated with monosomy X in two of them and double X in the other. Clinically, they had most of the phenotypic features of Down syndrome as well as variable features characteristic of Turner or Klinefelter syndrome. Cytogenetic studies and fluorescence in situ hybridization (FISH) analysis were carried out for all patients and their parents. The first patient was a male, mosaic with 2 cell lines (45,X/47,XY,+21) by regular banding techniques and had an affected sib with Down syndrome (47,XY,+21). The second was a female, mosaic (46,X,+21/47,XX,+21) where monosomy X was detected only by FISH in 15 percentages of cells, nevertheless, stigmata of Turner syndrome was more obvious in this patient. The third patient had non mosaic double trisomy; Down-Klinefelter (48,XXY,+21) presented with Down syndrome phenotype. Parental karyotypes and FISH studies for these patients were normal with no evidence of mosaicism. In this report, we review the variable clinical presentations among the few reported cases with the same aneuploidy in relation to ours. Also, the proposed mechanisms of double aneuploidy and the occurrence of non-disjunction in more than one family member are discussed. This study emphasizes the importance of molecular cytogenetics studies for more than one tissue in cases with atypical features of characteristic chromosomal aberration syndromes. To our knowledge, this is the first report of double aneuploidy, Down-Turner and Down-Klinefelter syndromes in Egyptian patients.  相似文献   

5.
Randomly cloned DNA fragments and a poly-(GATA) containing sequence were used as probes to identify sex chromosomal inheritance and to detect differences at the molecular level between the homomorphic X and Y in the phorid fly,Megaselia scalaris. Restriction fragment length differences between males and females and between two laboratory stocks of different geographic origin were used to differentiate between sex chromosomal and autosomal origin of the respective fragments. Five random probes detected X and Y chromosomal DNA loci and two others recognized autosomal DNA loci. One random probe and the poly(GATA) probe hybridized with both sex chromosomal and autosomal restriction fragments. Most of the Y chromosomal restriction fragments were conserved in length between the two stocks while most of the X chromosomal and autosomal fragments showed length polymorphism. It was concluded, therefore, that the Y chromosome contains a conserved segment in which crossover is suppressed and restriction site differences have accumulated relative to the X. These chromosomes, therefore, conform to a theoretically expected early stage of sex chromosome evolution.  相似文献   

6.
Summary Chromosomal abnormalities are an important cause of mental retardation. We studied the frequency of karyotype abnormalities in 74 mentally retarded patients selected from 306 patients referred to our clinic. Giemsa-banding was done on all cases. Additional studies in abnormal cases included autoradiography and X and Y chromatin. Karyotype analyses and blood group (Xg and Duffy) studies were carried out in family members in some cases.Fourteen of these children had chromosomal abnormalities, seven sex chromosomal, and seven had autosomal abnormalities. Three patients had 45,X and one had a 45,X/46,Xr(X) karyotype. Other sex chromosomal abnormalities were 46,XX/ 48,XXXX;48,XXXY/49,XXXXY; and 48,XXYY. Autosomal abnormalities were 46,XX,1q-;46,XY,2q-;46,XY,5p-;46,XY, dup(5p); 45,XX,t(13,14); and 46,XY,17p-. This is the first report from India of cytogenetic abnormalities in idiopathic mental retardation. The chromosomal studies in these patients help not only in accurate diagnosis, proper prognosis, and genetic counseling but also in gene localization and in the study of the origin of X-chromosome abnormalities.  相似文献   

7.
A male-specific amplified fragment length polymorphism (AFLP) marker was identified in the functionally dioecious fig species, Ficus fulva. A total of 89 polymorphic fragments from three primer combinations were produced, of which one (246 bp) was present in all males (n=23) and absent in all females (n=24) of two populations. This strong association suggests a tight chromosomal linkage between the AFLP marker and the sex-controlling locus. Further analysis indicated that the marker segregated in open-pollinated progenies from natural populations in a 1:1 ratio (n=156), implying that males are the heterogametic sex. Chromosome preparations showed no evidence for morphologically distinct sex chromosomes. The low frequencies of associated markers argue against a morphologically cryptic non-recombining sex chromosome. The sex-locus is therefore likely to be autosomal. The male-specific AFLP marker was sequenced and converted into a sequence characterised amplified region (SCAR) marker. This SCAR marker produced a fragment of equal size in males and females, suggesting that sequence divergence between male- and female-specific chromosomal regions is low.Publication 3311 NIOO-KNAW Netherlands Institute of Ecology  相似文献   

