首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ruthenium red, an inhibitor of Ca2+ binding and transport by mitochondria, promotes the release of Ca2+ by mitochondria only if it is added to the assay medium before the accumulation of Ca2+ has been completed. Once essentially all of the Ca2+ in the medium is taken up by mitochondria, ruthenium red does not induce its release. It is proposed that ruthenium red inhibits Ca2+ transport by competing with Ca2+ for Ca2+ binding sites, possibly Ca2+ carrier molecules, on or within the inner mitochondrial membrane.  相似文献   

2.
Ruthenium red, a powerful inhibitor of Ca2+ transport by mitochondria, does not inhibit the active Ca2+ uptake by sarcoplasmic reticulum isolated from rabbit skeletal muscle promoted by 5 mM ATP-Mg in the presence or absence of potassium oxalate. Although concentrations of ruthenium red up to 100 μM do not affect the active uptake of Ca2+, 25 μM of the inorganic dye inhibit the passive binding of Ca2+ by about 50%. This inhibitory effect is observed in sarcoplasmic reticulum even after its lipid fraction is extracted with acetone.Although active Ca2+ uptake by sarcoplasmic reticulum is not inhibited by ruthenium red, in the absence of oxalate it inhibits significantly the Ca2+-dependent ATPase activity but not the Mg2+-ATPase. However, if potassium oxalate is present, the Ca2+-stimulated ATPase is not sensitive to the dye. It is not clear how oxalate functions to protect the Ca2+-ATPase against the inhibitor effect of ruthenium red.The high sensitivity to ruthenium red of the Ca2+ transport mechanism in mitochondria as compared to the Ca2+ transport in sarcoplasmic reticulum may be useful in determining the extent to which each organelle functions in the cell to regulate intracellular free Ca2+.  相似文献   

3.
Under high Ca2+ load conditions, Ca2+ concentrations in the extra-mitochondrial and mitochondrial compartments do not display reciprocal dynamics. This is due to a paradoxical increase in the mitochondrial Ca2+ buffering power as the Ca2+ load increases. Here we develop and characterize a mechanism of the mitochondrial Ca2+ sequestration system using an experimental data set from isolated guinea pig cardiac mitochondria. The proposed mechanism elucidates this phenomenon and others in a mathematical framework and is integrated into a previously corroborated model of oxidative phosphorylation including the Na+/Ca2+ cycle. The integrated model reproduces the Ca2+ dynamics observed in both compartments of the isolated mitochondria respiring on pyruvate after a bolus of CaCl2 followed by ruthenium red and a bolus of NaCl. The model reveals why changes in mitochondrial Ca2+ concentration of Ca2+ loaded mitochondria appear significantly mitigated relative to the corresponding extra-mitochondrial Ca2+ concentration changes after Ca2+ efflux is initiated. The integrated model was corroborated by simulating the set-point phenomenon. The computational results support the conclusion that the Ca2+ sequestration system is composed of at least two classes of Ca2+ buffers. The first class represents prototypical Ca2+ buffering, and the second class encompasses the complex binding events associated with the formation of amorphous calcium phosphate. With the Ca2+ sequestration system in mitochondria more precisely defined, computer simulations can aid in the development of innovative therapeutics aimed at addressing the myriad of complications that arise due to mitochondrial Ca2+ overload.  相似文献   

4.
Bongkrekic acid and atractyloside, inhibitors of adenine nucleotide translocase, do not inhibit Ca2+ uptake and H+ production by pig heart mitochondria. However, bongkrekic acid, but not atractyloside, inhibits dinitrophenol-induced Ca2+ efflux and H+ uptake. Conversely, ruthenium red blocks Ca2+ uptake and H+ production but does not prevent dinitrophenol-induced Ca2+ efflux and H+ uptake by mitochondria. These results suggest that mitochondrial Ca2+ uptake and release exist as two independent pathways. The efflux of Ca2+ from mitochondria is mediated by a bongkrekic acid sensitive component which is apparently not identical to the ruthenium red sensitive Ca2+ uptake carrier.  相似文献   

5.
The effects of low temperature on uptake and release of 45Ca2+ were studied with sound, well-coupled mitochondria extracted at room temperature from avocado (Persea americana Mill, cv Fuerte) fruits. Low Ca2+ concentrations (10 micromolar) were employed to simulate physiological conditions. At 25°C, the rate of Ca2+ uptake decreased with time, whereas at 5°C the initial rate, though lower, remained linear. As a consequence total uptake at 5°C was substantially greater than at 25°C for periods greater than 5 min. Preincubation of mitochondria at 5°C enhanced subsequent Ca2+ uptake at 25°C. Ca2+ uptake was inhibited by carbonyl cyanide-m-chlorophenyl hydrazone (CCCP) and by ruthenium red, but neither KCN nor salicylhydroxamic acid separately or together had any major inhibitory effect. Preloaded mitochondria held for 60 min in a Ca-free medium lost little Ca2+ at 25°C and none at 5°C, except in the presence of ruthenium red or CCCP.  相似文献   

