首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of flooding on leaf litter decomposition in microcosms   总被引:3,自引:0,他引:3  
Frank P. Day Jr. 《Oecologia》1983,56(2-3):180-184
Summary The effects of hydroperiod on decomposition rates of senescent Acer rubrum leaves were tested in microcosms in a controlled laboratory environment. Microcosm treatments included continuously flooded, continuously unflooded, and fluctuating hydroperiods. All flooding treatments promoted decomposition but variations in hydroperiod had no significant effects. A leaching experiment indicated the higher decay rates under flooded conditions were primarily due to high leaching losses from soaking. Unlike nutrient dynamics in the field, where net accumulation occurs, nitrogen and phosphorus in the litter in the microcosms exhibited net losses. The major external inputs which provide a source of nitrogen and phosphorus for immobilization in the field were lacking in the microcosms. Calcium, magnesium, and potassium exhibited net losses except for calcium in the unflooded microcosms. The microcosm results demonstrated the importance of external inputs to litter nutrient relations.  相似文献   

2.
A simple model of the decomposition and nitrogen mineralization of plant material from two unfertilized grassland ecosystems has been developed, with only the proportion of leaves and stems in the original material, the initial nitrogen contents of these plant parts and temperature as input data. The model simulates carbon losses from stems and leaves, using a double exponential decay function, with the temperature sum as independent variable. Mineralization of nitrogen is not calculated via microbial growth rates, but simulated on the basis of the carbon utilization efficiency of the microorganisms and the critical C/N ratio, i.e. the C/N ratio of the litter at which the microbial demand for nitrogen is met exactly. The parameter values for leaching fractions of carbon and nitrogen, relative decay rates, microbial carbon utilization efficiencies and critical C/N ratios were derived from a litter bag experiment with 12 litter types (species) including both green and dead materials, carried out in two unfertilized grassland ecosystems differing in production level. The model was evaluated using a cross-validation method, in which one species was omitted from the parametrization procedure, and its decomposition and mineralization were predicted by the resulting model. In general there was good agreement between the observed and predicted amounts of carbon and nitrogen remaining for all green litter types/species, but carbon and nitrogen dynamics in the dead material of Festuca rubra were poorly predicted. This disparity has been attributed to the proportion of leaves in the material of Festuca rubra (95%) being far beyond the range of leaf proportions in the three litter types the calibration set consisted of (8–35%). When the data of all litter types were used to determine the model parameters, good agreement was obtained between measured and simulated values for the changes in nitrogen and carbon in all litter types of both the green and dead material series. Optimization yielded parameter values for microbial carbon utilization efficiencies of 0.30 for microorganisms associated with green litter and 0.35 for those associated with dead litter. The critical C/N ratios for green and dead material were found to be 29 and 36, respectively.  相似文献   

3.
Winter regulation of tundra litter carbon and nitrogen dynamics   总被引:7,自引:3,他引:4  
Mass and nitrogen (N) dynamics of leaf litter measured in Alaskan tussock tundra differed greatly from measurements of these processes made in temperate ecosystems. Nearly all litter mass and N loss occurred during the winter when soils were mostly frozen. Litter lost mass during the first summer, but during the subsequent two summers when biological activity was presumably higher than it is during winter, litter mass remained constant and litter immobilized N. By contrast, litter lost significant mass and N over both winters of measurement. Mass loss and N dynamics were unaffected by microsite variation in soil temperature and moisture. Whether wintertime mass and N loss resulted from biological activity during winter or from physical processes (e.g., fragmentation or leaching) associated with freeze-thaw is unknown, but has implications for how future climate warming will alter carbon (C) and N cycling in tundra. We hypothesize that spring runoff over permafrost as soils melt results in significant losses of C and N from litter, consistent with the observed influx of terrestrial organic matter to tundra lakes and streams after snow melt and the strong N limitation of terrestrial primary production.  相似文献   

