首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using synthetic inhibitors, it has been shown that the ectopeptidase dipeptidyl peptidase IV (DP IV) (CD26) plays an important role in the activation and proliferation of T lymphocytes. The human immunodeficiency virus-1 Tat protein, as well as the N-terminal nonapeptide Tat(1-9) and other peptides containing the N-terminal sequence XXP, also inhibit DP IV and therefore T cell activation. Studying the effect of amino acid exchanges in the N-terminal three positions of the Tat(1-9) sequence, we found that tryptophan in position 2 strongly improves DP IV inhibition. NMR spectroscopy and molecular modeling show that the effect of Trp(2)-Tat(1-9) could not be explained by significant alterations in the backbone structure and suggest that tryptophan enters favorable interactions with DP IV. Data base searches revealed the thromboxane A2 receptor (TXA2-R) as a membrane protein extracellularly exposing N-terminal MWP. TXA2-R is expressed within the immune system on antigen-presenting cells, namely monocytes. The N-terminal nonapeptide of TXA2-R, TXA2-R(1-9), inhibits DP IV and DNA synthesis and IL-2 production of tetanus toxoid-stimulated peripheral blood mononuclear cells. Moreover, TXA2-R(1-9) induces the production of the immunosuppressive cytokine transforming growth factor-beta1. These data suggest that the N-terminal part of TXA2-R is an endogenous inhibitory ligand of DP IV and may modulate T cell activation via DP IV/CD26 inhibition.  相似文献   

2.
N-Pentafluorobenzoyl-R110 (1a) and N-(2,3,4,5-tetrafluorobenzoyl)-R110 (1b) with enhanced cell retention properties, were prepared from rhodamine 110 (R-110) and the corresponding polyfluorobenzoyl chloride. N-Ac-DEVD-N'-pentafluorobenzoyl-R110 (3a) and N-Ac-DEVD-N'-(2,3,4,5-tetrafluorobenzoyl)-R110 (3b) were prepared as tetrapeptide substrates for caspases. Substrate 3b was efficiently cleaved by human recombinant caspase-3 in an enzyme assay. Substrate 3b also was efficiently cleaved in cell-based apoptosis assays. After cleavage in apoptotic cells by activated caspases, the substrate becomes fluorescent as measured by flow cytometry. These substrates should prove useful in cell-based assays for studying apoptosis inducers and inhibitors.  相似文献   

3.
The discovery of the DP4-related enzymes DP8 and DP9 raised controversial discussion regarding the physiological and pathophysiological function of distinct members of the DP4 family. Particularly with regard to their potential relevance in regulating immune functions, it is of interest to know which role the subcellular distribution of the enzymes play. Synthetic substrates as well as low molecular weight inhibitors are widely used as tools, but little is yet known regarding their features in cell experiments, such as their plasma membrane penetration capacity. The fluorogenic substrates Gly-Pro-AMC or (Ala-Pro)?-R110 predominantly detect plasma membrane-bound activities of viable cells (less than 0.1% of fluorochromes R110 or AMC inside viable cells after 1 h incubation). Additionally, the selective and non-selective DP8/9 inhibitors allo-Ile-isoindoline and Lys[Z(NO?)]-pyrrolidide were found to be incapable of passing the plasma membrane easily. This suggests that previously reported cellular effects are not due to inhibition of the cytosolic enzymes DP8 or DP9. Moreover, our enzymatic studies with viable cells provided evidence that DP8 and/or DP9 are also present on the surface of immune cells under certain circumstances and could gain relevance particularly in the absence of DP4 expression. In summary, in cells which do express DP4 on the surface, this archetypical member of the DP4 family is the most relevant peptidase in the regulation of cellular functions.  相似文献   

4.
Tripeptidyl peptidase I (TPP-I) is a lysosomal peptidase with unclear physiological function. TPP-I deficiency is associated with late-infantile neuronal ceroid lipofuscinosis (NCL), a fatal neurodegenerative disease of childhood that is characterized by loss of neurons and photoreceptor cells. We have developed two novel fluorogenic substrates, [Ala-Ala-Phe]2-rhodamine 110 and [Arg-Nle-Nle]2-rhodamine 110, that are cleaved by TPP-I in living cells. Fluorescence of liberated rhodamine 110 was detected by flow cytometry and was dependent on the level of TPP-I expression. Rhodamine-related fluorescence could be suppressed by preincubation with a specific inhibitor of TPP-I. When investigated by fluorescent confocal microscopy, rhodamine signals colocalized with lysosomal markers. Thus, cleavage of these rhodamide-derived substrates is a marker for mature enzymatically active TPP-I. In addition, TPP-I-induced cleavage of [Ala-Ala-Phe]2-rhodamine 110 could be visualized in primary neurons. We conclude that [Ala-Ala-Phe]2-rhodamine 110 and [Arg-Nle-Nle]2-rhodamine 110 are specific substrates for determining TPP-I activity and intracellular localization in living cells. Further, these substrates could be a valuable tool for studying the neuronal pathology underlying classical late-infantile NCL. This article contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.  相似文献   