6.
The effect of the most hydrophobic bile acid–lithocholic–as an inducer of two different Ca2+-dependent inner membrane permeability systems was studied on isolated rat liver mitochondria. It is shown that the addition of lithocholic acid at a concentration of 20 μM to the Ca2+-loaded mitochondria leads to swelling of the organelles, rapid release of Ca2+ from the matrix and almost complete collapse of Δψ. Mitochondrial pore blocker cyclosporin A (CsA) eliminates mitochondrial swelling but has no effect on the process of Ca2+ release and Δψ collapse. In the absence of Ca2+ lithocholic acid causes only a transient decrease of Δψ with subsequent complete recovery. Ruthenium red, inhibitor of mitochondrial Ca2+ uniporter, which blocks Ca2+ influx into the matrix, prevents mitochondrial swelling induced by lithocholic acid. At the same time, ruthenium red, which is added before lithocholic acid to the Ca2+-preloaded mitochondria, does not affect the swelling of the organelles but reduces the CsA-insensitive drop in Δψ. It is concluded that lithocholic acid is able to induce two Ca2+-dependent energy dissipation systems in the inner membrane of liver mitochondria: CsA-sensitive mitochondrial pore and CsA-insensitive permeability, which exhibits sensitivity to ruthenium red. It is found that the effect of this bile acid as an inductor of CsA-sensitive mitochondrial pore is not associated with the modulation of Pi effects. It is assumed that CsA-insensitive action of lithocholic acid is associated with the induction of Ca2+ efflux from the matrix in exchange for protons. In this case, the energy-dependent Ca2+ transport in the opposite direction with the participation of mitochondrial calcium uniporter sensitive to ruthenium red leads to the formation of calcium cycle and thereby to energy dissipation.  相似文献   

7.
Ruthenium red induces the loss of endogenous K+ from isolated beef heart mitochondria treated with an uncoupler. This induction of K+ loss occurs at the same ruthenium red titer as the inhibition of the Ca2+-uniporter. This raises the possibility that ruthenium red may alter the Ca2+-uniporter in such a way as to produce a K+-conducting channel.  相似文献   

8.
Despite extensive research, the regulation of mitochondrial function is still not understood completely. Ample evidence shows that cytosolic Ca2+ has a strategic task in co-ordinating the cellular work load and the regeneration of ATP by mitochondria. Currently, the paradigmatic view is that Cacyt2+ taken up by the Ca2+ uniporter activates the matrix enzymes pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and isocitrate dehydrogenase. However, we have recently found that Ca2+ regulates the glutamate-dependent state 3 respiration by the supply of glutamate to mitochondria via aralar, a mitochondrial glutamate/aspartate carrier. Since this activation is not affected by ruthenium red, glutamate transport into mitochondria is controlled exclusively by extramitochondrial Ca2+. Therefore, this discovery shows that besides intramitochondrial also extramitochondrial Ca2+ regulates oxidative phosphorylation. This new mechanism acts as a mitochondrial “gas pedal”, supplying the OXPHOS with substrate on demand. These results are in line with recent findings of Satrustegui and Palmieri showing that aralar as part of the malate–aspartate shuttle is involved in the Ca2+-dependent transport of reducing hydrogen equivalents (from NADH) into mitochondria. This review summarises results and evidence as well as hypothetical interpretations of data supporting the view that at the surface of mitochondria different regulatory Ca2+-binding sites exist and can contribute to cellular energy homeostasis. Moreover, on the basis of our own data, we propose that these surface Ca2+-binding sites may act as targets for neurotoxic proteins such as mutated huntingtin and others. The binding of these proteins to Ca2+-binding sites can impair the regulation by Ca2+, causing energetic depression and neurodegeneration.  相似文献   

9.
The rate of ruthenium-red-induced Ca2+ efflux depends on the time that the calcium interacts with the mitochondria prior to the addition of the inhibitor. This time-dependency is abolished in the presence of nupercaine; it does not occur in the case of Sr2+ efflux from mitochondria in which the endogenous Ca2+ has been substituted by strontium (strontium-treated mitochondria, STM). Ruthenium red inhibits the respiratory-inhibitor- or uncoupler-induced Sr2+ efflux from STM, but not the Ca2+ efilux from standard mitochondria. The influence of the calcium-induced mitochondrial damage upon the effect of ruthenium red is discussed.  相似文献   