4.
Litter disappearance was examined before (1989) and after (1990) Hurricane Hugo in the Luquillo Experimental Forest, Puerto Rico using mesh litterbags containing abscised Cyrilla racemiflont or Dacryodes excelsa leaves or fresh Prestoea montana leaves. Biomass and nitrogen dynamics were compared among: (i) species; (ii) mid- and high elevation forest types; (iii) riparian and upland sites; and (iv) pre- and post-hurricane disturbed environments. Biomass disappearance was compared using multiple regression and negative exponential models in which the slopes were estimates of the decomposition rates subsequent to apparent leaching losses and the y-intercepts were indices of initial mass losses (leaching). Cyrilla racemiflora leaves with low nitrogen (0.39%) and high lignin (22.1%) content decayed at a low rate and immobilized available nitrogen. Dacryodes excelsa leaves had moderate nitrogen (0.67%) and lignin (16.6%) content, decayed at moderate rates, and maintained the initial nitrogen mass. Prestoea montana foliage had high nitrogen (1.76%) and moderate lignin (16.7%) content and rapidly lost both mass and nitrogen. There were no significant differences in litter disappearance and nitrogen dynamics among forest types and slope positions. Initial mass loss of C. racemiflora leaves was lower in 1990 but the subsequent decomposition rate did not change. Initial mass losses and the overall decomposition rates were lower in 1990 than in 1989 for Dacryodes excelsa. Dacryodes excelsa and C. racemiflora litter immobilized nitrogen in 1990 but released 10-15 percent of their initial nitrogen in 1989, whereas P. montana released nitrogen in both years (25-40%). Observed differences in litter disappearance rates between years may have been due to differences in the timing of precipitation. Foliar litter inputs during post-hurricane recovery of vegetation in Puerto Rico may serve to immobilize and conserve site nitrogen.  相似文献   

5.
Calcium, magnesium and potassium dynamics in decomposing litter of three tree species were measured over a two-year period. The speices studied were flowering dogwood (Cornus florida), red maple (Acer rubrum) and chestnut oak (Quercus prinus). The order of decomposition was:C. florida>A. rubrum>Q. prinus.Calcium concentrations increased following any initial leaching losses. However, there were net releases of Ca from all three litter types since mass loss exceeded the increases in concentration. Net release of Ca by the end of two years from all three species combined was 42% of initial inputs in litterfall. Magnesium concentrations increased in the second year, following decreases due to leaching during the first year inC. florida andA. rubrum litter. Net release of Mg by the end of two years was 58% of initial inputs. Potassium concentrations decreased rapidly and continued to decline throughout the study. Net release of K by the end of two years was 91% of initial inputs.These data on cation dynamics, and similar data on N, S and P dynamics from a previous study, were combined with annual litterfall data to estimate the release of selected nutrients from foliar litter of these tree species at the end of one and two years of decomposition. The relative mobility of all six elements examined in relation to mass loss after two years was; K>Mg>mass>Ca>S>P>N.  相似文献   

6.
Ecosystems with high rates of nitrogen fixation often have high loss rates through leaching or possibly denitrification. However, there is no formal theoretical context to examine why this should be the case nor of how nitrogen accumulates in such open systems. Here, we propose a simple model coupling nitrogen inputs and losses to carbon inputs and losses. The nitrogen balance of this model system depends on plant (nitrogen fixer) growth rate, its carrying capacity, N fixed/C fixed, residence time of nitrogen and carbon in biomass, litter decay rate, litter N/C, and fractional loss rate of mineralized nitrogen. The model predicts the requirements for equilibrium in a nitrogen-fixing system, and the conditions on nitrogen fixation and losses in order for the system to accumulate nitrogen and carbon. In particular, the accumulation of nitrogen and carbon in a nitrogen-fixing system depend on an interaction between residence time in vegetation and litter decay rate in soil. To reflect a possible increased uptake of soil nitrogen and decreased respiratory cost of symbiotic nitrogen fixers, the model was then modified so that fixation rate decreased and growth rate increased as nitrogen capital accumulated. These modifications had only small effects on carbon and nitrogen accumulation. This suggests that switching from uptake of atmospheric nitrogen to mineral soil nitrogen as nitrogen capital accumulates simply results in a trade-off between energetic limitations and soil nitrogen limitations to carbon and nitrogen accumulation. Experimental tests of the model are suggested.  相似文献   