5.
The cellular dipeptidyl peptidase IV (DPIV, E.C.3.4.14.5, CD26) is a type II membrane peptidase with various physio-logical functions. Our main knowledge on DPIV comes from studies of soluble DPIV which plays a role in regulation of glucose homeostasis by inactivation of the incretins glucagon-like peptide-1 and glucose-dependent insulinotropic poly-peptide. It has been reported that membrane-bound DPIV plays a crucial role in the immune system and in other tissues and cells, but the knowledge on the action of cellular DPIV and its regulation is limited. In this study, we show particularly for immune cells that DPIV and not DP8 or DP9 is the most potent member of the DPIV family in regulating cellular immune functions. Moreover, we provide evidence that soluble and cellular DPIV differ in functions and hand-ling of substrates and inhibitors owing to the different accessibility of peptide substrates to the two access paths of DPIV. The different functions are based on the favored access path of the central pore of cellular DPIV and a special central pore binding site which assists substrate access to the active site of the enzyme. The newly discovered central pore binding site mediates an autosterical regulation of cellular DPIV and is its most crucial target site to regulate cellular functions such as growth and cytokine production. Neuropeptide Y (NPY) processing by cellular DPIV was found to be inhibited by ligands which interact with the central pore binding site. This finding suggests a crucial role of the immunosuppressive cytokine NPY in the function of DPIV in growth regulation.  相似文献   

6.
Fluorogenic substrates [Ala-Pro](2)-cresyl violet and Ala-Pro-rhodamine 110 have been tested for microscopic detection of protease activity of dipeptidyl peptidase IV (DPPIV) in living cells. DPPIV activity is one of the many functions of the multifunctional or moonlighting protein CD26/DPPIV. As a model we used Jurkat cells, which are T-cells that lack CD26/DPPIV expression, and CD26/DPPIV-transfected Jurkat cells. Ala-Pro-rhodamine 110 is not fluorescent, but after proteolytic cleavage rhodamine 110 fluoresces. [Ala-Pro](2)-cresyl violet is fluorescent by itself but proteolytic cleavage into cresyl violet induces a shift to longer wavelengths. This phenomenon enables the simultaneous determination of local (intracellular) substrate and product concentrations, which is important for analysis of kinetics of the cleavage reaction. [Ala-Pro](2)-cresyl violet, but not Ala-Pro-rhodamine 110, appeared to be specific for DPPIV. When microscopic analysis is performed on living cells during the first minutes of the enzyme reaction, DPPIV activity can be precisely localized in cells with the use of [Ala-Pro](2)-cresyl violet. Fluorescent product is rapidly internalized into submembrane granules in transfected Jurkat cells and is redistributed intracellularly via internalization pathways that have been described for CD26/DPPIV. We conclude that [Ala-Pro](2)-cresyl violet is a good fluorogenic substrate to localize DPPIV activity in living cells when the correct wavelengths are used for excitation and emission and images are captured in the early stages of the enzyme reaction.  相似文献   

7.
CD26 or dipeptidyl peptidase IV (DP IV) is expressed on various cell types, including T cells. Although T cells can receive activating signals via CD26, the physiological role of CD26/DP IV is largely unknown. We used the reversible DP IV inhibitor Lys[Z(NO(2))]-pyrrolidide (I40) to dissect the role of DP IV in experimental autoimmune encephalomyelitis (EAE) and to explore the therapeutic potential of DP IV inhibition for autoimmunity. I40 administration in vivo decreased and delayed clinical and neuropathological signs of adoptive transfer EAE. I40 blocked DP IV activity in vivo and increased the secretion of the immunosuppressive cytokine TGF-beta1 in spinal cord tissue and plasma during acute EAE. In vitro, while suppressing autoreactive T cell proliferation and TNF-alpha production, I40 consistently up-regulated TGF-beta1 secretion. A neutralizing anti-TGF-beta1 Ab blocked the inhibitory effect of I40 on T cell proliferation to myelin Ag. DP IV inhibition in vivo was not generally immunosuppressive, neither eliminating encephalitogenic T cells nor inhibiting T cell priming. These data suggest that DP IV inhibition represents a novel and specific therapeutic approach protecting from autoimmune disease by a mechanism that includes an active TGF-beta1-mediated antiinflammatory effect at the site of pathology.  相似文献   