10.
The hydroperoxide-induced net release of Ca2+ from rat liver mitochondria is stimulated by the Ca2+ uptake inhibitor ruthenium red. At moderate Ca2+ loads the release takes place with preservation of a high mitochondrial membrane potential. During and after Ca2+ release mitochondria remain intact. The hydroperoxide-induced release of Ca2+ might therefore be a physiological relevance.  相似文献   

11.
Parallel measurements of Ca2+ uptake, oxygen consumption, endogenous Mg2+ efflux, and swelling in rotenone-poisoned rat liver and rat heart mitochondria showed that heart mitochondria is much more resistant to uncoupling by Ca2+ in the presence of phosphate than rat liver mitochondria. The extent of Mg2+ efflux and swelling induced by Ca2+ accumulation are much less pronounced in heart mitochondria. Uncoupling and swelling in liver mitochondria seem to result from the loss of membrane-bound Mg2+ as a consequence of Ca2+ recycling across the membrane as induced by phosphate. Exogenous Mg2+ protects liver mitochondria against the deleterious effects of Ca2+ by inhibiting a ruthenium red-insensitive Ca2+ efflux induced by phosphate. Phosphate does not induce recycling of Ca2+ in heart mitochondria. On the other hand, heart mitochondria respiring on NAD-linked substrates or with succinate in the absence of rotenone behave like liver mitochondria with respect to the alterations caused by Ca2+ recycling. In heart mitochondria the recycling of Ca2+ is related to the redox state of pyridine nucleotides, which suggests that the ruthenium red-insensitive efflux of Ca2+ is subject to metabolic control. In addition it has been observed that Sr2+does not undergo cyclic movements across the membrane. The data indicate that the efflux pathway is more specific for Ca2+ than the ruthenium red-sensitive influx transporter.  相似文献   

12.
The effect of citrinin on Ca2+ transport was studied in isolated kidney cortex and liver mitochondria, and baby hamster kidney cultured cells. The mycotoxin significantly inhibited the activity of 2-oxoglutarate and pyruvate dehydrogenases in both kidney cortex and liver mitochondria. Citrinin promoted a decrease in the velocity and in the total capacity of Ca2+ uptake, in both mitochondria. Apparently, citrinin acts by a mechanism similar to ruthenium red. In intact cultured cells, citrinin also had a preferential effect on mitochondrial Ca2+ fluxes. Citrinin promoted a marked decrease in the Ca2+ level in the mitochondrial matrix, whereas that of the extramitochondiral fraction became less affected. All the observed effects were dependent on the citrinin concentration.  相似文献   

13.
The effects of ruthenium red, lanthanum, fluorescein isothiocyanate and trifluoperazine, all antagonists of Ca2+ function in cells, have been studied in growing pollen tubes of Tradescantia virginiana. All four drugs inhibit pollen-tube growth but bring about different ultrastructural changes at the growing tips and within the cytoplasm. The results strongly support the hypothesis that Ca2+ plays a vital role in the mechanism of pollen-tube tip growth. The effect of ruthenium red provides evidence that sequestration of Ca2+ by mitochondria critically adjusts the concentration of these ions at tube tips. Fluorescein isothiocyanate appears to be a potent inhibitor of vesicle fusion at the plasma membrane, with vesicles accumulating in the tip at rates equivalent to those determined previously for their production. Both vesicle fusion and tip extension are regulated by Ca2+ but appear to be independently controlled processes.  相似文献   

14.
Ruthenium red increased specific insulin binding to isolated adipocytes 5.4 fold and 2.6 fold over binding determined in the absence and presence of Ca2+ and Mg2+. The increase in insulin binding was not accompanied by an increase in insulin sensitivity. The lack of effect of ruthenium red on insulin action argued strongly against an increase in intracellular Ca2+ as a potential messenger/transducer of insulin action and suggested that the enhancing effect of Ca2+ on insulin action was a result of increased receptor affinity.Abbreviations RR ruthenium red - BSA bovine serum albumin - Hepes 4-(2-hydroxyethyl-1-piperazineethane-sulphonic acid  相似文献   

15.
《BBA》2023,1864(2):148956
The crystal structure of bovine cytochrome c oxidase (CcO) shows a sodium ion (Na+) bound to the surface of subunit I. Changes in the absorption spectrum of heme a caused by calcium ions (Ca2+) are detected as small red shifts, and inhibition of enzymatic activity under low turnover conditions is observed by addition of Ca2+ in a competitive manner with Na+. In this study, we determined the crystal structure of Ca2+-bound bovine CcO in the oxidized and reduced states at 1.7 Å resolution. Although Ca2+ and Na+ bound to the same site of oxidized and reduced CcO, they led to different coordination geometries. Replacement of Na+ with Ca2+ caused a small structural change in the loop segments near the heme a propionate and formyl groups, resulting in spectral changes in heme a. Redox-coupled structural changes observed in the Ca2+-bound form were the same as those previously observed in the Na+-bound form, suggesting that binding of Ca2+ does not severely affect enzymatic function, which depends on these structural changes. The relation between the Ca2+ binding and the inhibitory effect during slow turnover, as well as the possible role of bound Ca2+ are discussed.  相似文献   