7.
Invasive species have the capacity to substantially alter soil processes, including rates of litter decomposition. Currently, the few remaining native-dominated lowland wet forests in Hawai’i are being invaded by Falcataria moluccana, a large, fast-growing, N2-fixing tree. In this study, we sought to determine the extent to which Falcataria invasion alters decomposition in these lowland wet forests, and whether changes resulted from differences in litter substrate type, lava flow age and type, forest stand type and associated soil biota, or some combination of these factors. We measured decomposition rates and nitrogen (N) and phosphorus (P) dynamics of Metrosideros polymorpha and Falcataria leaf litter in native-dominated and Falcataria-invaded stands on 48- and 300-year-old a’a lava flows and a 213-year-old pāhoehoe flow in the Puna district of eastern Hawai’i. Despite significant differences in the initial quality of Metrosideros and Falcataria litter, in nearly all cases mass remaining of the two litter types did not differ within a given forest stand, whether native-dominated or invaded. Instead, stand type accounted for large differences in the decomposition of both litter types, and litter decomposed two to 10 times faster in Falcataria-invaded stands than it did in their native-dominated counterparts on each lava flow. Dynamics of N (that is, immobilization or release) during decomposition were affected by stand, litter, and lava flow type; P dynamics were affected by stand and flow type, but not litter type. Although not definitive proof of causality, the decay rates of both species were positively correlated to previously measured inputs of N mass and P mass via litterfall as well as availability of soil N and P, characteristics that all increased substantially with Falcataria invasion. Given the degree of change to a host of ecosystem processes, including decomposition, after invasion by Falcataria, these transformed forest ecosystems may best be viewed as fundamentally new and different, in both structure and function, from the native ecosystems they have replaced.  相似文献   

8.
天童国家森林公园常见植物凋落叶分解的研究   总被引:32,自引:2,他引:32       下载免费PDF全文
 选择天童地区常绿阔叶林及其退化群落常见植物种为对象,着重探讨分解速率和基质营养含量以及比表面积(Specific Leaf Area, SLA)的关系,并试图通过单独分解试验和混合分解试验的比较,从物种、功能群角度探讨凋落叶多样性和分解这一生态系统过程的关系,为深入研究常绿阔叶林常见植物种的营养策略、群落养分循环等奠定基础,也为植被恢复、森林生态系统管理提供理论依据。结果表明:所有凋落叶随时间进程失重率增大,但失重率并不与时间呈线性相关;凋落叶分解后N、P均发生了变化,大多数凋落叶在分解初期N、P均发生了积累,营养元素的释放和富集与凋落叶初始营养状况无明显的相关性。凋落叶的年分解系数与凋落叶中的初始N含量有较高的相关性,而与初始P含量则无显著的相关性;凋落叶的分解速率与成熟叶的面积无相关性,而与其SLA有很强的相关性。通过模型分析,天童地区大多数常见树种凋落叶分解95%需1~4年,平均是2.54年;分解率最高的物种为山鸡椒(Litsea cubeba),其值为6.280,最低的为黄丹木姜子(Litsea elongata),其值为0.558。凋落物混合对分解有很大的影响,虽在初期对分解有阻碍作用,但长期是促进的。若不考虑功能群差异,则可得出多样性的增加有利于分解的结论。功能群数目的增加在凋落物分解前期对分解起促进作用,但这种作用随分解的进展逐渐减小。混合物种的特性往往是决定分解过程的最重要的因素。  相似文献   