8.
The dipeptidyl rhodamine diamide substrates (Z-Phe-Arg)2-R110 and (Z-Arg-Arg)2-R110 are 820- and 360-fold more selective for cathepsin L than for cathepsin B allowing a sensitive determination of cathepsin L activity in the presence of high activity of cathepsin B. The results obtained with cell lysates suggest that the cysteine proteinase activity of vital macrophages detected by flow cytometry with these substrates is mainly due to cathepsin L.  相似文献   

9.
The T cell marker CD26/dipeptidyl peptidase (DP) IV is associated with an effector phenotype and markedly elevated in the human CNS disorder multiple sclerosis. However, little is known about the in vivo role of CD26/DP IV in health and disease, and the underlying mechanism of its function in CNS inflammation. To directly address the role of CD26/DP IV in vivo, we examined Th1 immune responses and susceptibility to experimental autoimmune encephalomyelitis in CD26(-/-) mice. We show that gene deletion of CD26 in mice leads to deregulation of Th1 immune responses. Although production of IFN-gamma and TNF-alpha by pathogenic T cells in response to myelin Ag was enhanced in CD26(-/-) mice, production of the immunosuppressive cytokine TGF-beta1 was diminished in vivo and in vitro. In contrast to the reduction in TGF-beta1 production, responsiveness to external TGF-beta1 was normal in T cells from CD26(-/-) mice, excluding alterations in TGF-beta1 sensitivity as a mechanism causing the loss of immune regulation. Natural ligands of CD26/DP IV induced TGF-beta1 production in T cells from wild-type mice. However, natural ligands of CD26/DP IV failed to elicit TGF-beta1 production in T cells from CD26(-/-) mice. The striking functional deregulation of Th1 immunity was also seen in vivo. Thus, clinical experimental autoimmune encephalomyelitis scores were significantly increased in CD26(-/-) mice immunized with peptide from myelin oligodendrocyte glycoprotein. These results identify CD26/DP IV as a nonredundant inhibitory receptor controlling T cell activation and Th1-mediated autoimmunity, and may have important therapeutic implications for the treatment of autoimmune CNS disease.  相似文献   

10.
Activated T lymphocytes express high levels of dipeptidyl peptidase IV (DP IV)/CD26. Recent studies support the notion that DP IV may play an important role in the regulation of differentiation and growth of T lymphocytes. This article gives a short overview on DP IV/CD26 expression and effects on immune cells in vitro and in vivo. A major focus of this review are clinical aspects of the function of CD26 on hematopoietic cells and the potential usage of synthetic DP IV inhibitors as therapeutics in inflammatory disorders.  相似文献   

11.
Dipeptidyl peptidase IV (DP IV, CD26) plays an essential role in the activation and proliferation of lymphocytes, which is shown by the immunosuppressive effects of synthetic DP IV inhibitors. Similarly, both human immunodeficiency virus-1 (HIV-1) Tat protein and the N-terminal peptide Tat(1-9) inhibit DP IV activity and T cell proliferation. Therefore, the N-terminal amino acid sequence of HIV-1 Tat is important for the inhibition of DP IV. Recently, we characterized the thromboxane A2 receptor peptide TXA2-R(1-9), bearing the N-terminal MWP sequence motif, as a potent DP IV inhibitor possibly playing a functional role during antigen presentation by inhibiting T cell-expressed DP IV [Wrenger, S., Faust, J., Mrestani-Klaus, C., Fengler, A., St?ckel-Maschek, A., Lorey, S., K?hne, T., Brandt, W., Neubert, K., Ansorge, S. & Reinhold, D. (2000) J. Biol. Chem.275, 22180-22186]. Here, we demonstrate that amino acid substitutions at different positions of Tat(1-9) can result in a change of the inhibition type. Certain Tat(1-9)-related peptides are found to be competitive, and others linear mixed-type or parabolic mixed-type inhibitors indicating different inhibitor binding sites on DP IV, at the active site and out of the active site. The parabolic mixed-type mechanism, attributed to both non-mutually exclusive inhibitor binding sites of the enzyme, is described in detail. From the kinetic investigations and molecular modeling experiments, possible interactions of the oligopeptides with specified amino acids of DP IV are suggested. These findings give new insights for the development of more potent and specific peptide-based DP IV inhibitors. Such inhibitors could be useful for the treatment of autoimmune and inflammatory diseases.  相似文献   