8.
Summary The data of the chromosome abnormalities in 15 colorectal tumors are presented. Rearrangements of the short arm of chromosome 17, leading to deletions of this arm or its part were noted in 12 tumors; in 2 other cases, one of the homologs of pair 17 was lost. The losses of at least one homolog of other chromosomal pairs were also found: chromosome 18, in 12 out of 13 cases with fully identified numerical abnormalities; chromosome 5, in 6 tumors; chromosome 21, in 5 cases; chromosomes 4, 15, and 22, in 4 cases each. Additional homologs of pair 20 were observed in 6 tumors, extra 8q was found in 5 tumors, and extra 13q in 6 cases. Rearrangements of the short arm of chromosome 1 and the long arm of chromosome 11 characterized 6 tumors each. The data recorded in our series differ from the data of other authors in two respects: the high incidence of the loss of sex chromosomes and the rearrangements of the long arm of chromosome 9. X chromosomes were missing in 4 out of 7 tumors in females, and Y chromosomes were absent in 5 out of 8 tumors in males. The long arm of chromosome 9 was rearranged in 8 cases, in 5 of them the breakpoint being at 9q22. Cytological manifestations of gene amplification (double minutes or multiple microchromosomes) were noted in 6 tumors.  相似文献   

9.
Male infertility is the cause in half of all childless partnerships. Numerous factors contribute to male infertility, including chromosomal aberrations and gene defects. Few data exist regarding the association of these chromosomal aberrations with male infertility in Arab and North African populations. We therefore aimed to evaluate the frequency of chromosomal aberrations in a sample of 476 infertile men with non-obstructive azoospermia (n = 328) or severe oligozoospermia (n = 148) referred for routine cytogenetic analysis to the department of cytogenetics of the Pasteur Institute of Tunis. The overall incidence of chromosomal abnormalities was about 10.9%. Out of the 52 patients with abnormal cytogenetic findings, sex chromosome abnormalities were observed in 42 (80.7%) including Klinefelter syndrome in 37 (71%). Structural chromosome abnormalities involving autosomes (19.2%) and sex chromosomes were detected in 11 infertile men. Abnormal findings were more prevalent in the azoospermia group (14.02%) than in the severe oligozoospermia group (4.05%). The high frequency of chromosomal alterations in our series highlights the need for efficient genetic testing in infertile men, as results may help to determine the prognosis, as well as the choice of an assisted reproduction technique. Moreover, a genetic investigation could minimize the risk of transmitting genetic abnormalities to future generations.  相似文献   

10.
A significant difference (P less than 0.05) was observed in a chi 2 comparison of DD, GG and DG-DI associations between male hypogonads and females with primary amenorrhea. This difference increased still further (P less than 0.01) when only DD and GG associations were compared between males and females with abnormal sexual development (ASD). Similarly, when normal males and females were compared for DI, TRI, TETRA, DD vs GG and DG vs GG acrocentric chromosome associations, a significant difference (P less than 0.05) was again observed. The sex difference was also apparent in TRI and TETRA acrocentric associations both in abnormal and normal sexual development males and females. These results suggested that probably sex difference (may be hormonal) influences the number and/or type of acrocentric chromosomes involved in association between males and females with ASD and also between normal males and females.  相似文献   

11.
Numerical chromosomal imbalances are a common feature of spontaneous abortions. However, the incidence of mosaic forms of chromosomal abnormalities has not been evaluated. We have applied interphase multicolor fluorescence in situ hybridization using original DNA probes for chromosomes 1, 9, 13, 14, 15, 16, 18, 21, 22, X, and Y to study chromosomal abnormalities in 148 specimens of spontaneous abortions. We have detected chromosomal abnormalities in 89/148 (60.1%) of specimens. Among them, aneuploidy was detected in 74 samples (83.1%). In the remaining samples, polyploidy was detected. The mosaic forms of chromosome abnormality, including autosomal and sex chromosomal aneuploidies and polyploidy (31 and 12 cases, respectively), were observed in 43/89 (48.3%) of specimens. The most frequent mosaic form of aneuploidy was related to chromosome X (19 cases). The frequency of mosaic forms of chromosomal abnormalities in samples with male chromosomal complement was 50% (16/32 chromosomally abnormal), and in samples with female chromosomal complement, it was 47.4% (27/57 chromosomally abnormal). The present study demonstrates that the postzygotic or mitotic errors leading to chromosomal mosaicism in spontaneous abortions are more frequent than previously suspected. Chromosomal mosaicism may contribute significantly to both pregnancy complications and spontaneous fetal loss.  相似文献   