9.
The effect of seasonal inundation on the decomposition of emergent macrophyte litter (Scolochloa festucacea) was examined under experimental flooding regimes in a northern prairie marsh. Stem and leaf litter was subjected to six aboveground inundation treatments (ranging from never flooded to flooded April through October) and two belowground treatments (nonflooded and flooded April to August). Flooding increased the rate of mass loss from litter aboveground but retarded decay belowground. Aboveground, N concentration decreased and subsequently increased earlier in the longer flooded treatments, indicating that flooding decreased the time that litter remained in the leaching and immobilization phases of decay. Belowground, both flooded and nonflooded litter showed an initial rapid loss of N, but concentration and percent of original N remaining were greater in the nonflooded marsh throughout the first year. This suggested that more N was immobilized on litter under the nonflooded, more oxidizing soil conditions. Both N concentration and percent N remaining of belowground litter were greater in the flooded than the nonflooded marsh the second year, suggesting that N immobilization was enhanced after water-level drawdown. These results suggest different mechanisms by which flooding affects decomposition in different wetland environments. On the soil surface where oxygen is readily available, flooding accelerates decomposition by increasing moisture. Belowground, flooding creates anoxic conditions that slow decay. The typical hydrologic pattern in seasonally flooded prairie marshes of spring flooding followed by water-level drawdown in summer may maximize system decomposition rates by allowing rapid decomposition aboveground in standing water and by annually alleviating soil anoxia.  相似文献   

10.
为正确认识桉树(Eucalyptus spp.)人工林凋落物和土壤C、N、P时空分配格局及两者间的关系,对5个林龄尾巨桉林分凋落物及土壤C、N、P含量及化学计量比进行测定分析。结果表明,凋落物的C含量均显著大于土壤,且不同林龄间凋落物C含量无显著差异,1年生人工林土壤表层(0~20 cm)的C含量显著小于3~7年生,其他土层C含量在不同林龄间差异不显著。凋落物的N含量均显著高于土壤,且1年生人工林显著大于其他林龄的,而土壤表层的N含量以7年生人工林最大,1年生的最小。凋落物的P含量除1年生人工林显著大于3年生外,其他林龄间均无显著差异,土壤的P含量在不同林龄间的差异均不显著。凋落物C∶N随林龄呈逐渐增大趋势,且显著大于土壤层。凋落物的C∶P和N∶P在不同林龄间的差异不显著,但均显著大于土壤层。凋落物的N含量与表层土壤的C、N含量呈极显著负相关,凋落物的C∶N与表层土壤的C∶P,N∶P呈显著正相关,表层土壤C、N积累受到凋落物N的制约。因此,在桉树人工林经营管理过程中如何降低凋落物分解的N限制性、提高养分传递效率及合理施肥显得十分重要。  相似文献   

11.
1. The breakdown of oak ( Quercus robur L.), chestnut ( Castanea sativa Miller) and eucalypt ( Eucalyptus globulus Labill.) litter enclosed in 5-mm mesh bags was compared between first-order headwaters (two with native riparian forest and two with eucalypt plantations) and a third-order reach of Agüera stream. Weight loss and dynamics of phosphorus and nitrogen in litter were studied for a period of 155 days.
2. Among the different sites, processing rates ranged from 0.0045 to 0.0080 day–1 for chestnut leaf litter, from 0.0036 to 0.0051 day–1 for oak, and from 0.0027 to 0.0158 day–1 for eucalypt.
3. The availability of nutrients in water clearly influenced nitrogen and phosphorus dynamics in litter. In headwater reaches, net immobilization was not observed and losses of phosphorus and nitrogen followed mass loss. However, there was an enrichment of litter at the low reach, where influence of human settlements—located upstream—could lead to a greater availability of phosphorus in water.
4. The enhancement of litter decay by the exogenous nutrient supply depended on leaf quality, as only the processing rate of eucalypt increased at the nutrient-rich site.
5. The processing rates differed little among headwaters, suggesting that riparian forest type, i.e. deciduous forest v eucalypt plantations, did not affect litter decay in the stream.  相似文献   