16.
Ca 2+ transport activity in mitochondria from some plant tissues   总被引:8,自引:0,他引:8  
Mitochondria isolated from some 14 different higher plants and fungi were examined for their capacity to carry out respiration-dependent accumulation of Ca2+. Additions of Ca2+ give little or no stimulation of state 4 respiration of plant mitochondria, although the added Ca2+ was largely accumulated. Accumulation of Ca2+ required phosphate and, in most cases, was stimulated by Mg2+ and ADP or ATP. Ca2+ uptake was abolished by respiratory inhibitors and uncoupling agents. The ratio of Ca2+ ions taken up per pair of electrons per energy-conserving site was normal at about 2.0 for mitochondria from sweet potato and white potato; mitochondria from other plants showed somewhat lower ratios. Accumulated Ca2+ was only very slowly released from previously loaded plant mitochondria. Respiration-inhibited sweet potato mitochondria show both high-affinity and low-affinity Ca2+ binding sites sensitive to uncouplers, La3+, and ruthenium red and thus resemble animal mitochondria. Most other plant mitochondria lack high affinity sites. In general, mitochondria from sweet potato and white potato tubers resemble those from animal tissues, but mitochondria from carrots, beets, turnips, onions, cabbage, artichokes, cauliflower, avocados, mung bean and corn seedlings, and mushrooms show rather low affinity and activity in accumulation of Ca2+, probably due to lack of a specific Ca2+ carrier.  相似文献   

17.
18.
A transient Ca2+ release from preloaded mitochondria can be induced by a sudden decrease in the pH of the outer medium from 8.0 or 7.4 to 6.8. In the presence of inorganic phosphate the released Ca2+ is not taken up again. Upon Ca2+ addition to respiring mitochondria the mitochondrial membrane potential (Δ♀) decreases to a new resting level. A further decrease in Δ♀ occurs after the decrease in pH from 7.4 to 6.8, concomitant with the reuptake phase of the Ca2+ release. Phosphate, EGTA, and ruthenium red restore Δ♀ to its initial level. If phosphate is present initially, only transient changes in Δ♀ occur upon addition of Ca2+ or H+ ions. Only a small transient change in Δ♀ upon H+ ion addition is seen in the absence of accumulated Ca2+. La3+, a competitive inhibitor of Ca2+ transport, prevents the H+ ion-induced Ca2+ efflux, whereas this is not the case in the presence of the noncompetitive inhibitor ruthenium red. Ruthenium red, however, prevents the reuptake phase. Mg2+, an inhibitor of the surface binding of Ca2+, has no or only a slight effect on the H+ ion-induced Ca2+ release. Mitochondria preloaded with Ca2+ release a small fraction of Ca2+ during the subsequent uptake of another pulse of Ca2+. The results indicate that at least one pool of mitochondrial Ca2+ exists in a mobile state. The possible existence of a H+Ca2+ exchanger in the mitochondrial membrane is discussed.  相似文献   

19.
Isolated, intact rat liver mitochondria, without extraneous substrates but loaded with Ca2+ (20 nmol/mg), can be observed to release Ca2+ when treated with ruthenium red. Such release can be inhibited by 0.33 mM dlisocitrate but not by 10 mM dl-β-hydroxybutyrate. Assays of NADP+, NADPH, NAD+, and NADH revealed that only the reduction of NADP+ can be linked with such inhibition of Ca2+ release, not that of NAD+. Since ruthenium redinsensitive Ca2+ release is a physiological (but normally masked) process, this experimental approach avoids some potential problems ascribed to strong pyridine nucleotide oxidation. It is suggested that specific NADP+:NADPH dependent reactions are part of a physiological mechanism regulating Ca2+ release/retention.  相似文献   

20.
《Insect Biochemistry》1988,18(4):359-362
The effect of taurine has been studied on 45Ca2+ efflux from mitochondria obtained from the flight muscle and thoracic ganglia of the desert locust. Mitochondria from both tissues readily accumulated 45Ca2+ and this uptake was stimulated by the presence of phosphate 45Ca2+ accumulation was abolished by ruthenium red (5 μ M). Only in the presence of 10 mM Na+ and either ruthenium red (5 μ M) or EGTA (500 μ M), was an efflux of 45Ca2+ observed. Taurine (20 mM) abolished the Na+-dependent 45Ca2+ efflux but had no effect in the absence of Na+. These results suggest that taurine may contribute to the control of the concentration of intracellular free calcium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号