12.
N-terminal truncation of chemokines by proteases including dipeptidyl peptidase (DP) IV significantly alters their biological activity; generally ablating cognate G-protein coupled receptor engagement and often generating potent receptor antagonists. DP8 is a recently recognised member of the prolyl oligopeptidase gene family that includes DPIV. Since DPIV is known to process chemokines we surveyed 27 chemokines for cleavage by DP8. We report DP8 cleavage of the N-terminal two residues of IP10 (CXCL10), ITAC (CXCL11) and SDF-1 (CXCL12). This has implications for DP8 substrate specificity. Chemokine cleavage and inactivation may occur in vivo upon cell lysis and release of DP8 or in the inactivation of internalized chemokine/receptor complexes.  相似文献   

13.
Patients suffering from lymphogranulomatosis were studied with respect to cellular immune deficiencies. For this purpose, mononuclear cells from venous blood were separated and subjected to analysis of lymphocyte markers. T-lymphocytes were enumerated by means of the sheep erythrocyte (SE) rosette test. T cell subpopulations were determined using enzyme cytochemical staining for dipeptidyl peptidase IV (DP IV) and unspecific acid alphanaphthylacetate esterase (ANAE). In 18 patients with M. Hodgkin a significant reduction in the T lymphocyte count in peripheral blood was found. This T cell defect is due to a selective decrease in the TM-subpopulation as identified by enzyme cytochemical markers DP IV and ANAE (focal reaction). From these results it is concluded that patients with lymphogranulomatosis have characteristic abnormalities in the immune system in the sense of a disturbed equilibrium of immune regulatory cells.  相似文献   

14.
The reaction of dipeptidyl peptidase IV (EC 3.4.14.5.) with azapeptide substrates containing azaalanine or azaproline in the P1-position was investigated. Accumulation of a fairly stable acyl-enzyme could be shown for ester substrates. Ala-AzaPro-pNA is a very poor substrate of DP IV and does not accumulate an acyl-enzyme. DP IV does not react with active-site titrants for trypsin-like serine proteases.  相似文献   

15.
CD26 is a membrane-bound ectopeptidase with dipeptidyl peptidase IV (DPPIV) activity that has diverse functional properties in T cell physiology and in regulation of bioactive peptides. We have previously reported that activated human peripheral lymphocytes (PBL) secrete an amino-terminal truncated form of macrophage inflammatory protein (MIP)-1beta/(3-69) with novel functional specificity for CCR1, 2, and 5. In this report, we show that the full length MIP-1beta is processed by CD26/DPPIV to the truncated form and that cleavage can be blocked by DPPIV inhibitory peptides derived from HIV Tat(1-9) or the thromboxane A2 receptor, TAX2-R(1-9). Addition of Tat(1-9) or TAX2-R(1-9) peptides to PBL cultures partially blocks endogenous MIP-1beta processing. The kinetics of conversion of MIP-1beta from intact to MIP-1beta(3-69) in activated PBLs correlates with cell surface expression of CD26. Our results suggest that NH2-terminal processing of MIP-1beta and possibly other chemokines may depend on the balance between CD26/DPPIV enzymatic activity and cellular and viral proteins that modulate enzyme function.  相似文献   

16.
Abstract

The reaction of dipeptidyl peptidase IV (EC 3.4.14.5.) with azapeptide substrates containing azaalanine or azaproline in the P1-position was investigaled. Accumulation of a fairly stable acyl-enzyme could be shown for ester substrates. Ala-AzaPro-pNA is a very poor substrate of DP IV and does not accumulate an acyl-enzyme. DP IV does not react with active-site titrants for trypsin-like serine proteases.  相似文献   

17.
T-Cell subsets identified by polyclonal and monoclonal antibodies to dipeptidyl peptidase IV (DP IV) were investigated. Analysis in a cytofluorograf revealed 63 +/- 7% positive scatter-gated T lymphocytes. DP IV-positive cells were found to be T11+, 74-81% OKT4+, and 12-19% OKT8+. DP IV-negative cells were T11+ and comprise 16-40% OKT8+, and 10-30% OKT4+ T cells. Treatment of T lymphocytes with rabbit anti-DP IV and complement as well as the presence of rabbit anti-DP IV during culture resulted in a reduction of interleukin 2 (IL-2) production. This reduction was not observed with the mouse monoclonal anti-DP IV antibody II-19-4-7. Positive enrichment of DP IV-positive lymphocytes by cell sorting revealed excellent IL-2 production of DP IV-positive cells and very poor IL-2 activity in supernatants obtained from DP IV-negative lymphocytes. Thus, DP IV may serve as cell surface marker for IL-2-producing T lymphocytes.  相似文献   