12.
We studied late-stages decomposition of four types of coniferous needle and three types of deciduous leaf litter at two sites, one nutrient-poor boreal and one nutrient-rich temperate. The late stage was identified by that reached by litters at the onset of net loss of lignin mass, i.e. at about 1 year after the incubation when the highest amount of lignin had been detected; the study extended over the following 2 year period. Decomposition rates were significantly lower at the boreal than at the temperate site and did not differ between needle litter and leaf litter. In the boreal forest: (1) mass-loss was positively correlated with N and Mn release, (2) Mn concentration at the start of the late stage was positively correlated with lignin decay, (3) Ca concentration was negatively correlated to litter mass loss and lignin decay. In the temperate forest neither lignin, N, Mn, and Ca concentration at the start of the late stage, nor their dynamics were related to litter decomposition rates and lignin decay. In leaf litter mass-loss and lignin decay were positively correlated with N and Ca release and with Ca concentration. In needle litter mass-loss was positively correlated to Mn release and N concentration negatively with lignin decay. We concluded that Ca, N and Mn have different roles in controlling lignin decay depending on type of litter and site conditions.  相似文献   

13.
The initiation of nutrient cycling is important in developing a self-sustaining ecosystem, where inputs of fertilizer are not required, on rehabilitated open-cut mines. The loss of dry weight, surface area and nutrients from senescent jarrah (Eucalyptus marginata) leaves enclosed in litterbags for 18 months were measured on 27 rehabilitated bauxite mines and in two jarrah forests on the Darling Plateau in Western Australia. Respiration and acetylene reduction by the litter were also determined. Linear trends were found between litter decomposition on rehabilitated mines and understorey cover density, litter cover and a measure of the effect of the revegetation on soil moisture. During decomposition, N was retained relative to litter dry weight and, in most cases, amounts of N increased. Losses of Ca and S were correlated with dry weight losses. Sodium, Cl, Mg and K were lost from the litter by leaching. Rehabilitation techniques, including sowing a legume understorey and replacement of the topsoil, should favour the development of nutrient cycling on mined areas.  相似文献   

14.
1. The breakdown of oak ( Quercus robur L.), chestnut ( Castanea sativa Miller) and eucalypt ( Eucalyptus globulus Labill.) litter enclosed in 5-mm mesh bags was compared between first-order headwaters (two with native riparian forest and two with eucalypt plantations) and a third-order reach of Agüera stream. Weight loss and dynamics of phosphorus and nitrogen in litter were studied for a period of 155 days.
2. Among the different sites, processing rates ranged from 0.0045 to 0.0080 day–1 for chestnut leaf litter, from 0.0036 to 0.0051 day–1 for oak, and from 0.0027 to 0.0158 day–1 for eucalypt.
3. The availability of nutrients in water clearly influenced nitrogen and phosphorus dynamics in litter. In headwater reaches, net immobilization was not observed and losses of phosphorus and nitrogen followed mass loss. However, there was an enrichment of litter at the low reach, where influence of human settlements—located upstream—could lead to a greater availability of phosphorus in water.
4. The enhancement of litter decay by the exogenous nutrient supply depended on leaf quality, as only the processing rate of eucalypt increased at the nutrient-rich site.
5. The processing rates differed little among headwaters, suggesting that riparian forest type, i.e. deciduous forest v eucalypt plantations, did not affect litter decay in the stream.  相似文献   

15.
Summary A pot-culture experiment was conducted to assess the leaching losses of N from the conventional and new nitrogen fertilizers under low-land rice culture. Leaching losses of N were generally less than 20% of applied N with sources other than sodium nitrate and these could be reduced by blending urea with nitrification inhibitor N-Serve or coating withneem cake or by using urea super granules or slow-release N fertilizer sulphur coated urea. These new nitrogen fertilizers were more effective than urea for rice.  相似文献   