12.
The cytogenetic study of 182 river buffalo (Bubalus bubalis L., 2n = 50) of Murrah, Mediterranean and Jaffarabadi breeds, from the State of S?o Paulo, was carried out to characterize their chromosomes and to detect possible chromosomal abnormalities. The karyotypes were indistinguishable with conventional staining as well as with C and replication R banding techniques. In about 44% of the sample (8 males and 72 females), an X marker chromosome due to a fragile site was shown. The frequency of metaphases expressing the fragility site on the X was highly variable, from 2.86 to 41.03%. In females, the fragile site, rarely appeared on both X chromosomes. Most of the metaphases showed only 1 marker chromosome. In R-banded metaphases using 5-bromodeoxyuridine (BrdU) treatment, it corresponded in general to the late replicating X chromosome. No correlation between the X fragile site and altered phenotype was found. Structural and numerical chromosome rearrangements were ruled out in the present sample of buffalo.  相似文献   

13.
The co-occurrence of two numerical chromosomal abnormalities in same individual (double aneuploidy) is relatively rare and the clinical presentations are variable depending on the predominating aneuploidy or a combination effect of both. Furthermore, double aneuploidy involving both autosomal and sex chromosomes is seldom described. We describe a male patient with typical clinical features of Down Syndrome and his karyotype revealed 48,XXY,+21. The phenotypic characteristics of this child have been discussed in the light of the published reports on double aneuploidies of XXY and trisomy 21.  相似文献   

14.
Keith L. Moore  Jean C. Hay 《CMAJ》1963,88(21):1071-1079
This presentation is designed to show the diagnostic implications of chromosomal abnormalities, and how in some cases chromosome analysis may be helpful in prognosis and counselling. Most males with Klinefelter''s syndrome have chromatinpositive nuclei and an abnormal sex chromosome complex (usually XXY). In Turner''s syndrome many such females have chromatin-negative nuclei and a deficient sex chromosome complex (usually XO). Multiple-X females have unusual chromatin patterns (two or three masses of sex chromatin) and abnormal sex chromosome complexes (XXX, XXXX, XO/XXX, etc.). One of the parents of a translocation mongol may carry a translocation chromosome and pass it to future children. Cytogenetic data are therefore essential for genetic counselling. Mosaic and deletion mongols may show incomplete manifestations of mongolism, which make diagnosis difficult; chromosome analysis is helpful in diagnosis, and in prognosis concerning mental development. Abnormal chromosome numbers result from non-disjunction, usually during gametogenesis. The error may occur, however, during cleavage, producing cells with different chromosome complements (mosaicism). Visible structural abnormalities of chromosomes result from deletions or translocations of chromosome fragments.  相似文献   

15.
V G Martins  A Mesa 《Génome》1995,38(5):958-967
Meiosis and (or) mitosis of males and females of Cryptotermes brevis, Eucryptotermes wheeleri, and Neotermes fulvescens, all of them from the neotropical region, were analyzed. Cryptotermes brevis showed a similar karyotype to that obtained by other authors for specimens of the neartic and Australian regions (2n = 36 for females and 2n = 37 for males, with XX and XYY sex mechanisms, respectively). Eucryptotermes wheeleri, the only species that has been described in this genus, showed the lowest number of chromosomes reported for Isoptera (2n = 22) until now. The male meiosis of this species presents a linear chain of six sex chromosomes, three of them being X and three of them Y chromosomes. Neotermes fulvescens showed a diploid number of 40 for males and 42 for females and, in the first male meiosis, two linear chains of chromosomes, both related to sex. One of the chains, named A, presented nine chromosomes and the other, named B, seven chromosomes. Hypotheses to explain these mechanisms are formulated in this paper and putative ancestral relationships with other species of Kalotermitidae are presented.  相似文献   

16.
Chromosome studies on 14 specimens of Deltamys kempi disclosed six males with 2n = 37, NF = 38, six females with 2n = 38, NF = 38, and two females with 2n = 37, NF = 38. G- and C-band analyses revealed a Y-autosome translocation in the males leading to a multiple chromosome system of sex determination of the type X1X1X2X2/X1X2Y, this being the second case of such a mechanism described in rodents. At meiosis the males presented a trivalent in which C-banding studies showed an alternate orientation of the sex chromosomes due to end-to-end association of the X1 and Y chromosomes, the Y and the X2 being held together by interstitial chiasmata. At metaphase II both n = 17 + Y and n = 18 + X1 are regularly observed. The two females with 2n = 37, NF = 38, are heterozygous for an autosomal centric fusion involving chromosomes 1 and 13. The product of the Y-autosome translocation constitutes the largest element of the karyotype (9.4% of the haploid set); the X1 chromosome amounts to 7.8% of this set, including a large heterochromatic block. When only its euchromatic region is considered, this percentage decreases to 4.6%. From two to seven NORs were observed at the telomeres, with a mean of 4.4 +/- 1.1 per cell.  相似文献   