18.
Dipeptidyl peptidase IV (DP IV) is a membrane peptidase with essential functional significance in thymus derived lymphocytes. This conclusion is drawn from 1) the induction of this enzyme after stimulation of T lymphocytes in vitro and 2) the impairment of T cell functions in presence of active site-specific inhibitors of the enzyme. The first item will be addressed in this paper, whereas the second one will be treated in a forthcoming article. Using flow cytofluorometry we investigated the expression of dipeptidyl peptidase IV on activated lymphocytes and the phenotype of lymphocytes expressing this enzyme. After stimulation by mitogenic lectins the number of epitopes on the cell surface binding polyclonal antibodies against DP IV increases 4 to 6 times. By means of double fluorescence staining the enzyme has been shown to be restricted nearly exclusively to T lymphocytes even after mitogenic stimulation. The highest density of DP IV epitopes has been found in cells coexpressing activation markers like receptors for interleukin 2 or transferrin in a high density.  相似文献   

19.
Dipeptidyl peptidase IV (DP-IV/CD26), fibroblast activation protein (FAP), DP-like 1 (DPL1), DP8, DP9, and DPL2 comprise the CD26 gene family. CD26/DP-IV has roles in liver disease, T cell costimulation, chemokine biology, type II diabetes, and tumor biology. DPIV substrates include the glucagonlike peptides, neuropeptide Y, and the chemokines CCL3, CCL5, CCL11, CCL22, and CXCL12. We have proposed that the extracellular region of CD26 is analogous to prolyl oligopeptidase in consisting of an alpha/beta hydrolase domain contributed by both N- and C-terminal portions of the polypeptide and a seven-blade beta-propeller domain. Replacing the C-terminal portion of the predicted alpha/beta hydrolase domain of CD26 (residues 501-766) with the homologous portion of DP8 or DP9 produced intact proteins. However, these chimeric proteins lacked dimerization and peptidase activity, suggesting that CD26 dimerization requires the C-terminal portion of the alpha/beta hydrolase domain. Deleting some N-terminal residues of the alpha/beta hydrolase domain of CD26 ablated peptidase activity and greatly diminished cell surface expression. Together with previous data that CD26 peptidase activity requires the C-terminal 20 residues, this suggests that peptidase activity requires the entire alpha/beta hydrolase domain. The catalytic triad of DP8 was shown to be Ser(739)-Asp (817)-His(849). Glu(259) of DP8, a residue distant from the catalytic triad yet greatly conserved in the CD26 gene family, was shown to be required for peptidase activity. These data concord with our predicted CD26 structure, indicate that biosynthesis of a functional fragment of CD26 is difficult, and confirm the functional homology of DP8 with CD26.  相似文献   

20.
Boonacker E  Elferink S  Bardai A  Wormmeester J  Van Noorden CJ 《BioTechniques》2003,35(4):766-8, 770, 772 passim
Proteolysis is a regulatory step in many physiological processes, but which proteases in what cellular sites are involved in activation or degradation of which peptides is not well known. We developed a rapid assay consisting of living cells and fluorogenic protease substrates to determine which bioactive peptides are possible natural substrates of a specific protease with the multifunctional or moonlighting protein CD26/dipeptidyl peptidase IV (DPPIV) as a model. CD26/DPPIV catalyzes cleavage of peptides from the amino terminus of peptides with proline at the penultimate position. Many biologically active peptides, such as beta-casomorphin1-5, contain proline in the penultimate position. We incubated living Jurkat cells, which are T cells that lack CD26/DPPIV, and CD26/DPPIV-transfected Jurkat cells in the presence of the fluorogenic substrate [Ala-Pro]2-cresyl violet (Magic Red) and beta-casomorphin1-5. Fluorescent cresyl violet was generated by CD26/DPPIV-transfected Jurkat cells but not by wild-type Jurkat cells with a Km of 3.7 microM. beta-Casomorphin1-5 appeared to be a possible natural substrate of CD26/DPPIV, because it inhibited production of fluorescence competitively (Ki = 60 microM). The assay using living cells and a fluorogenic protease substrate is an efficient system to determine whether specific peptides are possible natural substrates of a particular protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号