16.
Litter decay rates are often correlated with the initial lignin:N or lignin:cellulose content of litter, suggesting that interactions between lignin and more labile compounds are important controls over litter decomposition. The chemical composition of lignin may influence these interactions, if lignin physically or chemically protects labile components from microbial attack. We tested the effect of lignin chemical composition on litter decay in the field during a year-long litterbag study using the model system Arabidopsis thaliana. Three Arabidopsis plant types were used, including one with high amounts of guaiacyl-type lignin, one with high aldehyde- and p-hydroxyphenyl-type lignin, and a wild type control with high syringyl-type lignin. The high aldehyde litter lost significantly more mass than the other plant types, due to greater losses of cellulose, hemicellulose, and N. Aldehyde-rich lignins and p-hydroxyphenyl-type lignins have low levels of cross-linking between lignins and polysaccharides, supporting the hypothesis that chemical protection of labile polysaccharides and N is a mechanism by which lignin controls total litter decay rates. 2D NMR of litters showed that lignin losses were associated with the ratio of guaiacyl-to-p-hydroxyphenyl units in lignin, because these units polymerize to form different amounts of labile- and recalcitrant-linkages within the lignin polymer. Different controls over lignin decay and polysaccharide and N decay may explain why lignin:N and lignin:cellulose ratios can be better predictors of decay rates than lignin content alone.  相似文献   

17.
潘萍  赵芳  欧阳勋志  臧颢  宁金魁  国瑞 《生态学报》2018,38(11):3988-3997
以飞播马尾松林为研究对象,通过典型样地调查和样品测定,采用配对样本t检验和冗余分析(RDA)方法分析芒萁类和禾草类两种林下植被类型土壤碳、氮特征及其与凋落物质量之间的关系。结果表明:(1)土壤有机碳、微生物量碳、可溶性有机碳、全氮、速效氮、微生物量氮和可溶性有机氮含量在0-10、10-20 cm土层均表现为禾草类显著高于芒萁类(P < 0.05),而在20-40、40-80 cm土层两种植被类型碳氮指标的大小未表现出相同的变化规律,且差异不显著(P > 0.05)。(2)两种植被类型凋落物半分解和未分解层的C含量及C/N值均表现为芒萁类显著高于禾草类(P < 0.05),而N含量则表现为禾草类显著高于芒萁类(P < 0.05);同一植被类型的未分解层C含量及C/N值均显著大于半分解层,N含量则半分解层显著大于未分解层(P < 0.05)。(3)0-10 cm土层两种类型凋落物C/N值和C含量均与土壤碳氮各指标呈显著负相关(P < 0.05),N含量与土壤碳氮各指标的相关性不显著(P > 0.05);10-20 cm土层,芒萁类的半分解层C/N值与土壤碳氮各指标存在显著相关性(P < 0.05),禾草类的凋落物C含量与土壤碳氮各指标也存在显著相关性(P < 0.01)。林下植被凋落物C/N值越小,其分解速率越快,有利于土壤养分的积累,禾草类凋落物C/N值低于芒萁类是导致其土壤碳氮指标高于芒萁类的重要原因。  相似文献   