17.
The female chromosome complement of the thelytokous stick insect Carausius morosus Br. consists of three metacentric sex chromosomes, four metacentric and 57 acrocentric autosomes. The rare impaternate males have two sex chromosomes. The spermatogenesis is highly aberrant which is evident from the various numbers of univalents, homomorphic and unequal bivalents, and multivalents during first metaphase, and from abnormal segregation patterns during first and second anaphase. The abnormalities are due to aneuploidy and structural heterozygosity. The heterozygosity is maintained by the endomeiotic chromosome duplication in females. Translocations resulting from chiasmata in unequal associations are not formed during female meiosis. It has been discussed that the heterozygosity in males, and consequently in females, is caused by either chromosomal mutations, as indicated by at least ten interchanges and three inversions, or hybridization, indicated by allotriploidy.  相似文献   

18.
Nuclear DNA contents were estimated by microdensitometry in five species of Akodon rodents: Arodon molinae, A. dolores, A. mollis, A. azarae, Bolomys obscurus) and in three chromosomal varieties of A. molinae (2n = 42; 2n = 43, 2n = 22). The data obtained showed that the species with the highest DNA content was B. obscurus, followed in order of decreasing genome size by A. molinae, A. mollis, A. dolores and A. azarae. In A. molinae the forms with 2n = 42 chromosomes had the lowest and the forms with 2n = 44 the highest amount of DNA, while the forms with 2n = 43 had intermediate DNA contents. The variation in DNA amount detected in A. molinae was interpreted as a phenomenon of amplification occurring in the chromosomal areas involved in the chromosomal rearrangement giving rise to the polymorphism exhibited by this species. The DNA contents of shared chromosomes (chromosomes with similar size, morphology and G banding pattern, which are found in two or more phylogenetically related species), were compared and correlated with values of total nuclear DNA. The information obtained indicates that: (a) shared chromosomes have variable amounts of DNA: (b) in a given species there is a correlation between the amount of nuclear and chromosomal DNA in most shared chromosomes (and perhaps in most of the chromosomal complement), e.g., the higher the amount of nuclear DNA, the higher the content of DNA in shared chromosomes; (c) some chromosomes may undergo processes of amplification or deletion restricted to certain regions and usually related with mechanisms of chromosomal rearrangements.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The canonical model of sex‐chromosome evolution assigns a key role to sexually antagonistic (SA) genes on the arrest of recombination and ensuing degeneration of Y chromosomes. This assumption cannot be tested in organisms with highly differentiated sex chromosomes, such as mammals or birds, owing to the lack of polymorphism. Fixation of SA alleles, furthermore, might be the consequence rather than the cause of recombination arrest. Here we focus on a population of common frogs (Rana temporaria) where XY males with genetically differentiated Y chromosomes (nonrecombinant Y haplotypes) coexist with both XY° males with proto‐Y chromosomes (only differentiated from X chromosomes in the immediate vicinity of the candidate sex‐determining locus Dmrt1) and XX males with undifferentiated sex chromosomes (genetically identical to XX females). Our study finds no effect of sex‐chromosome differentiation on male phenotype, mating success or fathering success. Our conclusions rejoin genomic studies that found no differences in gene expression between XY, XY° and XX males. Sexual dimorphism in common frogs might result more from the differential expression of autosomal genes than from sex‐linked SA genes. Among‐male variance in sex‐chromosome differentiation seems better explained by a polymorphism in the penetrance of alleles at the sex locus, resulting in variable levels of sex reversal (and thus of X‐Y recombination in XY females), independent of sex‐linked SA genes.  相似文献   

20.
The SRY gene on the Y chromosome is the testis determining factor (TDF). It is therefore the initial male determining factor. However, phenotypic sex determination includes a cascade of genes located on autosomes as well as sex chromosomes. Aberrations of these genes may cause sexual maldevelopment or sex reversal. Abnormalities may include single gene mutations and gene loss or gain-changes may involve only sex organs or may be part of syndromes. These changes may also arise as chromosome abnormalities involving contiguous genes. Eight cases with chromosomal abnormalities involving different causative mechanisms are described herein. The most common cause is nondisjunction, including loss or gain of sex chromosomes. Less common causes are mispairing and crossing over in meiosis, chromosome breaks with repair, nonhomologous pairing due to low copy repeats and crossing over, and translocation (familial or de novo) with segregation. Cases include: [see: text].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号