18.
为探讨沙漠公路防护林地表凋落物的分解速率和养分释放动态对施肥的响应,采用凋落物分解袋法,对塔里木沙漠公路防护林地乔木状沙拐枣(Calligonum arborescens)同化枝、梭梭(Haloxylon ammodendron)同化枝和多枝柽柳(Tamarix ramosissima)枝凋落物在施肥处理下的分解及养分释放特征进行研究。结果表明:经过420d的分解,3种凋落物质量残留率在对照(不施肥)、施用氮肥、施用磷钾复合肥处理间存在显著性差异(P0.05)。乔木状沙拐枣同化枝、梭梭同化枝和多枝柽柳枝在对照处理下的质量残留率分别为56.95%、31.32%和50.24%。施肥处理下3种凋落物均呈现出梭梭同化枝分解速率最快,多枝柽柳枝次之,乔木状沙拐枣同化枝分解最慢。施用磷钾复合肥极显著提高了3种凋落物的分解速率(P0.01);施用氮肥则促进多枝柽柳枝的分解,抑制乔木状沙拐枣和梭梭同化枝的分解。凋落物分解过程中,对照组3种植物凋落物的C、N、P和K元素均呈现净释放状态;施肥后凋落物的N、P和K元素呈现出富集-释放的模式。凋落物初始P含量和C/N、C/P比值是分解初期的主导因素,初始K、木质素、纤维素含量和C/N、木质素/N比值是分解后期的主要控制因素。研究表明,施肥显著影响沙漠公路防护林地表凋落物的分解,增加防护林地表凋落物的养分归还量,延后养分释放的时间,改善塔里木沙漠公路防护林地的土壤肥力。凋落物初始C/N比值是预测塔里木沙漠凋落物分解的重要因素,且不同分解时期影响凋落物分解的初始化学组成有所差异。  相似文献   

19.
African perennial C4 grasses are highly successful invaders in Hawaiian ecosystems. We examined the effects of African molasses grass (Melinis minutiflora Beauv.) on Hawaiian shrubland nitrogen (N) dynamics without the influence of fire disturbance. Vegetation tissue carbon and nitrogen chemistry, soil inorganic N pools, net N mineralization rates, and total soil N were studied in three adjacent areas: a monospecificMelinis grassland, a mixed grass/shrubland mosaic, and an un-invaded shrubland.Melinis plots within the mosaic area exhibited the largest inorganic N pools and fastest net N mineralization rates, but were temporally variable with grass phenology. Un-invaded shrubland plots contained the smallest inorganic N pools and lowest net N mineralization rates. Grass foliar C:N and litter C:N were lower than those of common shrubland species, providing one possible link between species and ecosystem N dynamics at this site. The combined effects of N cycle modification, successful light competition, and fire-cycle enhancement make the invasion ofMelinis a significant perturbation to Hawaiian shrubland ecosystem function and successional dynamics. ei]Section editor H Lambers  相似文献   

20.
Nitrogen losses from perennial grass species   总被引:1,自引:0,他引:1  
Nitrogen losses from plants may occur through a variety of pathways, but so far, most studies have only quantified losses of nutrients by above-ground litter production. We used 15N pulse labelling to quantify total nitrogen losses from above- and below-ground plant parts. Using this method we were able to include also pathways other than above-ground litter production. To test the hypothesis that species from nutrient-poor habitats lose less nitrogen than species from more fertile soils, six perennial grasses from habitats with a wide range of nutrient availability were investigated: Lolium perenne, Arrhenatherum elatius, Anthoxanthum odoratum, Festuca rubra, F. ovina and Molinia caerulea. The results of an experiment carried out in pots in a green-house at two fertility levels show that statistically significant losses occur through pathways other than above-ground litter production. In the low fertility treatment, most (70%) losses from L. perenne occurred by litter production, but in Ar. elatius, F. rubra, F. ovina and M. caerulea, more than 50% of labelled N losses took place by root turn-over, leaching or exudation from roots. When nutrient supply increased, the 15N losses in above-ground dead material increased in all species and in Ar. elatius, A. odoratum and F. rubra the 15N losses via other pathways decreased. Ranked according to decreasing turnover coefficient the sequence of species was: L. perenne, A. odoratum, F. rubra, F. ovina, Ar. elatius, M. caerulea. These results suggest that species adapted to sites with low availability of nutrients lose less nitrogen (including above- and below-ground losses) than species adapted to more fertile soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号